code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import re def __lowerCamelCase ( _lowercase ) -> list: return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )] def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Optional[int] = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: try: UpperCAmelCase : Tuple = split_input(_lowercase ) if upper: UpperCAmelCase : int = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase : List[str] = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __lowerCamelCase ( _lowercase ) -> str: return to_simple_case(_lowercase ) def __lowerCamelCase ( _lowercase ) -> str: try: UpperCAmelCase : Union[str, Any] = to_simple_case(_lowercase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return to_complex_case(_lowercase , _lowercase , """_""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return to_complex_case(_lowercase , _lowercase , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING a : List[Any] = logging.get_logger(__name__) a : List[Any] = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'blip_2_vision_model' def __init__( self , A=1408 , A=6144 , A=39 , A=16 , A=224 , A=14 , A="gelu" , A=0.0_0_0_0_1 , A=0.0 , A=1e-10 , A=True , **A , ) -> str: super().__init__(**A ) UpperCAmelCase : List[Any] = hidden_size UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Dict = patch_size UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : List[Any] = attention_dropout UpperCAmelCase : Optional[Any] = layer_norm_eps UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[Any] = qkv_bias @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase , UpperCAmelCase : int = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": UpperCAmelCase : Dict = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'blip_2_qformer' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=0.0_2 , A=1e-12 , A=0 , A="absolute" , A=2 , A=1408 , **A , ) -> List[str]: super().__init__(pad_token_id=A , **A ) UpperCAmelCase : Any = vocab_size UpperCAmelCase : List[Any] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : Any = hidden_act UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : List[Any] = position_embedding_type UpperCAmelCase : List[str] = cross_attention_frequency UpperCAmelCase : Union[str, Any] = encoder_hidden_size @classmethod def _lowercase( cls , A , **A ) -> "PretrainedConfig": cls._set_token_in_kwargs(A ) UpperCAmelCase , UpperCAmelCase : List[str] = cls.get_config_dict(A , **A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": UpperCAmelCase : Tuple = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'blip-2' lowercase = True def __init__( self , A=None , A=None , A=None , A=32 , **A ) -> Union[str, Any]: super().__init__(**A ) if vision_config is None: UpperCAmelCase : int = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: UpperCAmelCase : Any = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: UpperCAmelCase : int = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) UpperCAmelCase : str = BlipaVisionConfig(**A ) UpperCAmelCase : Dict = BlipaQFormerConfig(**A ) UpperCAmelCase : Any = text_config["""model_type"""] if """model_type""" in text_config else """opt""" UpperCAmelCase : List[Any] = CONFIG_MAPPING[text_model_type](**A ) UpperCAmelCase : int = self.text_config.tie_word_embeddings UpperCAmelCase : Tuple = self.text_config.is_encoder_decoder UpperCAmelCase : Optional[int] = num_query_tokens UpperCAmelCase : Tuple = self.vision_config.hidden_size UpperCAmelCase : Optional[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : int = 1.0 UpperCAmelCase : Optional[Any] = 0.0_2 @classmethod def _lowercase( cls , A , A , A , **A , ) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Any = self.vision_config.to_dict() UpperCAmelCase : Any = self.qformer_config.to_dict() UpperCAmelCase : Any = self.text_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCamelCase_ ( __magic_name__ ): @staticmethod @abstractmethod def _lowercase( A ) -> List[Any]: raise NotImplementedError() @abstractmethod def _lowercase( self ) -> Union[str, Any]: raise NotImplementedError()
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a : List[Any] = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A = None , A = None , A = None , A = True , ) -> Tuple: UpperCAmelCase : Dict = [file for file in os.listdir(A ) if os.path.isfile(os.path.join(A , A ) )] if identifier is not None: UpperCAmelCase : Any = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(A , A ): for n_ in n_identifier: UpperCAmelCase : Optional[int] = [file for file in files if n_ not in file] else: UpperCAmelCase : int = [file for file in files if n_identifier not in file] UpperCAmelCase : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase : List[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , A ) if only_modules: UpperCAmelCase : Optional[int] = file.split(""".""" )[0] try: UpperCAmelCase : Any = getattr(A , A ) UpperCAmelCase : str = doctest.DocTestSuite(A ) UpperCAmelCase : List[Any] = unittest.TextTestRunner().run(A ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: UpperCAmelCase : Any = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _lowercase( self ) -> str: UpperCAmelCase : Optional[int] = Path("""src/transformers""" ) UpperCAmelCase : Tuple = """modeling""" UpperCAmelCase : Dict = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(A , identifier=A , ignore_files=A ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = Path("""src/transformers""" ) UpperCAmelCase : Dict = """tokenization""" self.analyze_directory(A , identifier=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = Path("""src/transformers""" ) UpperCAmelCase : Optional[Any] = """configuration""" self.analyze_directory(A , identifier=A ) def _lowercase( self ) -> str: UpperCAmelCase : List[str] = Path("""src/transformers""" ) UpperCAmelCase : Optional[Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(A , n_identifier=A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : List[str] = Path("""docs/source""" ) UpperCAmelCase : Union[str, Any] = ["""favicon.ico"""] self.analyze_directory(A , ignore_files=A , only_modules=A )
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' import numpy as np def __lowerCamelCase ( _lowercase ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : Union[str, Any] = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'encodec' def __init__( self , A=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , A=24000 , A=1 , A=False , A=None , A=None , A=128 , A=32 , A=1 , A=[8, 5, 4, 2] , A="weight_norm" , A=7 , A=7 , A=3 , A=2 , A=True , A="reflect" , A=2 , A=2 , A=1.0 , A=1024 , A=None , A=True , **A , ) -> Optional[Any]: UpperCAmelCase : int = target_bandwidths UpperCAmelCase : str = sampling_rate UpperCAmelCase : Union[str, Any] = audio_channels UpperCAmelCase : Optional[int] = normalize UpperCAmelCase : Optional[Any] = chunk_length_s UpperCAmelCase : Any = overlap UpperCAmelCase : int = hidden_size UpperCAmelCase : int = num_filters UpperCAmelCase : Optional[int] = num_residual_layers UpperCAmelCase : Optional[Any] = upsampling_ratios UpperCAmelCase : Optional[int] = norm_type UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : str = last_kernel_size UpperCAmelCase : Optional[Any] = residual_kernel_size UpperCAmelCase : Optional[int] = dilation_growth_rate UpperCAmelCase : List[str] = use_causal_conv UpperCAmelCase : Dict = pad_mode UpperCAmelCase : Optional[Any] = compress UpperCAmelCase : int = num_lstm_layers UpperCAmelCase : Any = trim_right_ratio UpperCAmelCase : Optional[Any] = codebook_size UpperCAmelCase : Any = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase : List[str] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**A ) @property def _lowercase( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _lowercase( self ) -> int: UpperCAmelCase : List[str] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _lowercase( self ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' from collections import deque def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Any = len(_lowercase ) UpperCAmelCase : List[Any] = deque() UpperCAmelCase : Tuple = [False for _ in range(_lowercase )] UpperCAmelCase : int = [-1 for _ in range(_lowercase )] UpperCAmelCase : str = index_of[:] def strong_connect(_lowercase , _lowercase , _lowercase ): UpperCAmelCase : Union[str, Any] = index # the number when this node is seen UpperCAmelCase : Dict = index # lowest rank node reachable from here index += 1 stack.append(_lowercase ) UpperCAmelCase : Optional[int] = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase : str = strong_connect(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : Optional[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase : Optional[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase : Any = [] UpperCAmelCase : List[Any] = stack.pop() UpperCAmelCase : Tuple = False component.append(_lowercase ) while w != v: UpperCAmelCase : Union[str, Any] = stack.pop() UpperCAmelCase : Optional[Any] = False component.append(_lowercase ) components.append(_lowercase ) return index UpperCAmelCase : Tuple = [] for v in range(_lowercase ): if index_of[v] == -1: strong_connect(_lowercase , 0 , _lowercase ) return components def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = [[] for _ in range(_lowercase )] for u, v in edges: g[u].append(_lowercase ) return g if __name__ == "__main__": # Test a : Union[str, Any] = 7 a : List[str] = [0, 0, 1, 2, 3, 3, 4, 4, 6] a : List[Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5] a : int = [(u, v) for u, v in zip(source, target)] a : Any = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' from math import isqrt, loga def __lowerCamelCase ( _lowercase ) -> list[int]: UpperCAmelCase : Optional[int] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowercase , _lowercase ): UpperCAmelCase : Union[str, Any] = False return [i for i in range(2 , _lowercase ) if is_prime[i]] def __lowerCamelCase ( _lowercase = 8_0_0_8_0_0 , _lowercase = 8_0_0_8_0_0 ) -> int: UpperCAmelCase : int = degree * loga(_lowercase ) UpperCAmelCase : Dict = int(_lowercase ) UpperCAmelCase : List[str] = calculate_prime_numbers(_lowercase ) UpperCAmelCase : int = 0 UpperCAmelCase : int = 0 UpperCAmelCase : List[str] = len(_lowercase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' class UpperCamelCase_ : def __init__( self ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : int = 0 UpperCAmelCase : Dict = {} def _lowercase( self , A ) -> Tuple: if vertex not in self.adjacency: UpperCAmelCase : Optional[Any] = {} self.num_vertices += 1 def _lowercase( self , A , A , A ) -> Optional[int]: self.add_vertex(A ) self.add_vertex(A ) if head == tail: return UpperCAmelCase : Union[str, Any] = weight UpperCAmelCase : Tuple = weight def _lowercase( self ) -> str: UpperCAmelCase : str = self.get_edges() for edge in edges: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = edge edges.remove((tail, head, weight) ) for i in range(len(A ) ): UpperCAmelCase : int = list(edges[i] ) edges.sort(key=lambda A : e[2] ) for i in range(len(A ) - 1 ): if edges[i][2] >= edges[i + 1][2]: UpperCAmelCase : str = edges[i][2] + 1 for edge in edges: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = edge UpperCAmelCase : Dict = weight UpperCAmelCase : int = weight def __str__( self ) -> int: UpperCAmelCase : Dict = """""" for tail in self.adjacency: for head in self.adjacency[tail]: UpperCAmelCase : Union[str, Any] = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("""\n""" ) def _lowercase( self ) -> str: UpperCAmelCase : Optional[int] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def _lowercase( self ) -> Tuple: return self.adjacency.keys() @staticmethod def _lowercase( A=None , A=None ) -> str: UpperCAmelCase : Tuple = Graph() if vertices is None: UpperCAmelCase : Any = [] if edges is None: UpperCAmelCase : str = [] for vertex in vertices: g.add_vertex(A ) for edge in edges: g.add_edge(*A ) return g class UpperCamelCase_ : def __init__( self ) -> Dict: UpperCAmelCase : Any = {} UpperCAmelCase : List[Any] = {} def __len__( self ) -> Optional[Any]: return len(self.parent ) def _lowercase( self , A ) -> Union[str, Any]: if item in self.parent: return self.find(A ) UpperCAmelCase : Union[str, Any] = item UpperCAmelCase : Any = 0 return item def _lowercase( self , A ) -> Optional[Any]: if item not in self.parent: return self.make_set(A ) if item != self.parent[item]: UpperCAmelCase : List[str] = self.find(self.parent[item] ) return self.parent[item] def _lowercase( self , A , A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.find(A ) UpperCAmelCase : List[str] = self.find(A ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: UpperCAmelCase : Optional[Any] = roota return roota if self.rank[roota] < self.rank[roota]: UpperCAmelCase : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 UpperCAmelCase : int = roota return roota return None @staticmethod def _lowercase( A ) -> Tuple: UpperCAmelCase : List[Any] = graph.num_vertices UpperCAmelCase : Optional[int] = Graph.UnionFind() UpperCAmelCase : Optional[Any] = [] while num_components > 1: UpperCAmelCase : Optional[Any] = {} for vertex in graph.get_vertices(): UpperCAmelCase : Optional[Any] = -1 UpperCAmelCase : str = graph.get_edges() for edge in edges: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = edge edges.remove((tail, head, weight) ) for edge in edges: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = edge UpperCAmelCase : Tuple = union_find.find(A ) UpperCAmelCase : Union[str, Any] = union_find.find(A ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCAmelCase : Optional[int] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: UpperCAmelCase : Optional[Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = cheap_edge[vertex] if union_find.find(A ) != union_find.find(A ): union_find.union(A , A ) mst_edges.append(cheap_edge[vertex] ) UpperCAmelCase : List[Any] = num_components - 1 UpperCAmelCase : Any = Graph.build(edges=A ) return mst
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a : List[Any] = logging.get_logger(__name__) a : str = """T5Config""" def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> jnp.ndarray: UpperCAmelCase : Tuple = jnp.zeros_like(_lowercase ) UpperCAmelCase : int = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) UpperCAmelCase : Any = shifted_input_ids.at[:, 0].set(_lowercase ) UpperCAmelCase : Tuple = jnp.where(shifted_input_ids == -1_0_0 , _lowercase , _lowercase ) return shifted_input_ids class UpperCamelCase_ ( __magic_name__ ): lowercase = 'mt5' lowercase = MTaConfig class UpperCamelCase_ ( __magic_name__ ): lowercase = 'mt5' lowercase = MTaConfig class UpperCamelCase_ ( __magic_name__ ): lowercase = 'mt5' lowercase = MTaConfig
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Any: if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def _lowercase( self , A=1 ) -> str: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-single''' , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def _lowercase( self , A ) -> Optional[int]: TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) def _lowercase( self ) -> List[str]: # create estimator UpperCAmelCase : int = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCAmelCase : List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase : Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = ['input_values', 'padding_mask'] def __init__( self , A = 1 , A = 24000 , A = 0.0 , A = None , A = None , **A , ) -> Optional[int]: super().__init__(feature_size=A , sampling_rate=A , padding_value=A , **A ) UpperCAmelCase : Optional[int] = chunk_length_s UpperCAmelCase : int = overlap @property def _lowercase( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , A , A = None , A = False , A = None , A = None , A = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs UpperCAmelCase : str = True UpperCAmelCase : int = bool( isinstance(A , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase : Optional[int] = [np.asarray(A , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(A , np.ndarray ): UpperCAmelCase : str = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCAmelCase : List[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase : Dict = [np.asarray(A ).T] # verify inputs are valid for idx, example in enumerate(A ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Dict = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCAmelCase : Any = min(array.shape[0] for array in raw_audio ) UpperCAmelCase : Optional[int] = int(np.floor(max_length / self.chunk_stride ) ) UpperCAmelCase : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCAmelCase : str = max(array.shape[0] for array in raw_audio ) UpperCAmelCase : Optional[Any] = int(np.ceil(max_length / self.chunk_stride ) ) UpperCAmelCase : List[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCAmelCase : Optional[Any] = """max_length""" else: UpperCAmelCase : Union[str, Any] = input_values # normal padding on batch if padded_inputs is None: UpperCAmelCase : Dict = self.pad( A , max_length=A , truncation=A , padding=A , return_attention_mask=A , ) if padding: UpperCAmelCase : int = padded_inputs.pop("""attention_mask""" ) UpperCAmelCase : List[str] = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: UpperCAmelCase : List[str] = example[..., None] input_values.append(example.T ) UpperCAmelCase : List[str] = input_values if return_tensors is not None: UpperCAmelCase : List[str] = padded_inputs.convert_to_tensors(A ) return padded_inputs
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1_0_0_0 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCamelCase_ : def __init__( self , A ) -> Optional[Any]: UpperCAmelCase : Any = data UpperCAmelCase : Dict = [0X67452301, 0Xefcdab89, 0X98badcfe, 0X10325476, 0Xc3d2e1f0] @staticmethod def _lowercase( A , A ) -> Dict: return ((n << b) | (n >> (32 - b))) & 0Xffffffff def _lowercase( self ) -> str: UpperCAmelCase : Any = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase : Tuple = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def _lowercase( self ) -> int: return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowercase( self , A ) -> Tuple: UpperCAmelCase : Union[str, Any] = list(struct.unpack(""">16L""" , A ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase : List[str] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = self.padding() UpperCAmelCase : Optional[int] = self.split_blocks() for block in self.blocks: UpperCAmelCase : List[Any] = self.expand_block(A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase : List[Any] = (b & c) | ((~b) & d) UpperCAmelCase : Dict = 0X5a827999 elif 20 <= i < 40: UpperCAmelCase : str = b ^ c ^ d UpperCAmelCase : Union[str, Any] = 0X6ed9eba1 elif 40 <= i < 60: UpperCAmelCase : List[str] = (b & c) | (b & d) | (c & d) UpperCAmelCase : Union[str, Any] = 0X8f1bbcdc elif 60 <= i < 80: UpperCAmelCase : int = b ^ c ^ d UpperCAmelCase : Union[str, Any] = 0Xca62c1d6 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = ( self.rotate(A , 5 ) + f + e + k + expanded_block[i] & 0Xffffffff, a, self.rotate(A , 30 ), c, d, ) UpperCAmelCase : Optional[Any] = ( self.h[0] + a & 0Xffffffff, self.h[1] + b & 0Xffffffff, self.h[2] + c & 0Xffffffff, self.h[3] + d & 0Xffffffff, self.h[4] + e & 0Xffffffff, ) return ("{:08x}" * 5).format(*self.h ) def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : List[Any] = B"""Test String""" assert SHAaHash(_lowercase ).final_hash() == hashlib.shaa(_lowercase ).hexdigest() # noqa: S324 def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Tuple = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) UpperCAmelCase : List[str] = parser.parse_args() UpperCAmelCase : List[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: UpperCAmelCase : str = f.read() else: UpperCAmelCase : Tuple = bytes(_lowercase , """utf-8""" ) print(SHAaHash(_lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( __magic_name__ ): lowercase = ['image_processor'] lowercase = 'SamImageProcessor' def __init__( self , A ) -> Dict: super().__init__(A ) UpperCAmelCase : List[Any] = self.image_processor UpperCAmelCase : Any = -10 UpperCAmelCase : Optional[Any] = self.image_processor.size["""longest_edge"""] def __call__( self , A=None , A=None , A=None , A=None , A = None , **A , ) -> BatchEncoding: UpperCAmelCase : Optional[Any] = self.image_processor( A , return_tensors=A , **A , ) # pop arguments that are not used in the foward but used nevertheless UpperCAmelCase : List[str] = encoding_image_processor["""original_sizes"""] if hasattr(A , """numpy""" ): # Checks if Torch or TF tensor UpperCAmelCase : Any = original_sizes.numpy() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._check_and_preprocess_points( input_points=A , input_labels=A , input_boxes=A , ) UpperCAmelCase : Dict = self._normalize_and_convert( A , A , input_points=A , input_labels=A , input_boxes=A , return_tensors=A , ) return encoding_image_processor def _lowercase( self , A , A , A=None , A=None , A=None , A="pt" , ) -> Optional[int]: if input_points is not None: if len(A ) != len(A ): UpperCAmelCase : Optional[int] = [ self._normalize_coordinates(self.target_size , A , original_sizes[0] ) for point in input_points ] else: UpperCAmelCase : str = [ self._normalize_coordinates(self.target_size , A , A ) for point, original_size in zip(A , A ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: UpperCAmelCase , UpperCAmelCase : Tuple = self._pad_points_and_labels(A , A ) UpperCAmelCase : Any = np.array(A ) if input_labels is not None: UpperCAmelCase : Dict = np.array(A ) if input_boxes is not None: if len(A ) != len(A ): UpperCAmelCase : Optional[Any] = [ self._normalize_coordinates(self.target_size , A , original_sizes[0] , is_bounding_box=A ) for box in input_boxes ] else: UpperCAmelCase : str = [ self._normalize_coordinates(self.target_size , A , A , is_bounding_box=A ) for box, original_size in zip(A , A ) ] UpperCAmelCase : List[Any] = np.array(A ) if input_boxes is not None: if return_tensors == "pt": UpperCAmelCase : List[Any] = torch.from_numpy(A ) # boxes batch size of 1 by default UpperCAmelCase : Tuple = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": UpperCAmelCase : int = tf.convert_to_tensor(A ) # boxes batch size of 1 by default UpperCAmelCase : Any = tf.expand_dims(A , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": UpperCAmelCase : List[str] = torch.from_numpy(A ) # point batch size of 1 by default UpperCAmelCase : str = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": UpperCAmelCase : int = tf.convert_to_tensor(A ) # point batch size of 1 by default UpperCAmelCase : Optional[int] = tf.expand_dims(A , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": UpperCAmelCase : Union[str, Any] = torch.from_numpy(A ) # point batch size of 1 by default UpperCAmelCase : Any = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": UpperCAmelCase : str = tf.convert_to_tensor(A ) # point batch size of 1 by default UpperCAmelCase : Dict = tf.expand_dims(A , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def _lowercase( self , A , A ) -> str: UpperCAmelCase : List[str] = max([point.shape[0] for point in input_points] ) UpperCAmelCase : List[str] = [] for i, point in enumerate(A ): if point.shape[0] != expected_nb_points: UpperCAmelCase : List[str] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) UpperCAmelCase : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(A ) UpperCAmelCase : str = processed_input_points return input_points, input_labels def _lowercase( self , A , A , A , A=False ) -> np.ndarray: UpperCAmelCase , UpperCAmelCase : Tuple = original_size UpperCAmelCase , UpperCAmelCase : List[Any] = self.image_processor._get_preprocess_shape(A , longest_edge=A ) UpperCAmelCase : Any = deepcopy(A ).astype(A ) if is_bounding_box: UpperCAmelCase : Tuple = coords.reshape(-1 , 2 , 2 ) UpperCAmelCase : int = coords[..., 0] * (new_w / old_w) UpperCAmelCase : int = coords[..., 1] * (new_h / old_h) if is_bounding_box: UpperCAmelCase : List[str] = coords.reshape(-1 , 4 ) return coords def _lowercase( self , A=None , A=None , A=None , ) -> List[str]: if input_points is not None: if hasattr(A , """numpy""" ): # Checks for TF or Torch tensor UpperCAmelCase : Dict = input_points.numpy().tolist() if not isinstance(A , A ) or not isinstance(input_points[0] , A ): raise ValueError("""Input points must be a list of list of floating points.""" ) UpperCAmelCase : Any = [np.array(A ) for input_point in input_points] else: UpperCAmelCase : List[str] = None if input_labels is not None: if hasattr(A , """numpy""" ): UpperCAmelCase : Any = input_labels.numpy().tolist() if not isinstance(A , A ) or not isinstance(input_labels[0] , A ): raise ValueError("""Input labels must be a list of list integers.""" ) UpperCAmelCase : Tuple = [np.array(A ) for label in input_labels] else: UpperCAmelCase : Any = None if input_boxes is not None: if hasattr(A , """numpy""" ): UpperCAmelCase : Tuple = input_boxes.numpy().tolist() if ( not isinstance(A , A ) or not isinstance(input_boxes[0] , A ) or not isinstance(input_boxes[0][0] , A ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) UpperCAmelCase : Optional[int] = [np.array(A ).astype(np.floataa ) for box in input_boxes] else: UpperCAmelCase : Tuple = None return input_points, input_labels, input_boxes @property def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = self.image_processor.model_input_names return list(dict.fromkeys(A ) ) def _lowercase( self , *A , **A ) -> Tuple: return self.image_processor.post_process_masks(*A , **A )
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=50 , A=0.0_2 , A=True , A=None , ) -> Optional[Any]: UpperCAmelCase : Any = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : str = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Optional[int] = use_input_mask UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = max_position_embeddings UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = use_labels UpperCAmelCase : Optional[Any] = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Any = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def _lowercase( self ) -> Any: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=A , initializer_range=self.initializer_range , ) def _lowercase( self ) -> Optional[Any]: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase : List[Any] = True UpperCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowercase( self , A , A , A , A , **A , ) -> List[Any]: UpperCAmelCase : Optional[int] = BertGenerationEncoder(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , **A , ) -> Any: UpperCAmelCase : Any = True UpperCAmelCase : Optional[Any] = BertGenerationEncoder(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : Dict = model( A , attention_mask=A , encoder_hidden_states=A , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , **A , ) -> Dict: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[str] = BertGenerationDecoder(config=A ).to(A ).eval() # first forward pass UpperCAmelCase : int = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Any = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : Optional[int] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Dict = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self , A , A , A , A , *A , ) -> Optional[int]: UpperCAmelCase : int = BertGenerationDecoder(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def _lowercase( self ) -> List[str]: UpperCAmelCase : int = BertGenerationEncoderTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> int: self.config_tester.run_common_tests() def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : str = """bert""" self.model_tester.create_and_check_model(A , A , A , A ) def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*A ) def _lowercase( self ) -> List[str]: # This regression test was failing with PyTorch < 1.3 ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : str = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder( A , A , A , A , A , A , ) def _lowercase( self ) -> Tuple: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*A ) @slow def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(A ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> Any: UpperCAmelCase : Optional[int] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCAmelCase : str = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): UpperCAmelCase : Tuple = model(A )[0] UpperCAmelCase : Optional[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , A ) UpperCAmelCase : Optional[int] = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> str: UpperCAmelCase : Dict = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) UpperCAmelCase : Dict = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = model(A )[0] UpperCAmelCase : str = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , A ) UpperCAmelCase : List[str] = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A , atol=1e-4 ) )
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase_ : lowercase = None lowercase = False lowercase = False lowercase = False lowercase = None lowercase = None lowercase = False lowercase = False lowercase = False lowercase = True lowercase = None lowercase = 1 lowercase = None lowercase = False lowercase = None lowercase = None def _lowercase( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(A ) for k, v in self.__dict__.items()} )
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase_ : def _lowercase( self , A ) -> Optional[int]: raise NotImplementedError() def _lowercase( self ) -> Any: raise NotImplementedError() class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A = False , **A ) -> List[Any]: UpperCAmelCase : Any = tokenizer UpperCAmelCase : List[str] = skip_prompt UpperCAmelCase : int = decode_kwargs # variables used in the streaming process UpperCAmelCase : int = [] UpperCAmelCase : Any = 0 UpperCAmelCase : Dict = True def _lowercase( self , A ) -> Optional[Any]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: UpperCAmelCase : int = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : Optional[int] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Optional[int] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): UpperCAmelCase : List[str] = text[self.print_len :] UpperCAmelCase : Any = [] UpperCAmelCase : List[Any] = 0 # If the last token is a CJK character, we print the characters. elif len(A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : Tuple = text[self.print_len :] self.print_len += len(A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : Dict = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(A ) self.on_finalized_text(A ) def _lowercase( self ) -> int: # Flush the cache, if it exists if len(self.token_cache ) > 0: UpperCAmelCase : Dict = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCAmelCase : List[Any] = text[self.print_len :] UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Union[str, Any] = 0 else: UpperCAmelCase : List[Any] = """""" UpperCAmelCase : Dict = True self.on_finalized_text(A , stream_end=A ) def _lowercase( self , A , A = False ) -> Dict: print(A , flush=A , end="""""" if not stream_end else None ) def _lowercase( self , A ) -> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A = False , A = None , **A ) -> Dict: super().__init__(A , A , **A ) UpperCAmelCase : Optional[int] = Queue() UpperCAmelCase : Dict = None UpperCAmelCase : List[str] = timeout def _lowercase( self , A , A = False ) -> Union[str, Any]: self.text_queue.put(A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> List[str]: return self def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' import math def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = input("""Enter message: """ ) UpperCAmelCase : Union[str, Any] = int(input(F'''Enter key [2-{len(_lowercase ) - 1}]: ''' ) ) UpperCAmelCase : Dict = input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Optional[Any] = decrypt_message(_lowercase , _lowercase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + '|'}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : Any = [""""""] * key for col in range(_lowercase ): UpperCAmelCase : List[str] = col while pointer < len(_lowercase ): cipher_text[col] += message[pointer] pointer += key return "".join(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : Tuple = math.ceil(len(_lowercase ) / key ) UpperCAmelCase : List[Any] = key UpperCAmelCase : Union[str, Any] = (num_cols * num_rows) - len(_lowercase ) UpperCAmelCase : Optional[Any] = [""""""] * num_cols UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCAmelCase : Tuple = 0 row += 1 return "".join(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Any = {"""vocab_file""": """vocab.txt"""} a : List[Any] = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } a : List[str] = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def __lowerCamelCase ( _lowercase ) -> Optional[Any]: with open(_lowercase , """r""" ) as f: UpperCAmelCase : Optional[Any] = f.read().splitlines() return [l.strip() for l in lines] class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self , A , A="<unk>" , A="<cls>" , A="<pad>" , A="<mask>" , A="<eos>" , **A , ) -> Any: super().__init__(**A ) UpperCAmelCase : int = load_vocab_file(A ) UpperCAmelCase : Tuple = dict(enumerate(self.all_tokens ) ) UpperCAmelCase : List[str] = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase : List[str] = unk_token UpperCAmelCase : List[Any] = cls_token UpperCAmelCase : str = pad_token UpperCAmelCase : int = mask_token UpperCAmelCase : Tuple = eos_token UpperCAmelCase : List[str] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _lowercase( self , A ) -> str: return self._id_to_token.get(A , self.unk_token ) def _lowercase( self , A ) -> int: return self._token_to_id.get(A , self._token_to_id.get(self.unk_token ) ) def _lowercase( self , A , **A ) -> Any: return text.split() def _lowercase( self , A=False ) -> Optional[int]: return len(self._id_to_token ) def _lowercase( self ) -> Any: return {token: i for i, token in enumerate(self.all_tokens )} def _lowercase( self , A ) -> int: return self._token_to_id.get(A , self._token_to_id.get(self.unk_token ) ) def _lowercase( self , A ) -> str: return self._id_to_token.get(A , self.unk_token ) def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[Any] = [self.cls_token_id] UpperCAmelCase : str = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase : Optional[int] = [1] + ([0] * len(A )) + [1] if token_ids_a is not None: mask += [0] * len(A ) + [1] return mask def _lowercase( self , A , A ) -> Optional[int]: UpperCAmelCase : Dict = os.path.join(A , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(A , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def _lowercase( self ) -> int: return self.get_vocab_size(with_added_tokens=A ) def _lowercase( self , A , A = False ) -> int: return super()._add_tokens(A , special_tokens=A )
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
'''simple docstring''' from collections import deque class UpperCamelCase_ : def __init__( self , A , A , A ) -> None: UpperCAmelCase : str = process_name # process name UpperCAmelCase : List[Any] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase : Optional[int] = arrival_time UpperCAmelCase : Optional[int] = burst_time # remaining burst time UpperCAmelCase : List[Any] = 0 # total time of the process wait in ready queue UpperCAmelCase : List[str] = 0 # time from arrival time to completion time class UpperCamelCase_ : def __init__( self , A , A , A , A , ) -> None: # total number of mlfq's queues UpperCAmelCase : Optional[Any] = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase : Tuple = time_slices # unfinished process is in this ready_queue UpperCAmelCase : Optional[Any] = queue # current time UpperCAmelCase : Optional[Any] = current_time # finished process is in this sequence queue UpperCAmelCase : deque[Process] = deque() def _lowercase( self ) -> list[str]: UpperCAmelCase : str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def _lowercase( self , A ) -> list[int]: UpperCAmelCase : Any = [] for i in range(len(A ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def _lowercase( self , A ) -> list[int]: UpperCAmelCase : str = [] for i in range(len(A ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def _lowercase( self , A ) -> list[int]: UpperCAmelCase : Optional[Any] = [] for i in range(len(A ) ): completion_times.append(queue[i].stop_time ) return completion_times def _lowercase( self , A ) -> list[int]: return [q.burst_time for q in queue] def _lowercase( self , A ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _lowercase( self , A ) -> deque[Process]: UpperCAmelCase : deque[Process] = deque() # sequence deque of finished process while len(A ) != 0: UpperCAmelCase : Tuple = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(A ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase : Optional[int] = 0 # set the process's turnaround time because it is finished UpperCAmelCase : Dict = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase : int = self.current_time # add the process to queue that has finished queue finished.append(A ) self.finish_queue.extend(A ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _lowercase( self , A , A ) -> tuple[deque[Process], deque[Process]]: UpperCAmelCase : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(A ) ): UpperCAmelCase : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(A ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(A ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase : Any = 0 # set the finish time UpperCAmelCase : Dict = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase : Optional[int] = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(A ) self.finish_queue.extend(A ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _lowercase( self ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): UpperCAmelCase , UpperCAmelCase : Any = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest a : Optional[int] = Process("""P1""", 0, 5_3) a : Optional[Any] = Process("""P2""", 0, 1_7) a : Union[str, Any] = Process("""P3""", 0, 6_8) a : Optional[int] = Process("""P4""", 0, 2_4) a : List[str] = 3 a : Union[str, Any] = [1_7, 2_5] a : Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) a : int = Process("""P1""", 0, 5_3) a : str = Process("""P2""", 0, 1_7) a : Optional[int] = Process("""P3""", 0, 6_8) a : Union[str, Any] = Process("""P4""", 0, 2_4) a : Union[str, Any] = 3 a : Dict = [1_7, 2_5] a : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) a : Optional[int] = MLFQ(number_of_queues, time_slices, queue, 0) a : List[Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' a : List[str] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a : int = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: assert len(str(_lowercase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: UpperCAmelCase : str = year // 1_0_0 UpperCAmelCase : List[str] = (5 * (century % 4) + 2) % 7 UpperCAmelCase : str = year % 1_0_0 UpperCAmelCase : int = centurian % 1_2 UpperCAmelCase : int = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCAmelCase : Dict = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCAmelCase : List[Any] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionSAGPipeline lowercase = TEXT_TO_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase = False def _lowercase( self ) -> Any: torch.manual_seed(0 ) UpperCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCAmelCase : str = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) UpperCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase : Optional[int] = CLIPTextModel(A ) UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase( self , A , A=0 ) -> Tuple: if str(A ).startswith("""mps""" ): UpperCAmelCase : List[str] = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : Tuple = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) UpperCAmelCase : Tuple = sag_pipe.to(A ) sag_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : int = """.""" UpperCAmelCase : int = torch.manual_seed(0 ) UpperCAmelCase : Dict = sag_pipe( [prompt] , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) UpperCAmelCase : int = output.images UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : int = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowercase( self ) -> Any: UpperCAmelCase : Dict = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) UpperCAmelCase : Tuple = sag_pipe.to(A ) sag_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = """.""" UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : str = sag_pipe( [prompt] , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Dict = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) UpperCAmelCase : List[str] = sag_pipe.to(A ) sag_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[Any] = """.""" UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : Any = sag_pipe( [prompt] , width=768 , height=512 , generator=A , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) UpperCAmelCase : Optional[Any] = output.images assert image.shape == (1, 512, 768, 3)
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a : int = { """169M""": 1_2, """430M""": 2_4, """1B5""": 2_4, """3B""": 3_2, """7B""": 3_2, """14B""": 4_0, } a : List[str] = { """169M""": 7_6_8, """430M""": 1_0_2_4, """1B5""": 2_0_4_8, """3B""": 2_5_6_0, """7B""": 4_0_9_6, """14B""": 5_1_2_0, } def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = list(state_dict.keys() ) for name in state_dict_keys: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) # emb -> embedding if name.startswith("""emb.""" ): UpperCAmelCase : Any = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): UpperCAmelCase : Dict = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention UpperCAmelCase : Optional[Any] = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , _lowercase ) # ffn -> feed_forward UpperCAmelCase : List[Any] = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , _lowercase ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): UpperCAmelCase : List[str] = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): UpperCAmelCase : Any = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): UpperCAmelCase : Optional[Any] = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": UpperCAmelCase : Tuple = """rwkv.""" + name UpperCAmelCase : Union[str, Any] = weight return state_dict def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=None ) -> Dict: # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) UpperCAmelCase : Dict = 5_0_2_7_7 UpperCAmelCase : str = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: UpperCAmelCase : List[Any] = PreTrainedTokenizerFast(tokenizer_file=_lowercase ) UpperCAmelCase : int = len(_lowercase ) tokenizer.save_pretrained(_lowercase ) # 2. Build the config UpperCAmelCase : Dict = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCAmelCase : Any = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' ) UpperCAmelCase : Any = RwkvConfig( vocab_size=_lowercase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_lowercase ) # 3. Download model file then convert state_dict UpperCAmelCase : Optional[int] = hf_hub_download(_lowercase , _lowercase ) UpperCAmelCase : int = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : List[str] = convert_state_dict(_lowercase ) # 4. Split in shards and save UpperCAmelCase , UpperCAmelCase : Union[str, Any] = shard_checkpoint(_lowercase ) for shard_file, shard in shards.items(): torch.save(_lowercase , os.path.join(_lowercase , _lowercase ) ) if index is not None: UpperCAmelCase : Optional[Any] = os.path.join(_lowercase , _lowercase ) # Save the index as well with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase : Any = json.dumps(_lowercase , indent=2 , sort_keys=_lowercase ) + """\n""" f.write(_lowercase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) UpperCAmelCase : Optional[int] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCAmelCase : Union[str, Any] = torch.load(os.path.join(_lowercase , _lowercase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_lowercase , _lowercase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) UpperCAmelCase : Any = AutoModelForCausalLM.from_pretrained(_lowercase ) model.push_to_hub(_lowercase , max_shard_size="""2GB""" ) tokenizer.push_to_hub(_lowercase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) a : Any = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' import pprint import requests a : Optional[Any] = """https://zenquotes.io/api""" def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __lowerCamelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a : str = random_quotes() pprint.pprint(response)
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Optional[int] = {"""vocab_file""": """spiece.model"""} a : Union[str, Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 a : Dict = { """t5-small""": 5_1_2, """t5-base""": 5_1_2, """t5-large""": 5_1_2, """t5-3b""": 5_1_2, """t5-11b""": 5_1_2, } a : List[str] = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self , A , A="</s>" , A="<unk>" , A="<pad>" , A=100 , A=None , A = None , A=True , **A , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase : List[str] = [f'''<extra_id_{i}>''' for i in range(A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase : int = len(set(filter(lambda A : bool("""extra_id""" in str(A ) ) , A ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) UpperCAmelCase : Optional[int] = legacy UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A , unk_token=A , pad_token=A , extra_ids=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , legacy=A , **A , ) UpperCAmelCase : Optional[Any] = vocab_file UpperCAmelCase : int = extra_ids UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @staticmethod def _lowercase( A , A , A ) -> List[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: UpperCAmelCase : Optional[int] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , A , ) return max_model_length @property def _lowercase( self ) -> Optional[int]: return self.sp_model.get_piece_size() + self._extra_ids def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(A )) + [1] return ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def _lowercase( self ) -> int: return list( set(filter(lambda A : bool(re.search(r"""<extra_id_\d+>""" , A ) ) is not None , self.additional_special_tokens ) ) ) def _lowercase( self ) -> Optional[int]: return [self._convert_token_to_id(A ) for token in self.get_sentinel_tokens()] def _lowercase( self , A ) -> List[int]: if len(A ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : int = self._add_eos_if_not_present(A ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase : str = self._add_eos_if_not_present(A ) return token_ids_a + token_ids_a def __getstate__( self ) -> Tuple: UpperCAmelCase : List[str] = self.__dict__.copy() UpperCAmelCase : Optional[int] = None return state def __setstate__( self , A ) -> Optional[Any]: UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : List[Any] = {} UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase( self , A , **A ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: UpperCAmelCase : Union[str, Any] = SPIECE_UNDERLINE + text.replace(A , """ """ ) return super().tokenize(A , **A ) def _lowercase( self , A , **A ) -> Optional[Any]: if not self.legacy: UpperCAmelCase : List[str] = text.startswith(A ) if is_first: UpperCAmelCase : List[str] = text[1:] UpperCAmelCase : Union[str, Any] = self.sp_model.encode(A , out_type=A ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(A ): UpperCAmelCase : Optional[Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _lowercase( self , A ) -> List[Any]: if token.startswith("""<extra_id_""" ): UpperCAmelCase : Optional[Any] = re.match(r"""<extra_id_(\d+)>""" , A ) UpperCAmelCase : List[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(A ) def _lowercase( self , A ) -> str: if index < self.sp_model.get_piece_size(): UpperCAmelCase : Tuple = self.sp_model.IdToPiece(A ) else: UpperCAmelCase : Optional[int] = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[int] = """""" UpperCAmelCase : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token UpperCAmelCase : Dict = True UpperCAmelCase : str = [] else: current_sub_tokens.append(A ) UpperCAmelCase : List[Any] = False out_string += self.sp_model.decode(A ) return out_string.strip() def _lowercase( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : Union[str, Any] = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: UpperCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> List[Any]: UpperCAmelCase : Dict = 1_0 UpperCAmelCase : Union[str, Any] = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) UpperCAmelCase : List[Any] = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0, """id""": list(range(_lowercase ) ), } , features=_lowercase , ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=_lowercase ) return filename # FILE_CONTENT + files a : int = """\ Text data. Second line of data.""" @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt""" UpperCAmelCase : int = FILE_CONTENT with open(_lowercase , """w""" ) as f: f.write(_lowercase ) return filename @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: import bza UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" UpperCAmelCase : Union[str, Any] = bytes(_lowercase , """utf-8""" ) with bza.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: import gzip UpperCAmelCase : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) UpperCAmelCase : Optional[int] = bytes(_lowercase , """utf-8""" ) with gzip.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" UpperCAmelCase : Optional[Any] = bytes(_lowercase , """utf-8""" ) with lza.frame.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(_lowercase , """w""" ) as archive: archive.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: import tarfile UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(_lowercase , """w""" ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: import lzma UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" UpperCAmelCase : int = bytes(_lowercase , """utf-8""" ) with lzma.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: import zipfile UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" UpperCAmelCase : Union[str, Any] = bytes(_lowercase , """utf-8""" ) with zstd.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.xml""" UpperCAmelCase : Any = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(_lowercase , """w""" ) as f: f.write(_lowercase ) return filename a : Any = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] a : Dict = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] a : Optional[int] = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } a : int = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] a : Optional[Any] = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Any: return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[Any] = datasets.Dataset.from_dict(_lowercase ) UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(_lowercase ) ) as con: UpperCAmelCase : str = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(_lowercase , """w""" , newline="""""" ) as f: UpperCAmelCase : Optional[Any] = csv.DictWriter(_lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(_lowercase , """w""" , newline="""""" ) as f: UpperCAmelCase : Tuple = csv.DictWriter(_lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: import bza UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(_lowercase , """rb""" ) as f: UpperCAmelCase : List[str] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_lowercase , """wb""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(_lowercase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) UpperCAmelCase : Union[str, Any] = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(_lowercase , """wb""" ) as f: UpperCAmelCase : int = pq.ParquetWriter(_lowercase , schema=_lowercase ) UpperCAmelCase : int = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_lowercase ) )] for k in DATA[0]} , schema=_lowercase ) writer.write_table(_lowercase ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) UpperCAmelCase : Dict = {"""data""": DATA} with open(_lowercase , """w""" ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) UpperCAmelCase : Tuple = {"""data""": DATA_DICT_OF_LISTS} with open(_lowercase , """w""" ) as f: json.dump(_lowercase , _lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(_lowercase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(_lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: import gzip UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(_lowercase , """rb""" ) as orig_file: with gzip.open(_lowercase , """wb""" ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: import gzip UpperCAmelCase : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(_lowercase , """rb""" ) as orig_file: with gzip.open(_lowercase , """wb""" ) as zipped_file: zipped_file.writelines(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""nested""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int: UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(_lowercase , """w""" ) as f: f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) f.add(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(_lowercase , """w""" ) as f: f.add(_lowercase , arcname=os.path.join("""nested""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : List[str] = ["""0""", """1""", """2""", """3"""] UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(_lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : List[str] = ["""0""", """1""", """2""", """3"""] UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(_lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Optional[int] = ["""0""", """1""", """2""", """3"""] UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(_lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : str = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) f.write(_lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(_lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(_lowercase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(_lowercase ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> List[str]: return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Any: return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(_lowercase , """w""" ) as f: f.write(_lowercase , arcname=os.path.basename(_lowercase ) ) f.write(_lowercase , arcname=os.path.basename(_lowercase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 1_0 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 1_0 ) return data_dir
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a : int = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , A , ) super().__init__(*A , **A )
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class UpperCamelCase_ ( __magic_name__ ): lowercase = DistilBertTokenizer lowercase = DistilBertTokenizerFast lowercase = True @slow def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) UpperCAmelCase : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> str: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCAmelCase : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] UpperCAmelCase : List[Any] = DisjunctiveConstraint(A ) self.assertTrue(isinstance(dc.token_ids , A ) ) with self.assertRaises(A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowercase( self ) -> Dict: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCAmelCase : List[Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(A ): DisjunctiveConstraint(A ) # fails here def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = [[1, 2, 3], [1, 2, 4]] UpperCAmelCase : List[Any] = DisjunctiveConstraint(A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = dc.update(1 ) UpperCAmelCase : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = dc.update(2 ) UpperCAmelCase : List[str] = stepped is True and completed is False and reset is False self.assertTrue(A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = dc.update(3 ) UpperCAmelCase : str = stepped is True and completed is True and reset is False self.assertTrue(A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : str = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCAmelCase : str = DisjunctiveConstraint(A ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCamelCase_ ( pl.LightningModule ): def __init__( self , A ) -> Dict: super().__init__() UpperCAmelCase : str = model UpperCAmelCase : Any = 2 UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowercase( self ) -> int: pass def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: # load longformer model from model identifier UpperCAmelCase : List[Any] = LongformerModel.from_pretrained(_lowercase ) UpperCAmelCase : Optional[Any] = LightningModel(_lowercase ) UpperCAmelCase : Any = torch.load(_lowercase , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model UpperCAmelCase : int = LongformerForQuestionAnswering.from_pretrained(_lowercase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_lowercase ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : str = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=[] ) -> int: UpperCAmelCase : Union[str, Any] = size[0] - overlap_pixels * 2 UpperCAmelCase : Optional[Any] = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels UpperCAmelCase : Any = np.ones((size_y, size_x) , dtype=np.uinta ) * 2_5_5 UpperCAmelCase : Dict = np.pad(_lowercase , mode="""linear_ramp""" , pad_width=_lowercase , end_values=0 ) if "l" in remove_borders: UpperCAmelCase : Dict = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: UpperCAmelCase : int = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: UpperCAmelCase : Optional[Any] = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: UpperCAmelCase : Any = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[Any]: return max(_lowercase , min(_lowercase , _lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = list(_lowercase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap UpperCAmelCase : str = clamp_rect(_lowercase , [0, 0] , [image_size[0], image_size[1]] ) return rect def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: UpperCAmelCase : str = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(_lowercase , (original_slice, 0) ) return result def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) UpperCAmelCase : Dict = tile.crop(_lowercase ) return tile def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : Dict = n % d return n - divisor class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , A , A = 350 , ) -> List[Any]: super().__init__( vae=A , text_encoder=A , tokenizer=A , unet=A , low_res_scheduler=A , scheduler=A , max_noise_level=A , ) def _lowercase( self , A , A , A , A , A , A , A , **A ) -> Tuple: torch.manual_seed(0 ) UpperCAmelCase : List[Any] = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) UpperCAmelCase : Optional[int] = add_overlap_rect(A , A , image.size ) UpperCAmelCase : Any = image.crop(A ) UpperCAmelCase : int = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] UpperCAmelCase : int = translated_slice_x - (original_image_slice / 2) UpperCAmelCase : List[Any] = max(0 , A ) UpperCAmelCase : str = squeeze_tile(A , A , A , A ) UpperCAmelCase : Optional[int] = to_input.size UpperCAmelCase : Optional[int] = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) UpperCAmelCase : Dict = super(A , self ).__call__(image=A , **A ).images[0] UpperCAmelCase : Optional[Any] = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : str = unsqueeze_tile(A , A ) UpperCAmelCase : List[Any] = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) UpperCAmelCase : List[Any] = [] if x == 0: remove_borders.append("""l""" ) elif crop_rect[2] == image.size[0]: remove_borders.append("""r""" ) if y == 0: remove_borders.append("""t""" ) elif crop_rect[3] == image.size[1]: remove_borders.append("""b""" ) UpperCAmelCase : Optional[int] = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=A ) , mode="""L""" , ) final_image.paste( A , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , A ) @torch.no_grad() def __call__( self , A , A , A = 75 , A = 9.0 , A = 50 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = None , A = 1 , A = 128 , A = 32 , A = 32 , ) -> List[str]: UpperCAmelCase : List[Any] = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) ) UpperCAmelCase : Any = math.ceil(image.size[0] / tile_size ) UpperCAmelCase : Any = math.ceil(image.size[1] / tile_size ) UpperCAmelCase : Tuple = tcx * tcy UpperCAmelCase : Optional[int] = 0 for y in range(A ): for x in range(A ): self._process_tile( A , A , A , A , A , A , A , prompt=A , num_inference_steps=A , guidance_scale=A , noise_level=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , ) current_count += 1 if callback is not None: callback({"""progress""": current_count / total_tile_count, """image""": final_image} ) return final_image def __lowerCamelCase ( ) -> int: # Run a demo UpperCAmelCase : int = """stabilityai/stable-diffusion-x4-upscaler""" UpperCAmelCase : str = StableDiffusionTiledUpscalePipeline.from_pretrained(_lowercase , revision="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase : Dict = pipe.to("""cuda""" ) UpperCAmelCase : Dict = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" ) def callback(_lowercase ): print(F'''progress: {obj['progress']:.4f}''' ) obj["image"].save("""diffusers_library_progress.jpg""" ) UpperCAmelCase : int = pipe(image=_lowercase , prompt="""Black font, white background, vector""" , noise_level=4_0 , callback=_lowercase ) final_image.save("""diffusers_library.jpg""" ) if __name__ == "__main__": main()
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self ) -> Dict: UpperCAmelCase : int = tempfile.mkdtemp() UpperCAmelCase : Union[str, Any] = 8 # DPR tok UpperCAmelCase : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , """dpr_tokenizer""" ) os.makedirs(A , exist_ok=A ) UpperCAmelCase : str = os.path.join(A , DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok UpperCAmelCase : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCAmelCase : Optional[Any] = dict(zip(A , range(len(A ) ) ) ) UpperCAmelCase : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , """bart_tokenizer""" ) os.makedirs(A , exist_ok=A ) UpperCAmelCase : Tuple = os.path.join(A , BART_VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : Optional[Any] = os.path.join(A , BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def _lowercase( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) ) def _lowercase( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) ) def _lowercase( self ) -> Dict: shutil.rmtree(self.tmpdirname ) @require_tokenizers def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , """rag_tokenizer""" ) UpperCAmelCase : List[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) UpperCAmelCase : List[Any] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(A ) rag_tokenizer.save_pretrained(A ) UpperCAmelCase : Optional[int] = RagTokenizer.from_pretrained(A , config=A ) self.assertIsInstance(new_rag_tokenizer.question_encoder , A ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , A ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" ) UpperCAmelCase : str = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] UpperCAmelCase : List[str] = tokenizer(A ) self.assertIsNotNone(A ) @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : Union[str, Any] = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" ) UpperCAmelCase : List[str] = [ """who got the first nobel prize in physics""", """when is the next deadpool movie being released""", """which mode is used for short wave broadcast service""", """who is the owner of reading football club""", """when is the next scandal episode coming out""", """when is the last time the philadelphia won the superbowl""", """what is the most current adobe flash player version""", """how many episodes are there in dragon ball z""", """what is the first step in the evolution of the eye""", """where is gall bladder situated in human body""", """what is the main mineral in lithium batteries""", """who is the president of usa right now""", """where do the greasers live in the outsiders""", """panda is a national animal of which country""", """what is the name of manchester united stadium""", ] UpperCAmelCase : int = tokenizer(A ) self.assertIsNotNone(A )
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' a : int = tuple[float, float, float] a : Optional[int] = tuple[float, float, float] def __lowerCamelCase ( _lowercase , _lowercase ) -> Vectorad: UpperCAmelCase : Any = end_pointa[0] - end_pointa[0] UpperCAmelCase : List[Any] = end_pointa[1] - end_pointa[1] UpperCAmelCase : Any = end_pointa[2] - end_pointa[2] return (x, y, z) def __lowerCamelCase ( _lowercase , _lowercase ) -> Vectorad: UpperCAmelCase : Optional[int] = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCAmelCase : Any = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCAmelCase : Any = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: return tuple(round(_lowercase , _lowercase ) for x in vector ) == (0, 0, 0) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase = 1_0 ) -> bool: UpperCAmelCase : int = create_vector(_lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = create_vector(_lowercase , _lowercase ) return is_zero_vector(get_ad_vectors_cross(_lowercase , _lowercase ) , _lowercase )
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase_ ( unittest.TestCase ): @property def _lowercase( self ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _lowercase( self ) -> Dict: UpperCAmelCase : Tuple = self.dummy_uncond_unet UpperCAmelCase : Dict = ScoreSdeVeScheduler() UpperCAmelCase : int = ScoreSdeVePipeline(unet=A , scheduler=A ) sde_ve.to(A ) sde_ve.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Any = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=A ).images UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Dict = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=A , return_dict=A )[ 0 ] UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: UpperCAmelCase : List[str] = """google/ncsnpp-church-256""" UpperCAmelCase : Dict = UNetaDModel.from_pretrained(A ) UpperCAmelCase : List[str] = ScoreSdeVeScheduler.from_pretrained(A ) UpperCAmelCase : Any = ScoreSdeVePipeline(unet=A , scheduler=A ) sde_ve.to(A ) sde_ve.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=A ).images UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase : List[Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class UpperCamelCase_ : lowercase = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'The column name of the images in the files.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'A folder containing the training data.'} ) lowercase = field(default=__magic_name__ , metadata={'help': 'A folder containing the validation data.'} ) lowercase = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = {} if self.train_dir is not None: UpperCAmelCase : List[Any] = self.train_dir if self.validation_dir is not None: UpperCAmelCase : Tuple = self.validation_dir UpperCAmelCase : Tuple = data_files if data_files else None @dataclass class UpperCamelCase_ : lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) lowercase = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase = field(default=__magic_name__ , metadata={'help': 'Name or path of preprocessor config.'} ) lowercase = field( default=__magic_name__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowercase = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) lowercase = field( default=__magic_name__ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = field( default=1e-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def __lowerCamelCase ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase : Dict = training_args.get_process_log_level() logger.setLevel(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase : Tuple = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowercase ) and data_args.train_val_split > 0.0: UpperCAmelCase : Optional[int] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCAmelCase : Union[str, Any] = split["""train"""] UpperCAmelCase : List[Any] = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase : Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCAmelCase : Dict = ViTMAEConfig.from_pretrained(model_args.config_name , **_lowercase ) elif model_args.model_name_or_path: UpperCAmelCase : List[str] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_lowercase ) else: UpperCAmelCase : Tuple = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase : List[str] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_lowercase ) elif model_args.model_name_or_path: UpperCAmelCase : Union[str, Any] = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_lowercase ) else: UpperCAmelCase : Optional[Any] = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCAmelCase : int = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCAmelCase : Dict = ViTMAEForPreTraining(_lowercase ) if training_args.do_train: UpperCAmelCase : List[Any] = ds["""train"""].column_names else: UpperCAmelCase : Optional[int] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCAmelCase : Tuple = data_args.image_column_name elif "image" in column_names: UpperCAmelCase : int = """image""" elif "img" in column_names: UpperCAmelCase : Tuple = """img""" else: UpperCAmelCase : Union[str, Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCAmelCase : Union[str, Any] = image_processor.size["""shortest_edge"""] else: UpperCAmelCase : Tuple = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCAmelCase : Tuple = Compose( [ Lambda(lambda _lowercase : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(_lowercase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_lowercase ): UpperCAmelCase : Any = [transforms(_lowercase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCAmelCase : int = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCAmelCase : str = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_lowercase ) # Compute absolute learning rate UpperCAmelCase : Dict = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCAmelCase : Tuple = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer UpperCAmelCase : Union[str, Any] = Trainer( model=_lowercase , args=_lowercase , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: UpperCAmelCase : Any = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase : int = last_checkpoint UpperCAmelCase : Tuple = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase : Dict = trainer.evaluate() trainer.log_metrics("""eval""" , _lowercase ) trainer.save_metrics("""eval""" , _lowercase ) # Write model card and (optionally) push to hub UpperCAmelCase : Dict = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def __lowerCamelCase ( _lowercase ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa a : str = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'summarization' lowercase = ['loss'] lowercase = ROUGE_KEYS lowercase = 'rouge2' def __init__( self , A , **A ) -> int: if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase : List[Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(A , num_labels=A , mode=self.mode , **A ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) UpperCAmelCase : Dict = Path(self.output_dir ) / """metrics.json""" UpperCAmelCase : Dict = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) UpperCAmelCase : int = 0 UpperCAmelCase : str = defaultdict(A ) UpperCAmelCase : List[str] = self.config.model_type UpperCAmelCase : Any = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size UpperCAmelCase : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase : List[str] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } UpperCAmelCase : Union[str, Any] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase : Union[str, Any] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCAmelCase : Optional[Any] = get_git_info()["""repo_sha"""] UpperCAmelCase : Union[str, Any] = hparams.num_workers UpperCAmelCase : List[str] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , A ): UpperCAmelCase : Optional[int] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase : Dict = self.decoder_start_token_id UpperCAmelCase : Any = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) UpperCAmelCase : List[str] = False UpperCAmelCase : Union[str, Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase : int = self.hparams.eval_max_gen_length else: UpperCAmelCase : Dict = self.model.config.max_length UpperCAmelCase : List[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _lowercase( self , A ) -> Dict[str, List[str]]: UpperCAmelCase : Dict = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(A , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) UpperCAmelCase : Tuple = True return readable_batch def _lowercase( self , A , **A ) -> int: return self.model(A , **A ) def _lowercase( self , A ) -> Optional[Any]: UpperCAmelCase : Tuple = self.tokenizer.batch_decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A ) return lmap(str.strip , A ) def _lowercase( self , A ) -> Tuple: UpperCAmelCase : Optional[int] = self.tokenizer.pad_token_id UpperCAmelCase , UpperCAmelCase : Optional[int] = batch["""input_ids"""], batch["""attention_mask"""] UpperCAmelCase : Union[str, Any] = batch["""labels"""] if isinstance(self.model , A ): UpperCAmelCase : Any = self.model._shift_right(A ) else: UpperCAmelCase : int = shift_tokens_right(A , A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase : List[str] = decoder_input_ids self.save_readable_batch(A ) UpperCAmelCase : Optional[Any] = self(A , attention_mask=A , decoder_input_ids=A , use_cache=A ) UpperCAmelCase : Any = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase : Optional[int] = nn.CrossEntropyLoss(ignore_index=A ) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase : int = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCAmelCase : str = nn.functional.log_softmax(A , dim=-1 ) UpperCAmelCase , UpperCAmelCase : Tuple = label_smoothed_nll_loss( A , A , self.hparams.label_smoothing , ignore_index=A ) return (loss,) @property def _lowercase( self ) -> int: return self.tokenizer.pad_token_id def _lowercase( self , A , A ) -> Dict: UpperCAmelCase : List[Any] = self._step(A ) UpperCAmelCase : Any = dict(zip(self.loss_names , A ) ) # tokens per batch UpperCAmelCase : List[str] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() UpperCAmelCase : Any = batch["""input_ids"""].shape[0] UpperCAmelCase : Optional[int] = batch["""input_ids"""].eq(self.pad ).sum() UpperCAmelCase : str = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _lowercase( self , A , A ) -> Dict: return self._generative_step(A ) def _lowercase( self , A , A="val" ) -> Dict: self.step_count += 1 UpperCAmelCase : List[Any] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCAmelCase : Union[str, Any] = losses["""loss"""] UpperCAmelCase : str = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } UpperCAmelCase : Dict = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase : torch.FloatTensor = torch.tensor(A ).type_as(A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(A ) UpperCAmelCase : str = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} UpperCAmelCase : Union[str, Any] = self.step_count self.metrics[prefix].append(A ) # callback writes this to self.metrics_save_path UpperCAmelCase : List[Any] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def _lowercase( self , A , A ) -> Dict: return calculate_rouge(A , A ) def _lowercase( self , A ) -> dict: UpperCAmelCase : Union[str, Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase : Tuple = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase : str = (time.time() - ta) / batch["""input_ids"""].shape[0] UpperCAmelCase : List[str] = self.ids_to_clean_text(A ) UpperCAmelCase : List[str] = self.ids_to_clean_text(batch["""labels"""] ) UpperCAmelCase : Optional[Any] = self._step(A ) UpperCAmelCase : Any = dict(zip(self.loss_names , A ) ) UpperCAmelCase : Dict = self.calc_generative_metrics(A , A ) UpperCAmelCase : Any = np.mean(lmap(A , A ) ) base_metrics.update(gen_time=A , gen_len=A , preds=A , target=A , **A ) return base_metrics def _lowercase( self , A , A ) -> Dict: return self._generative_step(A ) def _lowercase( self , A ) -> List[str]: return self.validation_epoch_end(A , prefix="""test""" ) def _lowercase( self , A ) -> SeqaSeqDataset: UpperCAmelCase : str = self.n_obs[type_path] UpperCAmelCase : str = self.target_lens[type_path] UpperCAmelCase : str = self.dataset_class( self.tokenizer , type_path=A , n_obs=A , max_target_length=A , **self.dataset_kwargs , ) return dataset def _lowercase( self , A , A , A = False ) -> DataLoader: UpperCAmelCase : Tuple = self.get_dataset(A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase : List[Any] = dataset.make_sortish_sampler(A , distributed=self.hparams.gpus > 1 ) return DataLoader( A , batch_size=A , collate_fn=dataset.collate_fn , shuffle=A , num_workers=self.num_workers , sampler=A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase : List[str] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( A , batch_sampler=A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( A , batch_size=A , collate_fn=dataset.collate_fn , shuffle=A , num_workers=self.num_workers , sampler=A , ) def _lowercase( self ) -> DataLoader: UpperCAmelCase : Optional[Any] = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=A ) return dataloader def _lowercase( self ) -> DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def _lowercase( self ) -> DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def _lowercase( A , A ) -> Optional[Any]: BaseTransformer.add_model_specific_args(A , A ) add_generic_args(A , A ) parser.add_argument( """--max_source_length""" , default=1024 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=A , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=A ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=A ) parser.add_argument("""--max_tokens_per_batch""" , type=A , default=A ) parser.add_argument("""--logger_name""" , type=A , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=A , default=-1 , required=A , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=A , default=500 , required=A , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=A , default=-1 , required=A , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=A , default="""summarization""" , required=A , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=A , default=0.0 , required=A ) parser.add_argument("""--src_lang""" , type=A , default="""""" , required=A ) parser.add_argument("""--tgt_lang""" , type=A , default="""""" , required=A ) parser.add_argument("""--eval_beams""" , type=A , default=A , required=A ) parser.add_argument( """--val_metric""" , type=A , default=A , required=A , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=A , default=A , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=A , default=1 , required=A , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=A , default=-1 , required=A , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class UpperCamelCase_ ( __magic_name__ ): lowercase = 'translation' lowercase = ['loss'] lowercase = ['bleu'] lowercase = 'bleu' def __init__( self , A , **A ) -> List[str]: super().__init__(A , **A ) UpperCAmelCase : Dict = hparams.src_lang UpperCAmelCase : Dict = hparams.tgt_lang def _lowercase( self , A , A ) -> dict: return calculate_bleu(A , A ) def __lowerCamelCase ( _lowercase , _lowercase=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_lowercase ) check_output_dir(_lowercase , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase : SummarizationModule = SummarizationModule(_lowercase ) else: UpperCAmelCase : SummarizationModule = TranslationModule(_lowercase ) UpperCAmelCase : Tuple = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): UpperCAmelCase : Optional[int] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase : Any = os.environ.get("""WANDB_PROJECT""" , _lowercase ) UpperCAmelCase : Tuple = WandbLogger(name=model.output_dir.name , project=_lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase : List[str] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: UpperCAmelCase : str = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase : Any = False UpperCAmelCase : int = args.val_metric == """loss""" UpperCAmelCase : pl.Trainer = generic_train( _lowercase , _lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowercase ) , early_stopping_callback=_lowercase , logger=_lowercase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model UpperCAmelCase : Tuple = """""" UpperCAmelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=_lowercase ) ) if checkpoints: UpperCAmelCase : List[Any] = checkpoints[-1] UpperCAmelCase : Optional[Any] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() a : List[str] = pl.Trainer.add_argparse_args(parser) a : str = SummarizationModule.add_model_specific_args(parser, os.getcwd()) a : int = parser.parse_args() main(args)
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : int = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: UpperCAmelCase : Optional[int] = b.T UpperCAmelCase : Tuple = np.sum(np.square(_lowercase ) , axis=1 ) UpperCAmelCase : Union[str, Any] = np.sum(np.square(_lowercase ) , axis=0 ) UpperCAmelCase : int = np.matmul(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Dict = x.reshape(-1 , 3 ) UpperCAmelCase : Union[str, Any] = squared_euclidean_distance(_lowercase , _lowercase ) return np.argmin(_lowercase , axis=1 ) class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = None , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = True , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : Optional[Any] = size if size is not None else {"""height""": 256, """width""": 256} UpperCAmelCase : int = get_size_dict(A ) UpperCAmelCase : Union[str, Any] = np.array(A ) if clusters is not None else None UpperCAmelCase : Optional[Any] = do_resize UpperCAmelCase : str = size UpperCAmelCase : Dict = resample UpperCAmelCase : Union[str, Any] = do_normalize UpperCAmelCase : Any = do_color_quantize def _lowercase( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray: UpperCAmelCase : int = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( A , size=(size["""height"""], size["""width"""]) , resample=A , data_format=A , **A ) def _lowercase( self , A , A = None , ) -> np.ndarray: UpperCAmelCase : Union[str, Any] = rescale(image=A , scale=1 / 1_2_7.5 , data_format=A ) UpperCAmelCase : Optional[Any] = image - 1 return image def _lowercase( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: UpperCAmelCase : int = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Dict = size if size is not None else self.size UpperCAmelCase : Optional[int] = get_size_dict(A ) UpperCAmelCase : Dict = resample if resample is not None else self.resample UpperCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : List[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCAmelCase : str = clusters if clusters is not None else self.clusters UpperCAmelCase : str = np.array(A ) UpperCAmelCase : Dict = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase : Optional[int] = [to_numpy_array(A ) for image in images] if do_resize: UpperCAmelCase : Tuple = [self.resize(image=A , size=A , resample=A ) for image in images] if do_normalize: UpperCAmelCase : Any = [self.normalize(image=A ) for image in images] if do_color_quantize: UpperCAmelCase : Optional[int] = [to_channel_dimension_format(A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCAmelCase : int = np.array(A ) UpperCAmelCase : Any = color_quantize(A , A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCAmelCase : List[str] = images.shape[0] UpperCAmelCase : Optional[int] = images.reshape(A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCAmelCase : int = list(A ) else: UpperCAmelCase : Any = [to_channel_dimension_format(A , A ) for image in images] UpperCAmelCase : Union[str, Any] = {"""input_ids""": images} return BatchFeature(data=A , tensor_type=A )
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' from itertools import product def __lowerCamelCase ( _lowercase , _lowercase ) -> list[int]: UpperCAmelCase : Any = sides_number UpperCAmelCase : List[Any] = max_face_number * dice_number UpperCAmelCase : int = [0] * (max_total + 1) UpperCAmelCase : str = 1 UpperCAmelCase : Any = range(_lowercase , max_face_number + 1 ) for dice_numbers in product(_lowercase , repeat=_lowercase ): UpperCAmelCase : Union[str, Any] = sum(_lowercase ) totals_frequencies[total] += 1 return totals_frequencies def __lowerCamelCase ( ) -> float: UpperCAmelCase : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCAmelCase : Optional[int] = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCAmelCase : List[Any] = 0 UpperCAmelCase : List[Any] = 9 UpperCAmelCase : Dict = 4 * 9 UpperCAmelCase : Dict = 6 for peter_total in range(_lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase : str = (4**9) * (6**6) UpperCAmelCase : Optional[Any] = peter_wins_count / total_games_number UpperCAmelCase : Tuple = round(_lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' import cmath import math def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> complex: UpperCAmelCase : List[Any] = math.radians(_lowercase ) UpperCAmelCase : Union[str, Any] = math.radians(_lowercase ) # Convert voltage and current to rectangular form UpperCAmelCase : Union[str, Any] = cmath.rect(_lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = cmath.rect(_lowercase , _lowercase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase_ : def __init__( self , A , A=13 , A=64 , A=2 , A=3 , A=True , A=True , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=10 , A=0.0_2 , A=[1, 16, 4, 4] , A=None , ) -> Any: UpperCAmelCase : Union[str, Any] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : Optional[Any] = num_channels UpperCAmelCase : int = is_training UpperCAmelCase : Any = use_labels UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : List[str] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Optional[Any] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Dict = type_sequence_label_size UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Optional[int] = scope UpperCAmelCase : List[Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : Optional[Any] = (self.image_size // 32) ** 2 UpperCAmelCase : List[Any] = num_patches + 1 def _lowercase( self ) -> Dict: UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Any = None if self.use_labels: UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> int: UpperCAmelCase : List[str] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : str = ViTHybridModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[str] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A ) -> int: UpperCAmelCase : str = self.type_sequence_label_size UpperCAmelCase : int = ViTHybridForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : str = config_and_inputs UpperCAmelCase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = ViTHybridModelTester(self ) UpperCAmelCase : Dict = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def _lowercase( self ) -> Any: pass def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A , nn.Linear ) ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> Any: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = _config_zero_init(A ) for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(config=A ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : str = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _lowercase( self ) -> str: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[str] = ViTHybridModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> Optional[int]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase( self ) -> List[str]: UpperCAmelCase : int = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Tuple = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : str = model(**A ) # verify the logits UpperCAmelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : int = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) ) @slow @require_accelerate def _lowercase( self ) -> List[str]: UpperCAmelCase : Any = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) UpperCAmelCase : Optional[int] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) UpperCAmelCase : Dict = prepare_img() UpperCAmelCase : List[str] = image_processor(images=A , return_tensors="""pt""" ) UpperCAmelCase : Any = model(**A ) UpperCAmelCase : List[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : Tuple = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowerCamelCase ( _lowercase , _lowercase=1_0 ) -> int: UpperCAmelCase : Optional[int] = [] for _ in range(_lowercase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowerCamelCase ( _lowercase , _lowercase=1_0 ) -> str: UpperCAmelCase : Union[str, Any] = [] for step in range(_lowercase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase : Dict = os.path.join(_lowercase , """schedule.bin""" ) torch.save(scheduler.state_dict() , _lowercase ) UpperCAmelCase : List[Any] = torch.load(_lowercase ) scheduler.load_state_dict(_lowercase ) return lrs @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self , A , A , A ) -> Optional[Any]: self.assertEqual(len(A ) , len(A ) ) for a, b in zip(A , A ): self.assertAlmostEqual(A , A , delta=A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=A ) UpperCAmelCase : Any = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : Any = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): UpperCAmelCase : Dict = criterion(A , A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def _lowercase( self ) -> str: UpperCAmelCase : int = torch.tensor([0.1, -0.2, -0.1] , requires_grad=A ) UpperCAmelCase : Optional[Any] = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase : str = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase : Any = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=A , weight_decay=0.0 , relative_step=A , scale_parameter=A , warmup_init=A , ) for _ in range(1000 ): UpperCAmelCase : Union[str, Any] = criterion(A , A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): lowercase = nn.Linear(50 , 50 ) if is_torch_available() else None lowercase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowercase = 10 def _lowercase( self , A , A , A , A=None ) -> List[str]: self.assertEqual(len(A ) , len(A ) ) for a, b in zip(A , A ): self.assertAlmostEqual(A , A , delta=A , msg=A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : int = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCAmelCase : Optional[int] = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1e-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): UpperCAmelCase , UpperCAmelCase : Tuple = data UpperCAmelCase : List[Any] = scheduler_func(self.optimizer , **A ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) UpperCAmelCase : List[Any] = unwrap_schedule(A , self.num_steps ) self.assertListAlmostEqual( A , A , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) UpperCAmelCase : Any = scheduler_func(self.optimizer , **A ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(A ) # wrap to test picklability of the schedule UpperCAmelCase : Dict = unwrap_and_save_reload_schedule(A , self.num_steps ) self.assertListEqual(A , A , msg=f'''failed for {scheduler_func} in save and reload''' ) class UpperCamelCase_ : def __init__( self , A ) -> Optional[int]: UpperCAmelCase : Optional[int] = fn def __call__( self , *A , **A ) -> Optional[int]: return self.fn(*A , **A ) @classmethod def _lowercase( self , A ) -> Any: UpperCAmelCase : Tuple = list(map(self , scheduler.lr_lambdas ) )
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class UpperCamelCase_ : def __init__( self , A = "cpu" , A = "openai/clip-vit-large-patch14" ) -> None: UpperCAmelCase : Dict = device UpperCAmelCase : Optional[int] = CLIPTokenizerFast.from_pretrained(A ) UpperCAmelCase : int = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] UpperCAmelCase : Dict = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] UpperCAmelCase : int = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCAmelCase : Optional[Any] = torchvision.transforms.Resize(224 ) UpperCAmelCase : Optional[Any] = torchvision.transforms.CenterCrop(224 ) def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : List[Any] = self.resize(A ) UpperCAmelCase : int = self.center_crop(A ) UpperCAmelCase : str = self.normalize(A ) return images def __call__( self , A=None , A=None , **A ) -> Optional[int]: UpperCAmelCase : int = self.tokenizer(text=A , **A ) UpperCAmelCase : str = self.preprocess_img(A ) UpperCAmelCase : List[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class UpperCamelCase_ ( nn.Module ): def __init__( self , A=10 , A=0.0_1 , A=None , A=None , A=None , A=None , A=None , A=None , A=False , A=True , A="image" , A=True , A=False , A=False , A=False , ) -> None: super().__init__() UpperCAmelCase : Tuple = None UpperCAmelCase : Union[str, Any] = device if device else get_device() if vqgan: UpperCAmelCase : Tuple = vqgan else: UpperCAmelCase : Optional[int] = load_vqgan(self.device , conf_path=A , ckpt_path=A ) self.vqgan.eval() if clip: UpperCAmelCase : Tuple = clip else: UpperCAmelCase : int = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) UpperCAmelCase : int = ProcessorGradientFlow(device=self.device ) UpperCAmelCase : List[str] = iterations UpperCAmelCase : List[str] = lr UpperCAmelCase : Union[str, Any] = log UpperCAmelCase : Any = make_grid UpperCAmelCase : Tuple = return_val UpperCAmelCase : Dict = quantize UpperCAmelCase : int = self.vqgan.decoder.z_shape def _lowercase( self , A=None , A=None , A=5 , A=True ) -> List[str]: UpperCAmelCase : Any = [] if output_path is None: UpperCAmelCase : Union[str, Any] = """./animation.gif""" if input_path is None: UpperCAmelCase : Optional[int] = self.save_path UpperCAmelCase : Dict = sorted(glob(input_path + """/*""" ) ) if not len(A ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(A ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) UpperCAmelCase : Union[str, Any] = total_duration / len(A ) UpperCAmelCase : str = [frame_duration] * len(A ) if extend_frames: UpperCAmelCase : List[str] = 1.5 UpperCAmelCase : str = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(A ) ) imageio.mimsave(A , A , duration=A ) print(f'''gif saved to {output_path}''' ) def _lowercase( self , A=None , A=None ) -> Optional[int]: if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError UpperCAmelCase : int = preprocess(Image.open(A ) , target_image_size=256 ).to(self.device ) UpperCAmelCase : int = preprocess_vqgan(A ) UpperCAmelCase , *UpperCAmelCase : int = self.vqgan.encode(A ) return z def _lowercase( self , A ) -> int: UpperCAmelCase : int = self.latent.detach().requires_grad_() UpperCAmelCase : int = base_latent + transform_vector if self.quantize: UpperCAmelCase , *UpperCAmelCase : Dict = self.vqgan.quantize(A ) else: UpperCAmelCase : Union[str, Any] = trans_latent return self.vqgan.decode(A ) def _lowercase( self , A , A , A=None ) -> Optional[int]: UpperCAmelCase : List[str] = self.clip_preprocessor(text=A , images=A , return_tensors="""pt""" , padding=A ) UpperCAmelCase : List[Any] = self.clip(**A ) UpperCAmelCase : Dict = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase : int = similarity_logits * weights return similarity_logits.sum() def _lowercase( self , A , A , A ) -> Dict: UpperCAmelCase : int = self._get_clip_similarity(pos_prompts["""prompts"""] , A , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: UpperCAmelCase : Any = self._get_clip_similarity(neg_prompts["""prompts"""] , A , weights=neg_prompts["""weights"""] ) else: UpperCAmelCase : Optional[int] = torch.tensor([1] , device=self.device ) UpperCAmelCase : List[Any] = -torch.log(A ) + torch.log(A ) return loss def _lowercase( self , A , A , A ) -> str: UpperCAmelCase : int = torch.randn_like(self.latent , requires_grad=A , device=self.device ) UpperCAmelCase : List[str] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase : Any = self._add_vector(A ) UpperCAmelCase : str = loop_post_process(A ) UpperCAmelCase : List[Any] = self._get_CLIP_loss(A , A , A ) print("""CLIP loss""" , A ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=A ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _lowercase( self , A , A , A ) -> Dict: wandb.init(reinit=A , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: UpperCAmelCase : Any = Image.open(A ) UpperCAmelCase : int = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(A ) ) def _lowercase( self , A ) -> Dict: if not prompts: return [] UpperCAmelCase : Dict = [] UpperCAmelCase : List[str] = [] if isinstance(A , A ): UpperCAmelCase : Tuple = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(A , (tuple, list) ): UpperCAmelCase : str = prompt[0] UpperCAmelCase : List[Any] = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = prompt.split(""":""" ) UpperCAmelCase : str = float(A ) else: UpperCAmelCase : Tuple = prompt UpperCAmelCase : Dict = 1.0 processed_prompts.append(A ) weights.append(A ) return { "prompts": processed_prompts, "weights": torch.tensor(A , device=self.device ), } def _lowercase( self , A , A=None , A=None , A=True , A=False , A=True , A=True , A=None , ) -> Tuple: if image_path: UpperCAmelCase : List[Any] = self._get_latent(A ) else: UpperCAmelCase : List[str] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(A , A , A ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase : List[Any] = self.process_prompts(A ) UpperCAmelCase : List[str] = self.process_prompts(A ) if save_final and save_path is None: UpperCAmelCase : Tuple = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(A ): os.makedirs(A ) else: UpperCAmelCase : List[str] = save_path + """_""" + get_timestamp() os.makedirs(A ) UpperCAmelCase : Optional[Any] = save_path UpperCAmelCase : Tuple = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(A ) ) UpperCAmelCase : str = loop_post_process(A ) for iter, transformed_img in enumerate(self._optimize_CLIP(A , A , A ) ): if show_intermediate: show_pil(A ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"""Image""": wandb.Image(A )} ) if show_final: show_pil(A ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' from math import pow def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> tuple[int, int]: if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count UpperCAmelCase : Union[str, Any] = int(pow(_lowercase , _lowercase ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n UpperCAmelCase , UpperCAmelCase : Dict = backtrack( _lowercase , _lowercase , current_number + 1 , _lowercase , _lowercase ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. UpperCAmelCase , UpperCAmelCase : List[Any] = backtrack( _lowercase , _lowercase , current_number + 1 , _lowercase , _lowercase ) return current_sum, solutions_count def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if not (1 <= needed_sum <= 1_0_0_0 and 2 <= power <= 1_0): raise ValueError( """Invalid input\n""" """needed_sum must be between 1 and 1000, power between 2 and 10.""" ) return backtrack(_lowercase , _lowercase , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: with open(A , encoding="""utf-8""" ) as input_file: UpperCAmelCase : int = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) UpperCAmelCase : Optional[Any] = input_file.read() UpperCAmelCase : Tuple = regexp.search(A ) return match def _lowercase( self , A ) -> Dict: with open(A , encoding="""utf-8""" ) as input_file: UpperCAmelCase : List[Any] = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) UpperCAmelCase : Union[str, Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase : Optional[int] = regexp.finditer(A ) UpperCAmelCase : str = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[int] = Path("""./datasets""" ) UpperCAmelCase : Tuple = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(A ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = Path("""./datasets""" ) UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(A ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def __lowerCamelCase ( _lowercase ) -> list[list[float]]: UpperCAmelCase : Dict = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowercase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase : Dict = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase : int = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase , UpperCAmelCase : Any = matrix[1][1], matrix[0][0] UpperCAmelCase , UpperCAmelCase : Any = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowercase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowercase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase : Tuple = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix UpperCAmelCase : Optional[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase : int = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase : Optional[int] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase : Dict = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase : List[str] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase : List[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase : List[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase : Union[str, Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase : int = array(_lowercase ) for i in range(3 ): for j in range(3 ): UpperCAmelCase : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase : Dict = array(_lowercase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowercase ) # Calculate the inverse of the matrix return [[float(d(_lowercase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record a : Union[str, Any] = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ a : List[str] = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ a : Tuple = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: return float((preds == labels).mean() ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase="binary" ) -> List[str]: UpperCAmelCase : Optional[int] = simple_accuracy(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = float(fa_score(y_true=_lowercase , y_pred=_lowercase , average=_lowercase ) ) return { "accuracy": acc, "f1": fa, } def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Any = {} for id_pred, label in zip(_lowercase , _lowercase ): UpperCAmelCase : List[str] = F'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' UpperCAmelCase : int = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCAmelCase : Any = [(pred, label)] UpperCAmelCase , UpperCAmelCase : Optional[Any] = [], [] for question, preds_labels in question_map.items(): UpperCAmelCase , UpperCAmelCase : Optional[Any] = zip(*_lowercase ) UpperCAmelCase : int = fa_score(y_true=_lowercase , y_pred=_lowercase , average="""macro""" ) fas.append(_lowercase ) UpperCAmelCase : Any = int(sum(pred == label for pred, label in preds_labels ) == len(_lowercase ) ) ems.append(_lowercase ) UpperCAmelCase : List[str] = float(sum(_lowercase ) / len(_lowercase ) ) UpperCAmelCase : List[Any] = sum(_lowercase ) / len(_lowercase ) UpperCAmelCase : Tuple = float(fa_score(y_true=_lowercase , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Any: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def _lowercase( self ) -> Dict: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def _lowercase( self , A , A ) -> Tuple: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(A , A )} elif self.config_name == "cb": return acc_and_fa(A , A , fa_avg="""macro""" ) elif self.config_name == "record": UpperCAmelCase : List[str] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] UpperCAmelCase : List[Any] = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(A , A )[0] elif self.config_name == "multirc": return evaluate_multirc(A , A ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(A , A )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowerCamelCase ( ) -> str: raise RuntimeError("""CUDA out of memory.""" ) class UpperCamelCase_ ( nn.Module ): def __init__( self ) -> Tuple: super().__init__() UpperCAmelCase : Tuple = nn.Linear(3 , 4 ) UpperCAmelCase : int = nn.BatchNormad(4 ) UpperCAmelCase : int = nn.Linear(4 , 5 ) def _lowercase( self , A ) -> int: return self.lineara(self.batchnorm(self.lineara(A ) ) ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[str] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A ): nonlocal batch_sizes batch_sizes.append(A ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(A , [128, 64, 32, 16, 8] ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A , A ): nonlocal batch_sizes batch_sizes.append(A ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase , UpperCAmelCase : List[Any] = mock_training_loop_function("""hello""" ) self.assertListEqual(A , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def _lowercase( self ) -> int: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(A ): pass with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase( self ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A , A , A ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(A ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def _lowercase( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[Any] = torch.cuda.memory_allocated() UpperCAmelCase : List[Any] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , A ) UpperCAmelCase : Optional[Any] = release_memory(A ) self.assertEqual(torch.cuda.memory_allocated() , A )
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract a : Tuple = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> List[str]: return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : List[Any] = to_pil_image(_lowercase ) UpperCAmelCase , UpperCAmelCase : Dict = pil_image.size UpperCAmelCase : Any = pytesseract.image_to_data(_lowercase , lang=_lowercase , output_type="""dict""" , config=_lowercase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates UpperCAmelCase : List[str] = [idx for idx, word in enumerate(_lowercase ) if not word.strip()] UpperCAmelCase : Any = [word for idx, word in enumerate(_lowercase ) if idx not in irrelevant_indices] UpperCAmelCase : Optional[int] = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] UpperCAmelCase : List[str] = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] UpperCAmelCase : Any = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] UpperCAmelCase : int = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase : Optional[Any] = [] for x, y, w, h in zip(_lowercase , _lowercase , _lowercase , _lowercase ): UpperCAmelCase : Any = [x, y, x + w, y + h] actual_boxes.append(_lowercase ) # finally, normalize the bounding boxes UpperCAmelCase : Optional[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowercase , _lowercase , _lowercase ) ) assert len(_lowercase ) == len(_lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCamelCase_ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self , A = True , A = None , A = PILImageResampling.BILINEAR , A = True , A = 1 / 255 , A = True , A = None , A = None , A = True , A = None , A = "" , **A , ) -> None: super().__init__(**A ) UpperCAmelCase : Tuple = size if size is not None else {"""height""": 224, """width""": 224} UpperCAmelCase : Optional[int] = get_size_dict(A ) UpperCAmelCase : Optional[int] = do_resize UpperCAmelCase : Union[str, Any] = size UpperCAmelCase : Union[str, Any] = resample UpperCAmelCase : List[Any] = do_rescale UpperCAmelCase : Tuple = rescale_value UpperCAmelCase : Any = do_normalize UpperCAmelCase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCAmelCase : List[Any] = apply_ocr UpperCAmelCase : Dict = ocr_lang UpperCAmelCase : List[Any] = tesseract_config def _lowercase( self , A , A , A = PILImageResampling.BILINEAR , A = None , **A , ) -> np.ndarray: UpperCAmelCase : Optional[int] = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCAmelCase : List[str] = (size["""height"""], size["""width"""]) return resize(A , size=A , resample=A , data_format=A , **A ) def _lowercase( self , A , A , A = None , **A , ) -> np.ndarray: return rescale(A , scale=A , data_format=A , **A ) def _lowercase( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def _lowercase( self , A , A = None , A = None , A=None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : Any = size if size is not None else self.size UpperCAmelCase : str = get_size_dict(A ) UpperCAmelCase : Dict = resample if resample is not None else self.resample UpperCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase : List[Any] = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase : Any = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase : List[str] = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase : Optional[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. UpperCAmelCase : Optional[Any] = [to_numpy_array(A ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) UpperCAmelCase : List[str] = [] UpperCAmelCase : Dict = [] for image in images: UpperCAmelCase , UpperCAmelCase : Optional[Any] = apply_tesseract(A , A , A ) words_batch.append(A ) boxes_batch.append(A ) if do_resize: UpperCAmelCase : Any = [self.resize(image=A , size=A , resample=A ) for image in images] if do_rescale: UpperCAmelCase : str = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: UpperCAmelCase : Union[str, Any] = [self.normalize(image=A , mean=A , std=A ) for image in images] UpperCAmelCase : int = [to_channel_dimension_format(A , A ) for image in images] UpperCAmelCase : Any = BatchFeature(data={"""pixel_values""": images} , tensor_type=A ) if apply_ocr: UpperCAmelCase : Optional[int] = words_batch UpperCAmelCase : str = boxes_batch return data
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a : int = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = AlbertTokenizer lowercase = AlbertTokenizerFast lowercase = True lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Union[str, Any] = AlbertTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self , A ) -> int: UpperCAmelCase : str = """this is a test""" UpperCAmelCase : Any = """this is a test""" return input_text, output_text def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = """<pad>""" UpperCAmelCase : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(A ) , 30000 ) def _lowercase( self ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _lowercase( self ) -> Optional[int]: if not self.test_rust_tokenizer: return UpperCAmelCase : Union[str, Any] = self.get_tokenizer() UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase : Optional[int] = """I was born in 92000, and this is falsé.""" UpperCAmelCase : List[Any] = tokenizer.tokenize(A ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) UpperCAmelCase : Optional[int] = tokenizer.encode(A , add_special_tokens=A ) UpperCAmelCase : Tuple = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase : Dict = tokenizer.encode(A ) UpperCAmelCase : List[Any] = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : List[Any] = AlbertTokenizer(A , keep_accents=A ) UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [48, 25, 21, 1289] ) UpperCAmelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = AlbertTokenizer(A ) UpperCAmelCase : Dict = tokenizer.encode("""sequence builders""" ) UpperCAmelCase : int = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase( self ) -> Union[str, Any]: # fmt: off UpperCAmelCase : Union[str, Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' import numpy as np def __lowerCamelCase ( _lowercase ) -> np.array: return 1 / (1 + np.exp(-vector )) def __lowerCamelCase ( _lowercase ) -> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) a : List[str] = parser.parse_args() a : List[str] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a : Optional[Any] = CLIPImageProcessor() a : str = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") a : str = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' import qiskit def __lowerCamelCase ( _lowercase , _lowercase ) -> qiskit.result.counts.Counts: UpperCAmelCase : int = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register UpperCAmelCase : List[str] = qiskit.QuantumCircuit(_lowercase , _lowercase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator UpperCAmelCase : Any = qiskit.execute(_lowercase , _lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_lowercase ) if __name__ == "__main__": a : Optional[int] = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' a : Optional[Any] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ a : Optional[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] a : List[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' import string def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Any = """""" for i in sequence: UpperCAmelCase : str = ord(_lowercase ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : Union[str, Any] = string.ascii_letters UpperCAmelCase : Union[str, Any] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_lowercase )] if c in letters else c for c in sequence ) def __lowerCamelCase ( ) -> None: from timeit import timeit print("""Running performance benchmarks...""" ) UpperCAmelCase : Any = """from string import printable ; from __main__ import atbash, atbash_slow""" print(F'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_lowercase )} seconds''' ) print(F'''> atbash(): {timeit('atbash(printable)' , setup=_lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase = 'ssube/stable-diffusion-x4-upscaler-onnx' def _lowercase( self , A=0 ) -> Dict: UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(A ) ) UpperCAmelCase : Optional[Any] = torch.manual_seed(A ) UpperCAmelCase : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> str: UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : int = self.get_dummy_inputs() UpperCAmelCase : List[str] = pipe(**A ).images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Dict = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Any = self.get_dummy_inputs() UpperCAmelCase : List[Any] = pipe(**A ).images UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Any = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[Any] = self.get_dummy_inputs() UpperCAmelCase : int = pipe(**A ).images UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Any = self.get_dummy_inputs() UpperCAmelCase : Tuple = pipe(**A ).images UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : Optional[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) UpperCAmelCase : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : str = self.get_dummy_inputs() UpperCAmelCase : int = pipe(**A ).images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : int = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): @property def _lowercase( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = ort.SessionOptions() UpperCAmelCase : Any = False return options def _lowercase( self ) -> str: UpperCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCAmelCase : Optional[int] = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCAmelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = """A fantasy landscape, trending on artstation""" UpperCAmelCase : str = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe( prompt=A , image=A , guidance_scale=7.5 , num_inference_steps=10 , generator=A , output_type="""np""" , ) UpperCAmelCase : int = output.images UpperCAmelCase : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : Optional[Any] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowercase( self ) -> Dict: UpperCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) UpperCAmelCase : Optional[Any] = init_image.resize((128, 128) ) UpperCAmelCase : Any = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) UpperCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[Any] = """A fantasy landscape, trending on artstation""" UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( prompt=A , image=A , guidance_scale=7.5 , num_inference_steps=20 , generator=A , output_type="""np""" , ) UpperCAmelCase : Optional[int] = output.images UpperCAmelCase : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCAmelCase : int = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowerCamelCase ( _lowercase ) -> Any: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: # word like '180' or '身高' or '神' for char in word: UpperCAmelCase : int = ord(_lowercase ) if not _is_chinese_char(_lowercase ): return 0 return 1 def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : Dict = set() for token in tokens: UpperCAmelCase : Any = len(_lowercase ) > 1 and is_chinese(_lowercase ) if chinese_word: word_set.add(_lowercase ) UpperCAmelCase : List[Any] = list(_lowercase ) return word_list def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: if not chinese_word_set: return bert_tokens UpperCAmelCase : List[str] = max([len(_lowercase ) for w in chinese_word_set] ) UpperCAmelCase : List[Any] = bert_tokens UpperCAmelCase , UpperCAmelCase : Union[str, Any] = 0, len(_lowercase ) while start < end: UpperCAmelCase : Any = True if is_chinese(bert_word[start] ): UpperCAmelCase : str = min(end - start , _lowercase ) for i in range(_lowercase , 1 , -1 ): UpperCAmelCase : Any = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCAmelCase : Optional[int] = """##""" + bert_word[j] UpperCAmelCase : Optional[Any] = start + i UpperCAmelCase : Any = False break if single_word: start += 1 return bert_word def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: UpperCAmelCase : Tuple = [] for i in range(0 , len(_lowercase ) , 1_0_0 ): UpperCAmelCase : int = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0] UpperCAmelCase : Optional[int] = [get_chinese_word(_lowercase ) for r in res] ltp_res.extend(_lowercase ) assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : str = [] for i in range(0 , len(_lowercase ) , 1_0_0 ): UpperCAmelCase : Tuple = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=_lowercase , truncation=_lowercase , max_length=5_1_2 ) bert_res.extend(res["""input_ids"""] ) assert len(_lowercase ) == len(_lowercase ) UpperCAmelCase : List[Any] = [] for input_ids, chinese_word in zip(_lowercase , _lowercase ): UpperCAmelCase : Any = [] for id in input_ids: UpperCAmelCase : int = bert_tokenizer._convert_id_to_token(_lowercase ) input_tokens.append(_lowercase ) UpperCAmelCase : List[str] = add_sub_symbol(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowercase ): if token[:2] == "##": UpperCAmelCase : int = token[2:] # save chinese tokens' pos if len(_lowercase ) == 1 and _is_chinese_char(ord(_lowercase ) ): ref_id.append(_lowercase ) ref_ids.append(_lowercase ) assert len(_lowercase ) == len(_lowercase ) return ref_ids def __lowerCamelCase ( _lowercase ) -> Any: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCAmelCase : List[str] = f.readlines() UpperCAmelCase : int = [line.strip() for line in data if len(_lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCAmelCase : Tuple = LTP(args.ltp ) # faster in GPU device UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.bert ) UpperCAmelCase : int = prepare_ref(_lowercase , _lowercase , _lowercase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase : Optional[int] = [json.dumps(_lowercase ) + """\n""" for ref in ref_ids] f.writelines(_lowercase ) if __name__ == "__main__": a : str = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") a : Any = parser.parse_args() main(args)
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase ) -> bool: return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __lowerCamelCase ( _lowercase ) -> bool: UpperCAmelCase : List[str] = credit_card_number UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[Any] = len(_lowercase ) - 2 for i in range(_lowercase , -1 , -2 ): # double the value of every second digit UpperCAmelCase : Union[str, Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 UpperCAmelCase : Optional[Any] = cc_number[:i] + str(_lowercase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_lowercase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def __lowerCamelCase ( _lowercase ) -> bool: UpperCAmelCase : Dict = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 1_3 <= len(_lowercase ) <= 1_6: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(_lowercase ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(_lowercase ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
672
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a : str = random.Random() def __lowerCamelCase ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ) -> Optional[Any]: if rng is None: UpperCAmelCase : List[str] = global_rng UpperCAmelCase : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=400 , A=2000 , A=1 , A=0.0 , A=16000 , A=True , A=True , ) -> Optional[int]: UpperCAmelCase : Dict = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : str = min_seq_length UpperCAmelCase : Optional[int] = max_seq_length UpperCAmelCase : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase : List[Any] = feature_size UpperCAmelCase : List[str] = padding_value UpperCAmelCase : Any = sampling_rate UpperCAmelCase : List[Any] = return_attention_mask UpperCAmelCase : Union[str, Any] = do_normalize def _lowercase( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase( self , A=False , A=False ) -> Optional[Any]: def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: UpperCAmelCase : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase : Optional[int] = [np.asarray(A ) for x in speech_inputs] return speech_inputs class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = WavaVecaFeatureExtractor def _lowercase( self ) -> List[str]: UpperCAmelCase : str = WavaVecaFeatureExtractionTester(self ) def _lowercase( self , A ) -> int: self.assertTrue(np.all(np.mean(A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1e-3 ) ) def _lowercase( self ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Any = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase : Tuple = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values UpperCAmelCase : str = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched UpperCAmelCase : Optional[int] = feat_extract(A , return_tensors="""np""" ).input_values UpperCAmelCase : List[Any] = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase : Optional[int] = np.asarray(A ) UpperCAmelCase : int = feat_extract(A , return_tensors="""np""" ).input_values UpperCAmelCase : List[str] = feat_extract(A , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Any = ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase : List[Any] = [None, 1600, None] for max_length, padding in zip(A , A ): UpperCAmelCase : Dict = feat_extract(A , padding=A , max_length=A , return_tensors="""np""" ) UpperCAmelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowercase( self ) -> str: UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : str = range(800 , 1400 , 200 ) UpperCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase : Optional[int] = ["""longest""", """max_length""", """do_not_pad"""] UpperCAmelCase : Dict = [None, 1600, None] for max_length, padding in zip(A , A ): UpperCAmelCase : List[Any] = feat_extract(A , max_length=A , padding=A ) UpperCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Dict = feat_extract( A , truncation=A , max_length=1000 , padding="""max_length""" , return_tensors="""np""" ) UpperCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : Union[str, Any] = feat_extract( A , truncation=A , max_length=1000 , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCAmelCase : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCAmelCase : List[str] = feat_extract( A , truncation=A , max_length=2000 , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def _lowercase( self ) -> Tuple: import torch UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase : Tuple = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase : Union[str, Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase : Tuple = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowercase( self ) -> Dict: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCAmelCase : Optional[Any] = WavaVecaConfig.from_pretrained(A ) UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(A ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
672
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
1
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig a : Tuple = logging.getLogger(__name__) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'masked_bert' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=0 , A="topK" , A="constant" , A=0.0 , **A , ) -> Optional[int]: super().__init__(pad_token_id=A , **A ) UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : str = hidden_act UpperCAmelCase : List[Any] = intermediate_size UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : Optional[int] = type_vocab_size UpperCAmelCase : str = initializer_range UpperCAmelCase : Dict = layer_norm_eps UpperCAmelCase : List[Any] = pruning_method UpperCAmelCase : Any = mask_init UpperCAmelCase : Dict = mask_scale
672
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
1
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
1
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) a : Dict = None a : str = { """7B""": 1_1_0_0_8, """13B""": 1_3_8_2_4, """30B""": 1_7_9_2_0, """65B""": 2_2_0_1_6, """70B""": 2_8_6_7_2, } a : Tuple = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def __lowerCamelCase ( _lowercase , _lowercase=1 , _lowercase=2_5_6 ) -> int: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __lowerCamelCase ( _lowercase ) -> List[Any]: with open(_lowercase , """r""" ) as f: return json.load(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Dict: with open(_lowercase , """w""" ) as f: json.dump(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=True ) -> Dict: os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase : int = os.path.join(_lowercase , """tmp""" ) os.makedirs(_lowercase , exist_ok=_lowercase ) UpperCAmelCase : Optional[int] = read_json(os.path.join(_lowercase , """params.json""" ) ) UpperCAmelCase : Dict = NUM_SHARDS[model_size] UpperCAmelCase : int = params["""n_layers"""] UpperCAmelCase : str = params["""n_heads"""] UpperCAmelCase : Optional[Any] = n_heads // num_shards UpperCAmelCase : List[str] = params["""dim"""] UpperCAmelCase : str = dim // n_heads UpperCAmelCase : Optional[int] = 1_0000.0 UpperCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _lowercase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase : List[Any] = params["""n_kv_heads"""] # for GQA / MQA UpperCAmelCase : str = n_heads_per_shard // num_key_value_heads UpperCAmelCase : int = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase : Optional[int] = n_heads UpperCAmelCase : Dict = n_heads_per_shard UpperCAmelCase : Union[str, Any] = dim # permute for sliced rotary def permute(_lowercase , _lowercase=n_heads , _lowercase=dim , _lowercase=dim ): return w.view(_lowercase , dima // n_heads // 2 , 2 , _lowercase ).transpose(1 , 2 ).reshape(_lowercase , _lowercase ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase : Tuple = torch.load(os.path.join(_lowercase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded UpperCAmelCase : Optional[Any] = [ torch.load(os.path.join(_lowercase , F'''consolidated.{i:02d}.pth''' ) , map_location="""cpu""" ) for i in range(_lowercase ) ] UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Any = {"""weight_map""": {}} for layer_i in range(_lowercase ): UpperCAmelCase : Dict = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase : List[Any] = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase : List[str] = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } UpperCAmelCase : int = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(_lowercase , _lowercase , _lowercase ) for i in range(_lowercase ) ] , dim=0 , ).reshape(_lowercase , _lowercase ) ) UpperCAmelCase : Optional[Any] = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( _lowercase , _lowercase , _lowercase ) for i in range(_lowercase ) ] , dim=0 , ).reshape(_lowercase , _lowercase ) , _lowercase , _lowercase , _lowercase , ) UpperCAmelCase : List[str] = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( _lowercase , _lowercase , _lowercase ) for i in range(_lowercase ) ] , dim=0 , ).reshape(_lowercase , _lowercase ) UpperCAmelCase : Tuple = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(_lowercase )] , dim=1 ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_lowercase )] , dim=0 ) UpperCAmelCase : Dict = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_lowercase )] , dim=1 ) UpperCAmelCase : Optional[int] = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_lowercase )] , dim=0 ) UpperCAmelCase : Optional[int] = inv_freq for k, v in state_dict.items(): UpperCAmelCase : List[str] = filename param_count += v.numel() torch.save(_lowercase , os.path.join(_lowercase , _lowercase ) ) UpperCAmelCase : Any = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase : Any = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: UpperCAmelCase : Any = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_lowercase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_lowercase )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase : Any = filename param_count += v.numel() torch.save(_lowercase , os.path.join(_lowercase , _lowercase ) ) # Write configs UpperCAmelCase : str = {"""total_size""": param_count * 2} write_json(_lowercase , os.path.join(_lowercase , """pytorch_model.bin.index.json""" ) ) UpperCAmelCase : List[str] = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 UpperCAmelCase : Optional[int] = params["""multiple_of"""] if """multiple_of""" in params else 2_5_6 UpperCAmelCase : Any = LlamaConfig( hidden_size=_lowercase , intermediate_size=compute_intermediate_size(_lowercase , _lowercase , _lowercase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_lowercase , ) config.save_pretrained(_lowercase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) UpperCAmelCase : Tuple = LlamaForCausalLM.from_pretrained(_lowercase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowercase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_lowercase , safe_serialization=_lowercase ) shutil.rmtree(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: # Initialize the tokenizer based on the `spm` model UpperCAmelCase : Union[str, Any] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) UpperCAmelCase : List[str] = tokenizer_class(_lowercase ) tokenizer.save_pretrained(_lowercase ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_lowercase , help="""Whether or not to save using `safetensors`.""" ) UpperCAmelCase : Tuple = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase : Optional[int] = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _lowercase ) if __name__ == "__main__": main()
672
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: UpperCAmelCase : Dict = 10 def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = [1, 2, 3, 4] UpperCAmelCase : str = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Any = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" UpperCAmelCase , UpperCAmelCase : Optional[Any] = process_story(A ) self.assertEqual(A , [] ) def _lowercase( self ) -> str: UpperCAmelCase : List[str] = """""" UpperCAmelCase , UpperCAmelCase : Union[str, Any] = process_story(A ) self.assertEqual(A , [] ) self.assertEqual(A , [] ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) UpperCAmelCase , UpperCAmelCase : Any = process_story(A ) UpperCAmelCase : Dict = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(A , A ) UpperCAmelCase : Tuple = ["""It was the best of times."""] self.assertEqual(A , A ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[Any] = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase : Tuple = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(A , 0 ).numpy() , expected.numpy() ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 23 ).numpy() , expected.numpy() ) def _lowercase( self ) -> Dict: UpperCAmelCase : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 1 ).numpy() , expected.numpy() ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Any = 101 UpperCAmelCase : Any = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCAmelCase : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase : Dict = compute_token_type_ids(A , A ) np.testing.assert_array_equal(A , A )
672
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : str = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> str: if attention_mask is None: UpperCAmelCase : Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase : Optional[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=32 , A=2 , A=1 , A=0 , A=0.0_2 , ) -> Optional[Any]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : int = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : int = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : Optional[Any] = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[int] = eos_token_id UpperCAmelCase : int = pad_token_id UpperCAmelCase : Optional[int] = bos_token_id UpperCAmelCase : int = initializer_range def _lowercase( self ) -> Tuple: UpperCAmelCase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase : List[Any] = shift_tokens_right(A , 1 , 2 ) UpperCAmelCase : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=A , ) UpperCAmelCase : int = prepare_blenderbot_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase( self , A , A , A ) -> List[str]: UpperCAmelCase : str = 20 UpperCAmelCase : List[str] = model_class_name(A ) UpperCAmelCase : List[str] = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase , UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : Dict = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) UpperCAmelCase : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : int = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) UpperCAmelCase : Optional[Any] = model.decode(A , A ) UpperCAmelCase : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _lowercase( self , A , A , A ) -> int: UpperCAmelCase : Optional[int] = 20 UpperCAmelCase : Any = model_class_name(A ) UpperCAmelCase : Tuple = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase , UpperCAmelCase : Tuple = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : str = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) UpperCAmelCase : List[str] = model.decode(A , A , decoder_attention_mask=A ) UpperCAmelCase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): lowercase = 99 def _lowercase( self ) -> List[Any]: UpperCAmelCase : Dict = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase : Tuple = input_ids.shape[0] UpperCAmelCase : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = self._get_config_and_data() UpperCAmelCase : List[str] = FlaxBlenderbotForConditionalGeneration(A ) UpperCAmelCase : Optional[Any] = lm_model(input_ids=A ) UpperCAmelCase : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , A ) def _lowercase( self ) -> str: UpperCAmelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase : List[str] = FlaxBlenderbotForConditionalGeneration(A ) UpperCAmelCase : List[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase : Dict = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase : Union[str, Any] = lm_model(input_ids=A , decoder_input_ids=A ) UpperCAmelCase : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase : Any = shift_tokens_right(A , 1 , 2 ) UpperCAmelCase : str = np.equal(A , 1 ).astype(np.floataa ).sum() UpperCAmelCase : Any = np.equal(A , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(A , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase , __magic_name__ ): lowercase = True lowercase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _lowercase( self ) -> str: UpperCAmelCase : List[str] = FlaxBlenderbotModelTester(self ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : Any = self._prepare_for_class(A , A ) UpperCAmelCase : List[str] = model_class(A ) @jax.jit def encode_jitted(A , A=None , **A ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Optional[int] = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Union[str, Any] = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : Dict = model_class(A ) UpperCAmelCase : Optional[int] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) UpperCAmelCase : List[Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A , A , A ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : str = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Optional[Any] = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase( self ) -> Optional[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase : List[str] = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase : Tuple = model(A ) self.assertIsNotNone(A ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} UpperCAmelCase : Tuple = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} UpperCAmelCase : int = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=A ) UpperCAmelCase : Any = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) UpperCAmelCase : Union[str, Any] = ["""Sam"""] UpperCAmelCase : Any = tokenizer(A , return_tensors="""jax""" ) UpperCAmelCase : Optional[Any] = model.generate(**A , **A ) UpperCAmelCase : Tuple = """Sam is a great name. It means \"sun\" in Gaelic.""" UpperCAmelCase : List[Any] = tokenizer.batch_decode(A , **A ) assert generated_txt[0].strip() == tgt_text
672
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): @slow def _lowercase( self ) -> str: UpperCAmelCase : Optional[Any] = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) UpperCAmelCase : str = { """input_ids""": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } UpperCAmelCase : Union[str, Any] = model(A )["""last_hidden_state"""] UpperCAmelCase : int = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , A ) # compare the actual values for a slice. UpperCAmelCase : Optional[int] = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
672
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer a : Union[str, Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a : List[str] = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } a : Optional[Any] = { """junnyu/roformer_chinese_small""": 1_5_3_6, """junnyu/roformer_chinese_base""": 1_5_3_6, """junnyu/roformer_chinese_char_small""": 5_1_2, """junnyu/roformer_chinese_char_base""": 5_1_2, """junnyu/roformer_small_discriminator""": 1_2_8, """junnyu/roformer_small_generator""": 1_2_8, } a : int = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) -> Tuple: super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) UpperCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , A ) != do_lower_case or pre_tok_state.get("""strip_accents""" , A ) != strip_accents ): UpperCAmelCase : Any = getattr(A , pre_tok_state.pop("""type""" ) ) UpperCAmelCase : str = do_lower_case UpperCAmelCase : Optional[Any] = strip_accents UpperCAmelCase : Optional[int] = pre_tok_class(**A ) UpperCAmelCase : str = do_lower_case def __getstate__( self ) -> Any: UpperCAmelCase : List[Any] = self.__dict__.copy() UpperCAmelCase : Tuple = BertPreTokenizer() return state def __setstate__( self , A ) -> List[Any]: UpperCAmelCase : int = d UpperCAmelCase : List[str] = self.__dict__["""_tokenizer"""].get_vocab() UpperCAmelCase : Optional[int] = PreTokenizer.custom(JiebaPreTokenizer(A ) ) def _lowercase( self , A , A=None ) -> Tuple: UpperCAmelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[Any] = [self.sep_token_id] UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase( self , A , A = None ) -> Tuple[str]: UpperCAmelCase : Dict = self._tokenizer.model.save(A , name=A ) return tuple(A ) def _lowercase( self , A , A=None , A=None , A=False , **A , ) -> List[Any]: UpperCAmelCase : Optional[int] = BertPreTokenizer() return super().save_pretrained(A , A , A , A , **A )
672
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a : Optional[Any] = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase=False ) -> str: UpperCAmelCase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase : Optional[Any] = """""" else: UpperCAmelCase : Optional[Any] = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : str = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Dict = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : int = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : Optional[Any] = in_proj_bias[: config.hidden_size] UpperCAmelCase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : str = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = dct.pop(_lowercase ) UpperCAmelCase : Any = val def __lowerCamelCase ( ) -> Tuple: UpperCAmelCase : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : int = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> Tuple: UpperCAmelCase : List[str] = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase : Any = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase : Optional[Any] = 1_0_0_0 UpperCAmelCase : int = """huggingface/label-files""" UpperCAmelCase : List[str] = """imagenet-1k-id2label.json""" UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Any = idalabel UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase : Dict = int(deit_name[-6:-4] ) UpperCAmelCase : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): UpperCAmelCase : Tuple = 1_9_2 UpperCAmelCase : List[Any] = 7_6_8 UpperCAmelCase : Tuple = 1_2 UpperCAmelCase : Optional[int] = 3 elif deit_name[9:].startswith("""small""" ): UpperCAmelCase : Dict = 3_8_4 UpperCAmelCase : Tuple = 1_5_3_6 UpperCAmelCase : List[Any] = 1_2 UpperCAmelCase : List[str] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): UpperCAmelCase : List[Any] = 1_0_2_4 UpperCAmelCase : Tuple = 4_0_9_6 UpperCAmelCase : Union[str, Any] = 2_4 UpperCAmelCase : Any = 1_6 # load original model from timm UpperCAmelCase : Optional[int] = timm.create_model(_lowercase , pretrained=_lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase : Dict = timm_model.state_dict() UpperCAmelCase : Union[str, Any] = create_rename_keys(_lowercase , _lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase , _lowercase ) # load HuggingFace model UpperCAmelCase : List[Any] = DeiTForImageClassificationWithTeacher(_lowercase ).eval() model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase : List[Any] = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase : List[str] = DeiTImageProcessor(size=_lowercase , crop_size=config.image_size ) UpperCAmelCase : str = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase : Tuple = encoding["""pixel_values"""] UpperCAmelCase : Optional[int] = model(_lowercase ) UpperCAmelCase : str = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase , outputs.logits , atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a : List[str] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
672
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) def __lowerCamelCase ( _lowercase , _lowercase=False ) -> List[str]: UpperCAmelCase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase : Optional[int] = """""" else: UpperCAmelCase : Any = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : List[Any] = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[int] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : str = dct.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Optional[int] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=True ) -> Dict: UpperCAmelCase : int = ViTConfig() # patch_size if model_name[-1] == "8": UpperCAmelCase : List[str] = 8 # set labels if required if not base_model: UpperCAmelCase : Optional[int] = 1_0_0_0 UpperCAmelCase : List[Any] = """huggingface/label-files""" UpperCAmelCase : int = """imagenet-1k-id2label.json""" UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : str = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : str = idalabel UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCAmelCase : Optional[int] = 3_8_4 UpperCAmelCase : List[str] = 1_5_3_6 UpperCAmelCase : int = 1_2 UpperCAmelCase : Union[str, Any] = 6 # load original model from torch hub UpperCAmelCase : Union[str, Any] = torch.hub.load("""facebookresearch/dino:main""" , _lowercase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase : Dict = original_model.state_dict() if base_model: remove_classification_head_(_lowercase ) UpperCAmelCase : Optional[int] = create_rename_keys(_lowercase , base_model=_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase , _lowercase ) # load HuggingFace model if base_model: UpperCAmelCase : Optional[int] = ViTModel(_lowercase , add_pooling_layer=_lowercase ).eval() else: UpperCAmelCase : Tuple = ViTForImageClassification(_lowercase ).eval() model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCAmelCase : Tuple = ViTImageProcessor() UpperCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = encoding["""pixel_values"""] UpperCAmelCase : Dict = model(_lowercase ) if base_model: UpperCAmelCase : Any = original_model(_lowercase ) assert torch.allclose(_lowercase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCAmelCase : List[Any] = original_model(_lowercase ) assert logits.shape == outputs.logits.shape assert torch.allclose(_lowercase , outputs.logits , atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) a : Optional[Any] = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
672
'''simple docstring''' from scipy.stats import pearsonr import datasets a : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ a : Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ a : Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def _lowercase( self , A , A , A=False ) -> int: if return_pvalue: UpperCAmelCase : int = pearsonr(A , A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(A , A )[0] )}
672
1
'''simple docstring''' from collections import defaultdict def __lowerCamelCase ( _lowercase , _lowercase ) -> bool: UpperCAmelCase : Dict = first_str.lower().strip() UpperCAmelCase : Union[str, Any] = second_str.lower().strip() # Remove whitespace UpperCAmelCase : Optional[int] = first_str.replace(""" """ , """""" ) UpperCAmelCase : Tuple = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(_lowercase ) != len(_lowercase ): return False # Default values for count should be 0 UpperCAmelCase : defaultdict[str, int] = defaultdict(_lowercase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_lowercase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() a : List[Any] = input("""Enter the first string """).strip() a : Union[str, Any] = input("""Enter the second string """).strip() a : Any = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
672
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( _lowercase , _lowercase ) -> str | Literal[False]: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : str = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase : Optional[Any] = """_""" if count > 1: return False else: return "".join(_lowercase ) def __lowerCamelCase ( _lowercase ) -> list[str]: UpperCAmelCase : List[str] = [] while True: UpperCAmelCase : Optional[int] = ["""$"""] * len(_lowercase ) UpperCAmelCase : int = [] for i in range(len(_lowercase ) ): for j in range(i + 1 , len(_lowercase ) ): UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase : Union[str, Any] = """*""" UpperCAmelCase : Optional[Any] = """*""" temp.append("""X""" ) for i in range(len(_lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_lowercase ) == 0: return pi UpperCAmelCase : List[Any] = list(set(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Dict = [] for minterm in minterms: UpperCAmelCase : List[str] = """""" for _ in range(_lowercase ): UpperCAmelCase : Dict = str(minterm % 2 ) + string minterm //= 2 temp.append(_lowercase ) return temp def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> bool: UpperCAmelCase : Optional[int] = list(_lowercase ) UpperCAmelCase : Dict = list(_lowercase ) UpperCAmelCase : Dict = 0 for i in range(len(_lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( _lowercase , _lowercase ) -> list[str]: UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = [0] * len(_lowercase ) for i in range(len(chart[0] ) ): UpperCAmelCase : Any = 0 UpperCAmelCase : Optional[Any] = -1 for j in range(len(_lowercase ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase : str = j if count == 1: UpperCAmelCase : Optional[int] = 1 for i in range(len(_lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_lowercase ) ): UpperCAmelCase : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase : int = 0 UpperCAmelCase : Tuple = -1 UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase : Union[str, Any] = count_n UpperCAmelCase : Optional[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_lowercase ) ): UpperCAmelCase : Optional[Any] = 0 def __lowerCamelCase ( _lowercase , _lowercase ) -> list[list[int]]: UpperCAmelCase : Optional[int] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )] for i in range(len(_lowercase ) ): UpperCAmelCase : Tuple = prime_implicants[i].count("""_""" ) for j in range(len(_lowercase ) ): if is_for_table(prime_implicants[i] , binary[j] , _lowercase ): UpperCAmelCase : List[Any] = 1 return chart def __lowerCamelCase ( ) -> None: UpperCAmelCase : str = int(input("""Enter the no. of variables\n""" ) ) UpperCAmelCase : List[Any] = [ float(_lowercase ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] UpperCAmelCase : str = decimal_to_binary(_lowercase , _lowercase ) UpperCAmelCase : Tuple = check(_lowercase ) print("""Prime Implicants are:""" ) print(_lowercase ) UpperCAmelCase : Union[str, Any] = prime_implicant_chart(_lowercase , _lowercase ) UpperCAmelCase : Tuple = selection(_lowercase , _lowercase ) print("""Essential Prime Implicants are:""" ) print(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
672
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : Union[str, Any] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase_ : lowercase = PegasusConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=5 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> str: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : Tuple = is_training UpperCAmelCase : Tuple = use_labels UpperCAmelCase : Tuple = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Any = eos_token_id UpperCAmelCase : Any = pad_token_id UpperCAmelCase : Optional[int] = bos_token_id def _lowercase( self ) -> int: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCAmelCase : Tuple = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[str] = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : Dict = 20 UpperCAmelCase : Optional[Any] = model_class_name(A ) UpperCAmelCase : int = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase , UpperCAmelCase : int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) UpperCAmelCase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) UpperCAmelCase : List[Any] = model.decode(A , A ) UpperCAmelCase : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : str = 20 UpperCAmelCase : Optional[int] = model_class_name(A ) UpperCAmelCase : Optional[int] = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase , UpperCAmelCase : str = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase : int = model.init_cache(decoder_input_ids.shape[0] , A , A ) UpperCAmelCase : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) UpperCAmelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) UpperCAmelCase : Any = model.decode(A , A , decoder_attention_mask=A ) UpperCAmelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , ) -> int: if attention_mask is None: UpperCAmelCase : int = np.not_equal(_lowercase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase : List[Any] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase = True lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = FlaxPegasusModelTester(self ) UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> List[str]: self.config_tester.run_common_tests() def _lowercase( self ) -> Optional[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def _lowercase( self ) -> Any: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : List[Any] = self._prepare_for_class(A , A ) UpperCAmelCase : int = model_class(A ) @jax.jit def encode_jitted(A , A=None , **A ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Optional[int] = encode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Any = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def _lowercase( self ) -> List[str]: UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : Union[str, Any] = model_class(A ) UpperCAmelCase : Tuple = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) UpperCAmelCase : Tuple = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A , A , A ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase : Tuple = decode_jitted(**A ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase : Optional[int] = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase( self ) -> Optional[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase : Any = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=A ) UpperCAmelCase : str = np.ones((1, 1) ) UpperCAmelCase : int = model(A ) self.assertIsNotNone(A ) @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : int = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase : int = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase : Any = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase : Optional[Any] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] UpperCAmelCase : List[Any] = tokenizer(A , return_tensors="""np""" , truncation=A , max_length=512 , padding=A ) UpperCAmelCase : List[Any] = model.generate(**A , num_beams=2 ).sequences UpperCAmelCase : List[Any] = tokenizer.batch_decode(A , skip_special_tokens=A ) assert tgt_text == decoded
672
'''simple docstring''' a : Tuple = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 a : Optional[Any] = True a : List[Any] = False def __lowerCamelCase ( _lowercase ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase : List[str] = chain(next_number(_lowercase ) ) UpperCAmelCase : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase : List[str] = number_chain number *= 1_0 return number_chain def __lowerCamelCase ( _lowercase = 1_0_0_0_0_0_0_0 ) -> int: for i in range(1 , _lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
672
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Optional[Any] = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' import qiskit def __lowerCamelCase ( _lowercase , _lowercase ) -> qiskit.result.counts.Counts: UpperCAmelCase : Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register UpperCAmelCase : int = qiskit.QuantumCircuit(_lowercase , _lowercase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCAmelCase : Union[str, Any] = qiskit.execute(_lowercase , _lowercase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_lowercase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
672
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def __lowerCamelCase ( _lowercase , _lowercase = True , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = math.inf , _lowercase = -math.inf , _lowercase = False , _lowercase = 1_0_0 , _lowercase = 0.01 , _lowercase = 1 , ) -> Any: UpperCAmelCase : Optional[int] = False UpperCAmelCase : Any = search_prob UpperCAmelCase : Any = start_temperate UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Optional[Any] = None while not search_end: UpperCAmelCase : List[str] = current_state.score() if best_state is None or current_score > best_state.score(): UpperCAmelCase : List[Any] = current_state scores.append(_lowercase ) iterations += 1 UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCAmelCase : int = random.randint(0 , len(_lowercase ) - 1 ) # picking a random neighbor UpperCAmelCase : int = neighbors.pop(_lowercase ) UpperCAmelCase : Tuple = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCAmelCase : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCAmelCase : int = picked_neighbor else: UpperCAmelCase : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCAmelCase : Optional[int] = picked_neighbor UpperCAmelCase : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCAmelCase : Optional[int] = True else: UpperCAmelCase : Optional[int] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_lowercase ) , _lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a : Dict = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a : List[str] = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: return (3 * x**2) - (6 * y) a : Tuple = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Any = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a : Dict = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
672
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> float: UpperCAmelCase : List[Any] = x UpperCAmelCase : List[str] = y for step in range(_lowercase ): # noqa: B007 UpperCAmelCase : Optional[Any] = a * a - b * b + x UpperCAmelCase : Union[str, Any] = 2 * a * b + y UpperCAmelCase : List[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowerCamelCase ( _lowercase ) -> tuple: if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def __lowerCamelCase ( _lowercase ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_lowercase , 1 , 1 ) ) def __lowerCamelCase ( _lowercase = 8_0_0 , _lowercase = 6_0_0 , _lowercase = -0.6 , _lowercase = 0 , _lowercase = 3.2 , _lowercase = 5_0 , _lowercase = True , ) -> Image.Image: UpperCAmelCase : Optional[int] = Image.new("""RGB""" , (image_width, image_height) ) UpperCAmelCase : Any = img.load() # loop through the image-coordinates for image_x in range(_lowercase ): for image_y in range(_lowercase ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase : Dict = figure_width / image_width * image_height UpperCAmelCase : Dict = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase : List[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase : Optional[Any] = get_distance(_lowercase , _lowercase , _lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase : Dict = get_color_coded_rgb(_lowercase ) else: UpperCAmelCase : int = get_black_and_white_rgb(_lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a : Optional[int] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
672
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
672
1
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = VideoToVideoSDPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} lowercase = PipelineTesterMixin.required_optional_params - {'latents'} lowercase = False # No `output_type`. lowercase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def _lowercase( self ) -> int: torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) UpperCAmelCase : str = CLIPTextModel(A ) UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def _lowercase( self , A , A=0 ) -> Optional[Any]: # 3 frames UpperCAmelCase : int = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(A ) ).to(A ) if str(A ).startswith("""mps""" ): UpperCAmelCase : str = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def _lowercase( self ) -> str: UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : Any = VideoToVideoSDPipeline(**A ) UpperCAmelCase : Tuple = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Any = self.get_dummy_inputs(A ) UpperCAmelCase : List[Any] = """np""" UpperCAmelCase : str = sd_pipe(**A ).frames UpperCAmelCase : Optional[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase : List[Any] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _lowercase( self ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def _lowercase( self ) -> List[str]: pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def _lowercase( self ) -> Any: pass def _lowercase( self ) -> int: return super().test_progress_bar() @slow @skip_mps class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[int] = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase : List[str] = torch.randn((1, 10, 3, 1024, 576) , generator=A ) UpperCAmelCase : Union[str, Any] = video.to("""cuda""" ) UpperCAmelCase : int = """Spiderman is surfing""" UpperCAmelCase : Optional[int] = pipe(A , video=A , generator=A , num_inference_steps=3 , output_type="""pt""" ).frames UpperCAmelCase : List[str] = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
672
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a : Tuple = False class UpperCamelCase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = pipe( image=A , generator=A , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase : List[str] = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
672
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=None , A=True , ) -> Tuple: UpperCAmelCase : Union[str, Any] = size if size is not None else {"""shortest_edge""": 20} UpperCAmelCase : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} UpperCAmelCase : Dict = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Optional[int] = image_size UpperCAmelCase : Any = min_resolution UpperCAmelCase : Optional[int] = max_resolution UpperCAmelCase : str = do_resize UpperCAmelCase : str = size UpperCAmelCase : int = do_center_crop UpperCAmelCase : int = crop_size UpperCAmelCase : List[str] = do_flip_channel_order def _lowercase( self ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = MobileViTImageProcessor if is_vision_available() else None def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = MobileViTImageProcessingTester(self ) @property def _lowercase( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """do_resize""" ) ) self.assertTrue(hasattr(A , """size""" ) ) self.assertTrue(hasattr(A , """do_center_crop""" ) ) self.assertTrue(hasattr(A , """center_crop""" ) ) self.assertTrue(hasattr(A , """do_flip_channel_order""" ) ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _lowercase( self ) -> Optional[Any]: pass def _lowercase( self ) -> str: # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input UpperCAmelCase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase : int = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase( self ) -> int: # Initialize image_processing UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input UpperCAmelCase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase : List[str] = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase( self ) -> List[Any]: # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase : List[str] = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
672
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : Any = get_logger() a : Optional[dict] = None class UpperCamelCase_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self , A=None , A=None , **A ) -> str: super().__init__(features=A ) import jax from jaxlib.xla_client import Device if isinstance(A , A ): raise ValueError( f'''Expected {device} to be a `str` not {type(A )}, as `jaxlib.xla_extension.Device` ''' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCAmelCase : Optional[int] = device if isinstance(A , A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) UpperCAmelCase : List[Any] = str(jax.devices()[0] ) UpperCAmelCase : Union[str, Any] = jnp_array_kwargs @staticmethod def _lowercase( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(A ): device for device in jax.devices()} def _lowercase( self , A ) -> str: import jax import jax.numpy as jnp if isinstance(A , A ) and column: if all( isinstance(A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A , axis=0 ) return column def _lowercase( self , A ) -> Tuple: import jax import jax.numpy as jnp if isinstance(A , (str, bytes, type(A )) ): return value elif isinstance(A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase : List[str] = {} if isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCAmelCase : str = {"""dtype""": jnp.intaa} else: UpperCAmelCase : int = {"""dtype""": jnp.intaa} elif isinstance(A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase : Any = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A , PIL.Image.Image ): UpperCAmelCase : List[str] = np.asarray(A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCAmelCase : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A , **{**default_dtype, **self.jnp_array_kwargs} ) def _lowercase( self , A ) -> Tuple: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A , """__array__""" ) and not isinstance(A , jax.Array ): UpperCAmelCase : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) elif isinstance(A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A ) for substruct in data_struct] ) return self._tensorize(A ) def _lowercase( self , A ) -> Dict: return map_nested(self._recursive_tensorize , A , map_list=A ) def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(A ) UpperCAmelCase : Dict = self.python_features_decoder.decode_row(A ) return self.recursive_tensorize(A ) def _lowercase( self , A ) -> "jax.Array": UpperCAmelCase : int = self.numpy_arrow_extractor().extract_column(A ) UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(A , pa_table.column_names[0] ) UpperCAmelCase : Optional[int] = self.recursive_tensorize(A ) UpperCAmelCase : Any = self._consolidate(A ) return column def _lowercase( self , A ) -> Mapping: UpperCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(A ) UpperCAmelCase : List[str] = self.python_features_decoder.decode_batch(A ) UpperCAmelCase : Union[str, Any] = self.recursive_tensorize(A ) for column_name in batch: UpperCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
672
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration a : Dict = 5_0_0_0_0_0 a , a : Optional[Any] = os.path.split(__file__) a : Optional[Any] = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def __lowerCamelCase ( _lowercase , **_lowercase ) -> List[Any]: UpperCAmelCase : Any = dataset.map(**_lowercase ) @get_duration def __lowerCamelCase ( _lowercase , **_lowercase ) -> int: UpperCAmelCase : Any = dataset.filter(**_lowercase ) def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Union[str, Any] = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase : Optional[int] = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) UpperCAmelCase : Dict = generate_example_dataset( os.path.join(_lowercase , """dataset.arrow""" ) , _lowercase , num_examples=_lowercase ) UpperCAmelCase : List[Any] = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_lowercase ) def tokenize(_lowercase ): return tokenizer(examples["""text"""] ) UpperCAmelCase : Optional[Any] = map(_lowercase ) UpperCAmelCase : Any = map(_lowercase , batched=_lowercase ) UpperCAmelCase : Optional[Any] = map(_lowercase , function=lambda _lowercase : None , batched=_lowercase ) with dataset.formatted_as(type="""numpy""" ): UpperCAmelCase : Tuple = map(_lowercase , function=lambda _lowercase : None , batched=_lowercase ) with dataset.formatted_as(type="""pandas""" ): UpperCAmelCase : Any = map(_lowercase , function=lambda _lowercase : None , batched=_lowercase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): UpperCAmelCase : int = map(_lowercase , function=lambda _lowercase : None , batched=_lowercase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): UpperCAmelCase : Optional[int] = map(_lowercase , function=lambda _lowercase : None , batched=_lowercase ) UpperCAmelCase : Any = map(_lowercase , function=_lowercase , batched=_lowercase ) UpperCAmelCase : Dict = filter(_lowercase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_lowercase , """wb""" ) as f: f.write(json.dumps(_lowercase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
672
'''simple docstring''' from datetime import datetime as dt import os from github import Github a : int = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : str = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase : Dict = g.get_repo("""huggingface/transformers""" ) UpperCAmelCase : int = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowercase : i.created_at , reverse=_lowercase ) UpperCAmelCase : Any = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
672
1
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> float: return base * power(_lowercase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") a : str = int(input("""Enter the base: """).strip()) a : str = int(input("""Enter the exponent: """).strip()) a : Dict = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents a : List[str] = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
672
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.0_2 , A=3 , A=4 , A=None , ) -> Any: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : str = use_input_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : str = initializer_range UpperCAmelCase : List[Any] = num_labels UpperCAmelCase : Dict = num_choices UpperCAmelCase : Tuple = scope def _lowercase( self ) -> Dict: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[Any] = None if self.use_input_mask: UpperCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Dict = None UpperCAmelCase : Union[str, Any] = None if self.use_labels: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase( self ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def _lowercase( self , A , A , A , A , A , A , A ) -> str: UpperCAmelCase : Union[str, Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A ) UpperCAmelCase : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> List[Any]: UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = OpenLlamaModel(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) UpperCAmelCase : str = model( A , attention_mask=A , encoder_hidden_states=A , ) UpperCAmelCase : List[Any] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase( self , A , A , A , A , A , A , A , A , A , ) -> int: UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = True UpperCAmelCase : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass UpperCAmelCase : Union[str, Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) UpperCAmelCase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase : List[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )["""hidden_states"""][0] UpperCAmelCase : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )["""hidden_states"""][0] # select random slice UpperCAmelCase : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1e-3 ) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowercase = (OpenLlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = OpenLlamaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowercase( self ) -> int: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : int = type self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> str: UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : List[str] = 3 UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] UpperCAmelCase : str = input_ids.ne(1 ).to(A ) UpperCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = 3 UpperCAmelCase : Any = """single_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : Optional[Any] = input_ids.ne(1 ).to(A ) UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Tuple = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase( self ) -> int: UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Tuple = 3 UpperCAmelCase : Optional[Any] = """multi_label_classification""" UpperCAmelCase : Dict = input_dict["""input_ids"""] UpperCAmelCase : int = input_ids.ne(1 ).to(A ) UpperCAmelCase : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() UpperCAmelCase : Dict = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _lowercase( self ) -> Dict: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _lowercase( self , A ) -> str: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Dict = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Any = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() UpperCAmelCase : List[str] = original_model(A ).last_hidden_state UpperCAmelCase : List[Any] = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase : Union[str, Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase : str = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() UpperCAmelCase : List[str] = scaled_model(A ).last_hidden_state UpperCAmelCase : Optional[int] = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1e-5 ) )
672
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() # fmt: off UpperCAmelCase : Dict = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase : Optional[Any] = dict(zip(A__ , range(len(A__ ) ) ) ) UpperCAmelCase : List[Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] UpperCAmelCase : Union[str, Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A__ ) ) UpperCAmelCase : Optional[int] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , A__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(A__ , A__ ) def _lowercase( self , **A ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **A__ ) def _lowercase( self , **A ) -> str: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def _lowercase( self , **A ) -> Dict: return ViTImageProcessor.from_pretrained(self.tmpdirname , **A__ ) def _lowercase( self ) -> Any: shutil.rmtree(self.tmpdirname ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase : List[str] = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.get_tokenizer() UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase : List[str] = self.get_image_processor() UpperCAmelCase : Dict = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A__ ) UpperCAmelCase : List[str] = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase : List[str] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A__ ) self.assertIsInstance(processor_fast.tokenizer , A__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A__ ) self.assertIsInstance(processor_fast.image_processor , A__ ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Any = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase : int = self.get_image_processor(do_normalize=A__ , padding_value=1.0 ) UpperCAmelCase : Optional[Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def _lowercase( self ) -> Dict: UpperCAmelCase : Optional[int] = self.get_image_processor() UpperCAmelCase : Any = self.get_tokenizer() UpperCAmelCase : Tuple = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase : int = self.prepare_image_inputs() UpperCAmelCase : int = image_processor(A__ , return_tensors="""np""" ) UpperCAmelCase : Dict = processor(images=A__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Tuple = self.get_image_processor() UpperCAmelCase : Any = self.get_tokenizer() UpperCAmelCase : str = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase : List[str] = """lower newer""" UpperCAmelCase : str = processor(text=A__ ) UpperCAmelCase : Any = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase( self ) -> Any: UpperCAmelCase : List[str] = self.get_image_processor() UpperCAmelCase : List[str] = self.get_tokenizer() UpperCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase : Union[str, Any] = """lower newer""" UpperCAmelCase : Tuple = self.prepare_image_inputs() UpperCAmelCase : str = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def _lowercase( self ) -> int: UpperCAmelCase : Optional[Any] = self.get_image_processor() UpperCAmelCase : Dict = self.get_tokenizer() UpperCAmelCase : Tuple = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() UpperCAmelCase : Dict = self.prepare_image_inputs() UpperCAmelCase : Dict = processor(images=A__ , visual_prompt=A__ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.get_image_processor() UpperCAmelCase : Optional[Any] = self.get_tokenizer() UpperCAmelCase : Tuple = CLIPSegProcessor(tokenizer=A__ , image_processor=A__ ) UpperCAmelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase : Dict = processor.batch_decode(A__ ) UpperCAmelCase : Dict = tokenizer.batch_decode(A__ ) self.assertListEqual(A__ , A__ )
700
'''simple docstring''' import math def __lowerCamelCase ( _lowercase ) -> bool: assert isinstance(_lowercase , _lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase : str = range(3 , int(math.sqrt(_lowercase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __lowerCamelCase ( _lowercase , _lowercase=1 , **_lowercase ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = factor * value UpperCAmelCase : List[Any] = value while not is_prime(_lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_lowercase ) return value
672
0
'''simple docstring''' import numpy # List of input, output pairs a : Optional[int] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) a : Optional[int] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) a : Dict = [2, 4, 1, 5] a : Tuple = len(train_data) a : Optional[int] = 0.0_0_9 def __lowerCamelCase ( _lowercase , _lowercase="train" ) -> List[Any]: return calculate_hypothesis_value(__A , __A ) - output( __A , __A ) def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : str = 0 for i in range(len(__A ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowerCamelCase ( _lowercase , _lowercase ) -> Any: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowerCamelCase ( _lowercase , _lowercase ) -> str: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowerCamelCase ( _lowercase , _lowercase=m ) -> str: UpperCAmelCase : List[Any] = 0 for i in range(__A ): if index == -1: summation_value += _error(__A ) else: summation_value += _error(__A ) * train_data[i][0][index] return summation_value def __lowerCamelCase ( _lowercase ) -> Tuple: UpperCAmelCase : List[Any] = summation_of_cost_derivative(__A , __A ) / m return cost_derivative_value def __lowerCamelCase ( ) -> Dict: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCAmelCase : str = 0.00_0002 UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Any = 0 while True: j += 1 UpperCAmelCase : Tuple = [0, 0, 0, 0] for i in range(0 , len(__A ) ): UpperCAmelCase : Optional[Any] = get_cost_derivative(i - 1 ) UpperCAmelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __A , __A , atol=__A , rtol=__A , ): break UpperCAmelCase : Dict = temp_parameter_vector print(("""Number of iterations:""", j) ) def __lowerCamelCase ( ) -> List[str]: for i in range(len(__A ) ): print(("""Actual output value:""", output(__A , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__A , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
701
'''simple docstring''' def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Union[str, Any] = set() # Replace all the whitespace in our sentence UpperCAmelCase : List[str] = input_str.replace(""" """ , """""" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowercase ) == 2_6 def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCAmelCase : Tuple = [False] * 2_6 for char in input_str: if char.islower(): UpperCAmelCase : Any = True elif char.isupper(): UpperCAmelCase : Union[str, Any] = True return all(_lowercase ) def __lowerCamelCase ( _lowercase = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def __lowerCamelCase ( ) -> None: from timeit import timeit UpperCAmelCase : str = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest""" print(timeit("""is_pangram()""" , setup=_lowercase ) ) print(timeit("""is_pangram_faster()""" , setup=_lowercase ) ) print(timeit("""is_pangram_fastest()""" , setup=_lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
672
0
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a : Optional[int] = logging.get_logger(__name__) class UpperCamelCase_ ( snake_case__ ): lowercase = ["""input_values""", """attention_mask"""] def __init__( self , A = 1 , A = 16000 , A = 0.0 , A = False , A = 80 , A = 16 , A = 64 , A = "hann_window" , A = 1.0 , A = 80 , A = 7600 , A = 1e-10 , A = 2 , A = True , **A , ) -> str: super().__init__(feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCAmelCase : str = do_normalize UpperCAmelCase : List[Any] = return_attention_mask UpperCAmelCase : List[Any] = num_mel_bins UpperCAmelCase : Union[str, Any] = hop_length UpperCAmelCase : List[Any] = win_length UpperCAmelCase : Dict = win_function UpperCAmelCase : Any = frame_signal_scale UpperCAmelCase : int = fmin UpperCAmelCase : str = fmax UpperCAmelCase : List[str] = mel_floor UpperCAmelCase : Optional[Any] = reduction_factor UpperCAmelCase : Union[str, Any] = win_length * sampling_rate // 1000 UpperCAmelCase : Any = hop_length * sampling_rate // 1000 UpperCAmelCase : Optional[Any] = optimal_fft_length(self.sample_size ) UpperCAmelCase : str = (self.n_fft // 2) + 1 UpperCAmelCase : int = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCAmelCase_ ) UpperCAmelCase : Dict = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , UpperCAmelCase_ , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , UpperCAmelCase_ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase( A , A , A = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: UpperCAmelCase : List[Any] = np.array(UpperCAmelCase_ , np.intaa ) UpperCAmelCase : List[Any] = [] for vector, length in zip(UpperCAmelCase_ , attention_mask.sum(-1 ) ): UpperCAmelCase : str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCAmelCase : List[str] = padding_value normed_input_values.append(UpperCAmelCase_ ) else: UpperCAmelCase : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def _lowercase( self , A , ) -> np.ndarray: UpperCAmelCase : List[Any] = spectrogram( UpperCAmelCase_ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , A = None , A = None , A = False , A = None , A = False , A = None , A = None , A = None , A = None , **A , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: UpperCAmelCase : List[Any] = self._process_audio( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ , ) else: UpperCAmelCase : Tuple = None if audio_target is not None: UpperCAmelCase : Union[str, Any] = self._process_audio( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ , ) if inputs is None: return inputs_target else: UpperCAmelCase : Union[str, Any] = inputs_target["""input_values"""] UpperCAmelCase : List[Any] = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: UpperCAmelCase : Optional[int] = decoder_attention_mask return inputs def _lowercase( self , A , A = False , A = False , A = None , A = False , A = None , A = None , A = None , **A , ) -> BatchFeature: UpperCAmelCase : str = isinstance(UpperCAmelCase_ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase : Tuple = is_batched_numpy or ( isinstance(UpperCAmelCase_ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase : Optional[int] = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray ): UpperCAmelCase : Tuple = np.asarray(UpperCAmelCase_ , dtype=np.floataa ) elif isinstance(UpperCAmelCase_ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): UpperCAmelCase : List[str] = speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase : List[str] = [speech] # needed to make pad() work on spectrogram inputs UpperCAmelCase : Dict = self.feature_size # convert into correct format for padding if is_target: UpperCAmelCase : Any = [self._extract_mel_features(UpperCAmelCase_ ) for waveform in speech] UpperCAmelCase : Any = BatchFeature({"""input_values""": features} ) UpperCAmelCase : Any = self.num_mel_bins else: UpperCAmelCase : Optional[Any] = BatchFeature({"""input_values""": speech} ) UpperCAmelCase : int = self.pad( UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCAmelCase : Tuple = feature_size_hack # convert input values to correct format UpperCAmelCase : int = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): UpperCAmelCase : Tuple = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(UpperCAmelCase_ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): UpperCAmelCase : List[Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(UpperCAmelCase_ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): UpperCAmelCase : Optional[Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format UpperCAmelCase : Tuple = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: UpperCAmelCase : int = [np.asarray(UpperCAmelCase_ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: UpperCAmelCase : Optional[int] = ( attention_mask if self._get_padding_strategies(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) UpperCAmelCase : int = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=UpperCAmelCase_ , padding_value=self.padding_value ) if return_tensors is not None: UpperCAmelCase : Dict = padded_inputs.convert_to_tensors(UpperCAmelCase_ ) return padded_inputs def _lowercase( self ) -> Dict[str, Any]: UpperCAmelCase : Tuple = super().to_dict() # Don't serialize these as they are derived from the other properties. UpperCAmelCase : Dict = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
702
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets a : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ a : int = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ a : int = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def _lowercase( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _lowercase( self ) -> List[Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _lowercase( self , A , A , A=None , A="uniform_average" , A=True ) -> List[Any]: UpperCAmelCase : List[Any] = mean_squared_error( A , A , sample_weight=A , multioutput=A , squared=A ) return {"mse": mse}
672
0
from typing import Any def __lowerCamelCase ( _lowercase ) -> list[Any]: if not input_list: return [] UpperCAmelCase : Any = [input_list.count(_lowercase ) for value in input_list] UpperCAmelCase : int = max(_lowercase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_lowercase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'fnet' def __init__( self , A=32000 , A=768 , A=12 , A=3072 , A="gelu_new" , A=0.1 , A=512 , A=4 , A=0.0_2 , A=1e-12 , A=False , A=512 , A=3 , A=1 , A=2 , **A , ) -> int: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : Any = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : List[Any] = type_vocab_size UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Optional[Any] = use_tpu_fourier_optimizations UpperCAmelCase : List[Any] = tpu_short_seq_length
672
0
import os from collections.abc import Iterator def __lowerCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): UpperCAmelCase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase , _lowercase ).lstrip("""./""" ) def __lowerCamelCase ( _lowercase ) -> List[str]: return F'''{i * ' '}*''' if i else "\n##" def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(_lowercase )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def __lowerCamelCase ( _lowercase = "." ) -> None: UpperCAmelCase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): UpperCAmelCase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: UpperCAmelCase : Dict = print_path(_lowercase , _lowercase ) UpperCAmelCase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCAmelCase : Dict = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) UpperCAmelCase : Optional[int] = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(""".""")
704
'''simple docstring''' a : List[Any] = """Alexander Joslin""" import operator as op from .stack import Stack def __lowerCamelCase ( _lowercase ) -> int: UpperCAmelCase : Dict = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} UpperCAmelCase : Stack[int] = Stack() UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowercase ) elif i == ")": # RULE 4 UpperCAmelCase : List[Any] = operator_stack.peek() operator_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : str = operand_stack.peek() operand_stack.pop() UpperCAmelCase : List[Any] = operators[opr](_lowercase , _lowercase ) operand_stack.push(_lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": a : Tuple = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
672
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Dict = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class UpperCamelCase_ ( lowercase__ ): lowercase = 'ibert' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=1 , A=0 , A=2 , A="absolute" , A=False , A="none" , **A , ) -> Any: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase : Any = vocab_size UpperCAmelCase : Optional[Any] = hidden_size UpperCAmelCase : Optional[int] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : Any = attention_probs_dropout_prob UpperCAmelCase : Tuple = max_position_embeddings UpperCAmelCase : Any = type_vocab_size UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Tuple = layer_norm_eps UpperCAmelCase : int = position_embedding_type UpperCAmelCase : List[str] = quant_mode UpperCAmelCase : int = force_dequant class UpperCamelCase_ ( lowercase__ ): @property def _lowercase( self ) -> List[Any]: if self.task == "multiple-choice": UpperCAmelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
705
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a : List[str] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: UpperCAmelCase : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase : List[str] = val def __lowerCamelCase ( _lowercase ) -> Any: UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase : List[str] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCAmelCase : Dict = value else: UpperCAmelCase : List[Any] = value return new_state_dict def __lowerCamelCase ( _lowercase , _lowercase=False ) -> Optional[int]: UpperCAmelCase : Dict = """""" if is_panoptic: UpperCAmelCase : Tuple = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase : Dict = in_proj_weight[:2_5_6, :] UpperCAmelCase : Optional[Any] = in_proj_bias[:2_5_6] UpperCAmelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase : Tuple = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase : List[str] = in_proj_weight[-2_5_6:, :] UpperCAmelCase : List[str] = in_proj_bias[-2_5_6:] def __lowerCamelCase ( ) -> Dict: UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Tuple = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase ) -> str: UpperCAmelCase : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase : List[Any] = """resnet101""" if "dc5" in model_name: UpperCAmelCase : Optional[int] = True UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: UpperCAmelCase : Union[str, Any] = 2_5_0 else: UpperCAmelCase : int = 9_1 UpperCAmelCase : Tuple = """huggingface/label-files""" UpperCAmelCase : List[Any] = """coco-detection-id2label.json""" UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Optional[Any] = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase : List[str] = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCAmelCase : List[Any] = ConditionalDetrImageProcessor(format=_lowercase ) # prepare image UpperCAmelCase : Union[str, Any] = prepare_img() UpperCAmelCase : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = encoding["""pixel_values"""] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub UpperCAmelCase : int = torch.hub.load("""DeppMeng/ConditionalDETR""" , _lowercase , pretrained=_lowercase ).eval() UpperCAmelCase : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase : List[Any] = """conditional_detr.""" + src rename_key(_lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[Any] = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase , is_panoptic=_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCAmelCase : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase : Any = state_dict.pop(_lowercase ) UpperCAmelCase : Optional[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCAmelCase : List[Any] = state_dict.pop(_lowercase ) UpperCAmelCase : str = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCAmelCase : Optional[int] = state_dict.pop(_lowercase ) UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase : List[Any] = ConditionalDetrForSegmentation(_lowercase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() model.push_to_hub(repo_id=_lowercase , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCAmelCase : Union[str, Any] = conditional_detr(_lowercase ) UpperCAmelCase : int = model(_lowercase ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) a : Optional[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
672
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: # Initialise PyTorch model UpperCAmelCase : Optional[int] = BertConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase : str = BertForPreTraining(lowerCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
706
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
672
0
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase_ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(_lowercase , _lowercase ): UpperCAmelCase : Tuple = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> Dict: if len(_lowercase ) == 0 or len(_lowercase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(_lowercase ) ) if isinstance(_lowercase , _lowercase ): UpperCAmelCase : List[Any] = [sequences] UpperCAmelCase : List[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(_lowercase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCAmelCase_ ) class UpperCamelCase_ ( UpperCAmelCase_ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Union[str, Any]: UpperCAmelCase : Dict = args_parser super().__init__(*_lowercase , **_lowercase ) if self.entailment_id == -1: logger.warning( """Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> Optional[int]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : int = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Dict = self.tokenizer.eos_token try: UpperCAmelCase : str = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , padding=_lowercase , truncation=_lowercase , ) except Exception as e: if "too short" in str(_lowercase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : Tuple = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_tensors=_lowercase , padding=_lowercase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Dict: if kwargs.get("""multi_class""" , _lowercase ) is not None: UpperCAmelCase : List[str] = kwargs['multi_class'] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Optional[int] = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : Dict = kwargs['hypothesis_template'] UpperCAmelCase : Union[str, Any] = {} if "multi_label" in kwargs: UpperCAmelCase : str = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> List[Any]: if len(_lowercase ) == 0: pass elif len(_lowercase ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : str = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(_lowercase , **_lowercase ) def _lowercase( self , A , A=None , A="This example is {}." ) -> Dict: UpperCAmelCase : int = self._args_parser(_lowercase , _lowercase , _lowercase ) for i, (candidate_label, sequence_pair) in enumerate(zip(_lowercase , _lowercase ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(_lowercase ) - 1, **model_input, } def _lowercase( self , A ) -> int: UpperCAmelCase : Optional[Any] = inputs['candidate_label'] UpperCAmelCase : Optional[int] = inputs['sequence'] UpperCAmelCase : Optional[int] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : List[str] = self.model(**_lowercase ) UpperCAmelCase : Any = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> Any: UpperCAmelCase : List[str] = [outputs['candidate_label'] for outputs in model_outputs] UpperCAmelCase : Dict = [outputs['sequence'] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Tuple = logits.shape[0] UpperCAmelCase : Tuple = len(_lowercase ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : List[Any] = logits.reshape((num_sequences, n, -1) ) if multi_label or len(_lowercase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : Tuple = self.entailment_id UpperCAmelCase : Optional[int] = -1 if entailment_id == 0 else 0 UpperCAmelCase : List[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : Any = np.exp(_lowercase ) / np.exp(_lowercase ).sum(-1 , keepdims=_lowercase ) UpperCAmelCase : Optional[Any] = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Optional[int] = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(_lowercase ) / np.exp(_lowercase ).sum(-1 , keepdims=_lowercase ) UpperCAmelCase : Union[str, Any] = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Tuple = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class UpperCamelCase_ ( __A ): lowercase = 'lilt' def __init__( self , A=30522 , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.0_2 , A=1e-12 , A=0 , A="absolute" , A=None , A=4 , A=1024 , **A , ) -> Optional[int]: super().__init__(pad_token_id=A , **A ) UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : str = hidden_act UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : List[Any] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : Optional[Any] = type_vocab_size UpperCAmelCase : int = initializer_range UpperCAmelCase : int = layer_norm_eps UpperCAmelCase : Union[str, Any] = position_embedding_type UpperCAmelCase : Dict = classifier_dropout UpperCAmelCase : str = channel_shrink_ratio UpperCAmelCase : Any = max_ad_position_embeddings
708
'''simple docstring''' from collections.abc import Callable import numpy as np def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> np.array: UpperCAmelCase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : str = np.zeros((n + 1,) ) UpperCAmelCase : Optional[Any] = ya UpperCAmelCase : Union[str, Any] = xa for k in range(_lowercase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowercase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(_lowercase , y[k] ) + ode_func(x + step_size , _lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
672
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase_ : lowercase = None lowercase = None lowercase = None # sigma(t_i) @classmethod def _lowercase( cls ) -> Union[str, Any]: return cls() @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = 42 lowercase = 42 class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): @property def _lowercase( self ) -> Any: return True @register_to_config def __init__( self , A = 0.0_2 , A = 100 , A = 1.0_0_7 , A = 80 , A = 0.0_5 , A = 50 , ) -> Optional[Any]: pass def _lowercase( self ) -> str: return KarrasVeSchedulerState.create() def _lowercase( self , A , A , A = () ) -> List[Any]: UpperCAmelCase : int = jnp.arange(0 , _lowerCAmelCase )[::-1].copy() UpperCAmelCase : Dict = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_lowerCAmelCase , schedule=jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) , timesteps=_lowerCAmelCase , ) def _lowercase( self , A , A , A , A , ) -> int: if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : Dict = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase : Union[str, Any] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : List[Any] = random.split(_lowerCAmelCase , num=1 ) UpperCAmelCase : int = self.config.s_noise * random.normal(key=_lowerCAmelCase , shape=sample.shape ) UpperCAmelCase : str = sigma + gamma * sigma UpperCAmelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowercase( self , A , A , A , A , A , A = True , ) -> Optional[Any]: UpperCAmelCase : str = sample_hat + sigma_hat * model_output UpperCAmelCase : str = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : str = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , state=_lowerCAmelCase ) def _lowercase( self , A , A , A , A , A , A , A , A = True , ) -> int: UpperCAmelCase : str = sample_prev + sigma_prev * model_output UpperCAmelCase : Any = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , state=_lowerCAmelCase ) def _lowercase( self , A , A , A , A ) -> str: raise NotImplementedError()
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
'''simple docstring''' def __lowerCamelCase ( _lowercase , _lowercase ) -> int: while a != 0: UpperCAmelCase : Optional[Any] = b % a, a return b def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if gcd(lowerCamelCase__ , lowerCamelCase__ ) != 1: UpperCAmelCase : Any = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(lowerCamelCase__ ) UpperCAmelCase : str = 1, 0, a UpperCAmelCase : Union[str, Any] = 0, 1, m while va != 0: UpperCAmelCase : Any = ua // va UpperCAmelCase : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
710
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> int: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> List[str]: return ("This is a test", "This is a test") def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = """</s>""" UpperCAmelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(A ) , 1103 ) def _lowercase( self ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowercase( self ) -> int: UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Any = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) def _lowercase( self ) -> int: UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : List[Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : Optional[int] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A ).input_ids[0] self.assertListEqual(A , A ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowercase( self ) -> Any: UpperCAmelCase : int = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Tuple = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. @slow def _lowercase( self ) -> List[str]: # fmt: off UpperCAmelCase : List[str] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : int = PegasusTokenizer(A , offset=0 , mask_token_sent=A , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _lowercase( self , **A ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A ) def _lowercase( self , A ) -> str: return ("This is a test", "This is a test") def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : str = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=A , add_special_tokens=A ).input_ids[0] self.assertListEqual(A , A ) @require_torch def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : int = self._large_tokenizer(A , padding=A , truncation=A , return_tensors="""pt""" ) UpperCAmelCase : Optional[int] = self._large_tokenizer( text_target=A , max_length=5 , padding=A , truncation=A , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A ) == 2 # input_ids, attention_mask. def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Optional[Any] = self._large_tokenizer(A ).input_ids self.assertListEqual( A , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
672
0
'''simple docstring''' def __lowerCamelCase ( _lowercase = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> Optional[int]: try: UpperCAmelCase : int = int(_lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCAmelCase : Union[str, Any] = 2 UpperCAmelCase : str = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase : Union[str, Any] = i while n % i == 0: UpperCAmelCase : Optional[int] = n // i i += 1 return int(_lowerCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
711
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , A , A=13 , A=32 , A=3 , A=4 , A=[10, 20, 30, 40] , A=[2, 2, 3, 2] , A=True , A=True , A=37 , A="gelu" , A=10 , A=0.0_2 , A=["stage2", "stage3", "stage4"] , A=[2, 3, 4] , A=None , ) -> int: UpperCAmelCase : str = parent UpperCAmelCase : List[Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Tuple = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : Any = hidden_sizes UpperCAmelCase : str = depths UpperCAmelCase : Optional[int] = is_training UpperCAmelCase : Union[str, Any] = use_labels UpperCAmelCase : Any = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = num_labels UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = out_features UpperCAmelCase : List[str] = out_indices UpperCAmelCase : Any = scope def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] = None if self.use_labels: UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowercase( self ) -> Optional[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase( self , A , A , A ) -> Optional[Any]: UpperCAmelCase : int = ConvNextVaModel(config=A ) model.to(A ) model.eval() UpperCAmelCase : List[Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : List[str] = ConvNextVaForImageClassification(A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase( self , A , A , A ) -> Any: UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : Any = model(A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Any = None UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=A ) model.to(A ) model.eval() UpperCAmelCase : int = model(A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = config_and_inputs UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = ConvNextVaModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=37 ) def _lowercase( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase( self ) -> List[str]: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def _lowercase( self ) -> Dict: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def _lowercase( self ) -> Any: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def _lowercase( self ) -> int: pass def _lowercase( self ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : Optional[int] = True if model_class.__name__ in [ *get_values(A ), *get_values(A ), ]: continue UpperCAmelCase : Any = model_class(A ) model.to(A ) model.train() UpperCAmelCase : List[str] = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : List[str] = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase : List[str] = False UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(A ), *get_values(A )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase : Dict = model_class(A ) model.to(A ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase : Any = self._prepare_for_class(A , A , return_labels=A ) UpperCAmelCase : Any = model(**A ).loss loss.backward() def _lowercase( self ) -> Tuple: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(A ) UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Tuple = [*signature.parameters.keys()] UpperCAmelCase : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: def check_hidden_states_output(A , A , A ): UpperCAmelCase : Optional[Any] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): UpperCAmelCase : Dict = model(**self._prepare_for_class(A , A ) ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _lowercase( self ) -> Tuple: UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _lowercase( self ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ConvNextVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def __lowerCamelCase ( ) -> Optional[int]: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def _lowercase( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def _lowercase( self ) -> List[Any]: UpperCAmelCase : Any = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(A ) UpperCAmelCase : List[Any] = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : Tuple = preprocessor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(**A ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) UpperCAmelCase : Dict = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1e-4 ) )
672
0