code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from collections.abc import Sequence from queue import Queue class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None ): '''simple docstring''' lowercase__ = start lowercase__ = end lowercase__ = val lowercase__ = (start + end) // 2 lowercase__ = left lowercase__ = right def __repr__( self ): '''simple docstring''' return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = collection lowercase__ = function if self.collection: lowercase__ = self._build_tree(0, len(snake_case__ ) - 1 ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' self._update_tree(self.root, snake_case__, snake_case__ ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' return self._query_range(self.root, snake_case__, snake_case__ ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if start == end: return SegmentTreeNode(snake_case__, snake_case__, self.collection[start] ) lowercase__ = (start + end) // 2 lowercase__ = self._build_tree(snake_case__, snake_case__ ) lowercase__ = self._build_tree(mid + 1, snake_case__ ) return SegmentTreeNode(snake_case__, snake_case__, self.fn(left.val, right.val ), snake_case__, snake_case__ ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if node.start == i and node.end == i: lowercase__ = val return if i <= node.mid: self._update_tree(node.left, snake_case__, snake_case__ ) else: self._update_tree(node.right, snake_case__, snake_case__ ) lowercase__ = self.fn(node.left.val, node.right.val ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left, snake_case__, snake_case__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left, snake_case__, node.mid ), self._query_range(node.right, node.mid + 1, snake_case__ ), ) else: # range in right child tree return self._query_range(node.right, snake_case__, snake_case__ ) def snake_case__ ( self ): '''simple docstring''' if self.root is not None: lowercase__ = Queue() queue.put(self.root ) while not queue.empty(): lowercase__ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 5_0) lowerCAmelCase_ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: Any = logging.get_logger(__name__) lowerCAmelCase_: Dict = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class a__ ( __lowerCamelCase ): snake_case_ = '''git_vision_model''' def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=3072, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase="quick_gelu", _UpperCAmelCase=1E-5, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**a_ ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def snake_case__ ( cls, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' cls._set_token_in_kwargs(a_ ) lowercase__ = cls.get_config_dict(a_, **a_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": lowercase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a_, **a_ ) class a__ ( __lowerCamelCase ): snake_case_ = '''git''' def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=6, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1024, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=False, _UpperCAmelCase=101, _UpperCAmelCase=102, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(bos_token_id=a_, eos_token_id=a_, pad_token_id=a_, **a_ ) if vision_config is None: lowercase__ = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) lowercase__ = GitVisionConfig(**a_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = tie_word_embeddings lowercase__ = num_image_with_embedding lowercase__ = bos_token_id lowercase__ = eos_token_id def snake_case__ ( self ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_: Tuple = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["pixel_values"] def __init__( self, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = PILImageResampling.BILINEAR, _UpperCAmelCase = True, _UpperCAmelCase = 1 / 255, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = size if size is not None else {"shortest_edge": 384} lowercase__ = get_size_dict(_UpperCAmelCase, default_to_square=_UpperCAmelCase ) lowercase__ = do_resize lowercase__ = size # Default value set here for backwards compatibility where the value in config is None lowercase__ = crop_pct if crop_pct is not None else 224 / 256 lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = PILImageResampling.BICUBIC, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = get_size_dict(_UpperCAmelCase, default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) lowercase__ = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowercase__ = int(shortest_edge / crop_pct ) lowercase__ = get_resize_output_image_size(_UpperCAmelCase, size=_UpperCAmelCase, default_to_square=_UpperCAmelCase ) lowercase__ = resize(image=_UpperCAmelCase, size=_UpperCAmelCase, resample=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_UpperCAmelCase, size=(shortest_edge, shortest_edge), data_format=_UpperCAmelCase, **_UpperCAmelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _UpperCAmelCase, size=(shortest_edge, shortest_edge), resample=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' return rescale(_UpperCAmelCase, scale=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' return normalize(_UpperCAmelCase, mean=_UpperCAmelCase, std=_UpperCAmelCase, data_format=_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = ChannelDimension.FIRST, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = crop_pct if crop_pct is not None else self.crop_pct lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_UpperCAmelCase, default_to_square=_UpperCAmelCase ) lowercase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: lowercase__ = [self.resize(image=_UpperCAmelCase, size=_UpperCAmelCase, crop_pct=_UpperCAmelCase, resample=_UpperCAmelCase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_UpperCAmelCase, scale=_UpperCAmelCase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=_UpperCAmelCase, mean=_UpperCAmelCase, std=_UpperCAmelCase ) for image in images] lowercase__ = [to_channel_dimension_format(_UpperCAmelCase, _UpperCAmelCase ) for image in images] lowercase__ = {"pixel_values": images} return BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase )
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase_: Any = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class a__ ( lowerCAmelCase__ ): snake_case_ = "tapas" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1024, _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10], _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=10.0, _UpperCAmelCase=0, _UpperCAmelCase=1.0, _UpperCAmelCase=None, _UpperCAmelCase=1.0, _UpperCAmelCase=False, _UpperCAmelCase=None, _UpperCAmelCase=1.0, _UpperCAmelCase=1.0, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase="ratio", _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=64, _UpperCAmelCase=32, _UpperCAmelCase=False, _UpperCAmelCase=True, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=True, _UpperCAmelCase=False, _UpperCAmelCase=None, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_sizes lowercase__ = initializer_range lowercase__ = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ = positive_label_weight lowercase__ = num_aggregation_labels lowercase__ = aggregation_loss_weight lowercase__ = use_answer_as_supervision lowercase__ = answer_loss_importance lowercase__ = use_normalized_answer_loss lowercase__ = huber_loss_delta lowercase__ = temperature lowercase__ = aggregation_temperature lowercase__ = use_gumbel_for_cells lowercase__ = use_gumbel_for_aggregation lowercase__ = average_approximation_function lowercase__ = cell_selection_preference lowercase__ = answer_loss_cutoff lowercase__ = max_num_rows lowercase__ = max_num_columns lowercase__ = average_logits_per_cell lowercase__ = select_one_column lowercase__ = allow_empty_column_selection lowercase__ = init_cell_selection_weights_to_zero lowercase__ = reset_position_index_per_cell lowercase__ = disable_per_token_loss # Aggregation hyperparameters lowercase__ = aggregation_labels lowercase__ = no_aggregation_label_index if isinstance(self.aggregation_labels, _SCREAMING_SNAKE_CASE ): lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in aggregation_labels.items()}
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase_: Union[str, Any] = logging.getLogger(__name__) class a__ ( _A ): def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None ): '''simple docstring''' lowercase__ = self.layer[current_layer](UpperCamelCase__, UpperCamelCase__, head_mask[current_layer] ) lowercase__ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , _A , ) class a__ ( _A ): def __init__( self, _UpperCAmelCase ): '''simple docstring''' super().__init__(UpperCamelCase__ ) lowercase__ = BertEncoderWithPabee(UpperCamelCase__ ) self.init_weights() lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = threshold def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = patience def snake_case__ ( self ): '''simple docstring''' lowercase__ = 0 lowercase__ = 0 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.inference_layers_num / self.inference_instances_num lowercase__ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(UpperCamelCase__ ) @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def snake_case__ ( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=False, ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: lowercase__ = input_ids.size() elif inputs_embeds is not None: lowercase__ = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) lowercase__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase__ = torch.ones(UpperCamelCase__, device=UpperCamelCase__ ) if token_type_ids is None: lowercase__ = torch.zeros(UpperCamelCase__, dtype=torch.long, device=UpperCamelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase__ = self.get_extended_attention_mask(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase__ , lowercase__ , lowercase__ = encoder_hidden_states.size() lowercase__ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase__ = torch.ones(UpperCamelCase__, device=UpperCamelCase__ ) lowercase__ = self.invert_attention_mask(UpperCamelCase__ ) else: lowercase__ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase__ = self.get_head_mask(UpperCamelCase__, self.config.num_hidden_layers ) lowercase__ = self.embeddings( input_ids=UpperCamelCase__, position_ids=UpperCamelCase__, token_type_ids=UpperCamelCase__, inputs_embeds=UpperCamelCase__ ) lowercase__ = embedding_output if self.training: lowercase__ = [] for i in range(self.config.num_hidden_layers ): lowercase__ = self.encoder.adaptive_forward( UpperCamelCase__, current_layer=UpperCamelCase__, attention_mask=UpperCamelCase__, head_mask=UpperCamelCase__ ) lowercase__ = self.pooler(UpperCamelCase__ ) lowercase__ = output_layers[i](output_dropout(UpperCamelCase__ ) ) res.append(UpperCamelCase__ ) elif self.patience == 0: # Use all layers for inference lowercase__ = self.encoder( UpperCamelCase__, attention_mask=UpperCamelCase__, head_mask=UpperCamelCase__, encoder_hidden_states=UpperCamelCase__, encoder_attention_mask=UpperCamelCase__, ) lowercase__ = self.pooler(encoder_outputs[0] ) lowercase__ = [output_layers[self.config.num_hidden_layers - 1](UpperCamelCase__ )] else: lowercase__ = 0 lowercase__ = None lowercase__ = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 lowercase__ = self.encoder.adaptive_forward( UpperCamelCase__, current_layer=UpperCamelCase__, attention_mask=UpperCamelCase__, head_mask=UpperCamelCase__ ) lowercase__ = self.pooler(UpperCamelCase__ ) lowercase__ = output_layers[i](UpperCamelCase__ ) if regression: lowercase__ = logits.detach() if patient_result is not None: lowercase__ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: lowercase__ = 0 else: lowercase__ = logits.detach().argmax(dim=1 ) if patient_result is not None: lowercase__ = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(UpperCamelCase__ ) ): patient_counter += 1 else: lowercase__ = 0 lowercase__ = logits if patient_counter == self.patience: break lowercase__ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , _A , ) class a__ ( _A ): def __init__( self, _UpperCAmelCase ): '''simple docstring''' super().__init__(UpperCamelCase__ ) lowercase__ = config.num_labels lowercase__ = BertModelWithPabee(UpperCamelCase__ ) lowercase__ = nn.Dropout(config.hidden_dropout_prob ) lowercase__ = nn.ModuleList( [nn.Linear(config.hidden_size, self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase__ ) def snake_case__ ( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, ): '''simple docstring''' lowercase__ = self.bert( input_ids=UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__, position_ids=UpperCamelCase__, head_mask=UpperCamelCase__, inputs_embeds=UpperCamelCase__, output_dropout=self.dropout, output_layers=self.classifiers, regression=self.num_labels == 1, ) lowercase__ = (logits[-1],) if labels is not None: lowercase__ = None lowercase__ = 0 for ix, logits_item in enumerate(UpperCamelCase__ ): if self.num_labels == 1: # We are doing regression lowercase__ = MSELoss() lowercase__ = loss_fct(logits_item.view(-1 ), labels.view(-1 ) ) else: lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(logits_item.view(-1, self.num_labels ), labels.view(-1 ) ) if total_loss is None: lowercase__ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase__ = (total_loss / total_weights,) + outputs return outputs
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class a__ ( snake_case__ ): snake_case_ = '''gptsan-japanese''' snake_case_ = [ '''past_key_values''', ] snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self, _UpperCAmelCase=3_6000, _UpperCAmelCase=1280, _UpperCAmelCase=1024, _UpperCAmelCase=8192, _UpperCAmelCase=4096, _UpperCAmelCase=128, _UpperCAmelCase=10, _UpperCAmelCase=0, _UpperCAmelCase=16, _UpperCAmelCase=16, _UpperCAmelCase=128, _UpperCAmelCase=0.0, _UpperCAmelCase=1E-5, _UpperCAmelCase=False, _UpperCAmelCase=0.0, _UpperCAmelCase="float32", _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.002, _UpperCAmelCase=False, _UpperCAmelCase=True, _UpperCAmelCase=3_5998, _UpperCAmelCase=3_5995, _UpperCAmelCase=3_5999, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = d_ff lowercase__ = d_ext lowercase__ = d_spout lowercase__ = num_switch_layers lowercase__ = num_ext_layers lowercase__ = num_switch_layers + num_ext_layers lowercase__ = num_heads lowercase__ = num_experts lowercase__ = expert_capacity lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = router_bias lowercase__ = router_jitter_noise lowercase__ = router_dtype lowercase__ = router_ignore_padding_tokens lowercase__ = output_hidden_states lowercase__ = output_attentions lowercase__ = initializer_factor lowercase__ = output_router_logits lowercase__ = use_cache super().__init__( separator_token_id=_A, pad_token_id=_A, eos_token_id=_A, **_A, )
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = UnCLIPImageVariationPipeline snake_case_ = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} snake_case_ = IMAGE_VARIATION_BATCH_PARAMS snake_case_ = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] snake_case_ = False @property def snake_case__ ( self ): '''simple docstring''' return 32 @property def snake_case__ ( self ): '''simple docstring''' return 32 @property def snake_case__ ( self ): '''simple docstring''' return self.time_input_dim @property def snake_case__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case__ ( self ): '''simple docstring''' return 100 @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(__a ) @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) return CLIPVisionModelWithProjection(__a ) @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } lowercase__ = UnCLIPTextProjModel(**__a ) return model @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } lowercase__ = UNetaDConditionModel(**__a ) return model @property def snake_case__ ( self ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(1 ) lowercase__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.dummy_decoder lowercase__ = self.dummy_text_proj lowercase__ = self.dummy_text_encoder lowercase__ = self.dummy_tokenizer lowercase__ = self.dummy_super_res_first lowercase__ = self.dummy_super_res_last lowercase__ = UnCLIPScheduler( variance_type="learned_range", prediction_type="epsilon", num_train_timesteps=1000, ) lowercase__ = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="epsilon", num_train_timesteps=1000, ) lowercase__ = CLIPImageProcessor(crop_size=32, size=32 ) lowercase__ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=0, _UpperCAmelCase=True ): '''simple docstring''' lowercase__ = floats_tensor((1, 3, 32, 32), rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith("mps" ): lowercase__ = torch.manual_seed(__a ) else: lowercase__ = torch.Generator(device=__a ).manual_seed(__a ) if pil_image: lowercase__ = input_image * 0.5 + 0.5 lowercase__ = input_image.clamp(0, 1 ) lowercase__ = input_image.cpu().permute(0, 2, 3, 1 ).float().numpy() lowercase__ = DiffusionPipeline.numpy_to_pil(__a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def snake_case__ ( self ): '''simple docstring''' lowercase__ = "cpu" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**__a ) lowercase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowercase__ = self.get_dummy_inputs(__a, pil_image=__a ) lowercase__ = pipe(**__a ) lowercase__ = output.images lowercase__ = self.get_dummy_inputs(__a, pil_image=__a ) lowercase__ = pipe( **__a, return_dict=__a, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [ 0.9_997, 0.0_002, 0.9_997, 0.9_997, 0.9_969, 0.0_023, 0.9_997, 0.9_969, 0.9_970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' lowercase__ = "cpu" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**__a ) lowercase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowercase__ = self.get_dummy_inputs(__a, pil_image=__a ) lowercase__ = pipe(**__a ) lowercase__ = output.images lowercase__ = self.get_dummy_inputs(__a, pil_image=__a ) lowercase__ = pipe( **__a, return_dict=__a, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array([0.9_997, 0.0_003, 0.9_997, 0.9_997, 0.9_970, 0.0_024, 0.9_997, 0.9_971, 0.9_971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' lowercase__ = "cpu" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**__a ) lowercase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowercase__ = self.get_dummy_inputs(__a, pil_image=__a ) lowercase__ = [ pipeline_inputs["image"], pipeline_inputs["image"], ] lowercase__ = pipe(**__a ) lowercase__ = output.images lowercase__ = self.get_dummy_inputs(__a, pil_image=__a ) lowercase__ = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] lowercase__ = pipe( **__a, return_dict=__a, )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowercase__ = np.array( [ 0.9_997, 0.9_989, 0.0_008, 0.0_021, 0.9_960, 0.0_018, 0.0_014, 0.0_002, 0.9_933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' lowercase__ = torch.device("cpu" ) class a__ : snake_case_ = 1 lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**__a ) lowercase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowercase__ = torch.Generator(device=__a ).manual_seed(0 ) lowercase__ = pipe.decoder.dtype lowercase__ = 1 lowercase__ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowercase__ = pipe.prepare_latents( __a, dtype=__a, device=__a, generator=__a, latents=__a, scheduler=DummyScheduler() ) lowercase__ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowercase__ = pipe.prepare_latents( __a, dtype=__a, device=__a, generator=__a, latents=__a, scheduler=DummyScheduler() ) lowercase__ = self.get_dummy_inputs(__a, pil_image=__a ) lowercase__ = pipe( **__a, decoder_latents=__a, super_res_latents=__a ).images lowercase__ = self.get_dummy_inputs(__a, pil_image=__a ) # Don't pass image, instead pass embedding lowercase__ = pipeline_inputs.pop("image" ) lowercase__ = pipe.image_encoder(__a ).image_embeds lowercase__ = pipe( **__a, decoder_latents=__a, super_res_latents=__a, image_embeddings=__a, ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def snake_case__ ( self ): '''simple docstring''' lowercase__ = torch_device == "cpu" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowercase__ = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__a, expected_max_diff=__a ) @skip_mps def snake_case__ ( self ): '''simple docstring''' lowercase__ = torch_device == "cpu" lowercase__ = True lowercase__ = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( test_max_difference=__a, relax_max_difference=__a, additional_params_copy_to_batched_inputs=__a, ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowercase__ = [2, 3] self._test_inference_batch_consistent( batch_sizes=__a, additional_params_copy_to_batched_inputs=__a, ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__a ) @skip_mps def snake_case__ ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def snake_case__ ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def snake_case__ ( self ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class a__ ( unittest.TestCase ): def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): '''simple docstring''' lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) lowercase__ = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.floataa ) lowercase__ = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) lowercase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ = pipeline( __a, generator=__a, output_type="np", ) lowercase__ = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__a, __a, 15 )
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" def __a ( A ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) lowercase__ = sum(lowerCamelCase_ ) / len(lowerCamelCase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_: Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class a__ ( __lowerCamelCase , unittest.TestCase ): snake_case_ = SpeechTaTokenizer snake_case_ = False snake_case_ = True def snake_case__ ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase__ = SpeechTaTokenizer(UpperCamelCase_ ) lowercase__ = AddedToken("<mask>", lstrip=UpperCamelCase_, rstrip=UpperCamelCase_ ) lowercase__ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "this is a test" lowercase__ = "this is a test" return input_text, output_text def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ , lowercase__ = self.get_input_output_texts(UpperCamelCase_ ) lowercase__ = tokenizer.encode(UpperCamelCase_, add_special_tokens=UpperCamelCase_ ) lowercase__ = tokenizer.decode(UpperCamelCase_, clean_up_tokenization_spaces=UpperCamelCase_ ) return text, ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = "<pad>" lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ), UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ), UpperCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], "<s>" ) self.assertEqual(vocab_keys[1], "<pad>" ) self.assertEqual(vocab_keys[-4], "œ" ) self.assertEqual(vocab_keys[-2], "<mask>" ) self.assertEqual(vocab_keys[-1], "<ctc_blank>" ) self.assertEqual(len(UpperCamelCase_ ), 81 ) def snake_case__ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 79 ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = tokenizer.vocab_size lowercase__ = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_, 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowercase__ = ["aaaaa bbbbbb", "cccccccccdddddddd"] lowercase__ = tokenizer.add_tokens(UpperCamelCase_ ) lowercase__ = tokenizer.vocab_size lowercase__ = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_, 0 ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_, all_size + len(UpperCamelCase_ ) ) lowercase__ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ), 4 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) lowercase__ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} lowercase__ = tokenizer.add_special_tokens(UpperCamelCase_ ) lowercase__ = tokenizer.vocab_size lowercase__ = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_, 0 ) self.assertEqual(UpperCamelCase_, UpperCamelCase_ ) self.assertEqual(UpperCamelCase_, len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_, all_size_a + len(UpperCamelCase_ ) ) lowercase__ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ), 6 ) self.assertGreater(tokens[0], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0], tokens[1] ) self.assertGreater(tokens[-3], tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3], tokens[-4] ) self.assertEqual(tokens[0], tokenizer.eos_token_id ) self.assertEqual(tokens[-3], tokenizer.pad_token_id ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(UpperCamelCase_, [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ), [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6], ) lowercase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase_, [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) # fmt: off self.assertListEqual(UpperCamelCase_, [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on lowercase__ = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_, [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off lowercase__ = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_, model_name="microsoft/speecht5_asr", revision="c5ef64c71905caeccde0e4462ef3f9077224c524", sequences=UpperCamelCase_, )
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_: str = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_: str = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_: int = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_: Tuple = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_: int = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase_: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class a__ ( unittest.TestCase , _a ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = load_tool("text-classification" ) self.tool.setup() lowercase__ = load_tool("text-classification", remote=lowercase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(lowercase_, "positive" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.remote_tool("That's quite cool", ["positive", "negative"] ) self.assertEqual(lowercase_, "positive" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(lowercase_, "positive" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.remote_tool(text="That's quite cool", labels=["positive", "negative"] ) self.assertEqual(lowercase_, "positive" )
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __a ( A ): '''simple docstring''' random.seed(snake_case__ ) np.random.seed(snake_case__ ) torch.manual_seed(snake_case__ ) torch.cuda.manual_seed_all(snake_case__ ) # ^^ safe to call this function even if cuda is not available class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase = 0.9_999, _UpperCAmelCase = 0.0, _UpperCAmelCase = 0, _UpperCAmelCase = False, _UpperCAmelCase = 1.0, _UpperCAmelCase = 2 / 3, _UpperCAmelCase = None, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' if isinstance(lowerCAmelCase_, torch.nn.Module ): lowercase__ = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`", "1.0.0", lowerCAmelCase_, standard_warn=lowerCAmelCase_, ) lowercase__ = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility lowercase__ = True if kwargs.get("max_value", lowerCAmelCase_ ) is not None: lowercase__ = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value", "1.0.0", lowerCAmelCase_, standard_warn=lowerCAmelCase_ ) lowercase__ = kwargs["max_value"] if kwargs.get("min_value", lowerCAmelCase_ ) is not None: lowercase__ = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value", "1.0.0", lowerCAmelCase_, standard_warn=lowerCAmelCase_ ) lowercase__ = kwargs["min_value"] lowercase__ = list(lowerCAmelCase_ ) lowercase__ = [p.clone().detach() for p in parameters] if kwargs.get("device", lowerCAmelCase_ ) is not None: lowercase__ = "The `device` argument is deprecated. Please use `to` instead." deprecate("device", "1.0.0", lowerCAmelCase_, standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["device"] ) lowercase__ = None lowercase__ = decay lowercase__ = min_decay lowercase__ = update_after_step lowercase__ = use_ema_warmup lowercase__ = inv_gamma lowercase__ = power lowercase__ = 0 lowercase__ = None # set in `step()` lowercase__ = model_cls lowercase__ = model_config @classmethod def snake_case__ ( cls, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ , lowercase__ = model_cls.load_config(lowerCAmelCase_, return_unused_kwargs=lowerCAmelCase_ ) lowercase__ = model_cls.from_pretrained(lowerCAmelCase_ ) lowercase__ = cls(model.parameters(), model_cls=lowerCAmelCase_, model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) lowercase__ = self.model_cls.from_config(self.model_config ) lowercase__ = self.state_dict() state_dict.pop("shadow_params", lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = max(0, optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: lowercase__ = 1 - (1 + step / self.inv_gamma) ** -self.power else: lowercase__ = (1 + step) / (10 + step) lowercase__ = min(lowerCAmelCase_, self.decay ) # make sure decay is not smaller than min_decay lowercase__ = max(lowerCAmelCase_, self.min_decay ) return cur_decay_value @torch.no_grad() def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if isinstance(lowerCAmelCase_, torch.nn.Module ): lowercase__ = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`", "1.0.0", lowerCAmelCase_, standard_warn=lowerCAmelCase_, ) lowercase__ = parameters.parameters() lowercase__ = list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. lowercase__ = self.get_decay(self.optimization_step ) lowercase__ = decay lowercase__ = 1 - decay lowercase__ = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params, lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): lowercase__ = deepspeed.zero.GatheredParameters(lowerCAmelCase_, modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params, lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def snake_case__ ( self, _UpperCAmelCase=None, _UpperCAmelCase=None ): '''simple docstring''' lowercase__ = [ p.to(device=lowerCAmelCase_, dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def snake_case__ ( self ): '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [param.detach().cpu().clone() for param in parameters] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params, lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. lowercase__ = None def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = copy.deepcopy(lowerCAmelCase_ ) lowercase__ = state_dict.get("decay", self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) lowercase__ = state_dict.get("min_decay", self.min_decay ) if not isinstance(self.min_decay, lowerCAmelCase_ ): raise ValueError("Invalid min_decay" ) lowercase__ = state_dict.get("optimization_step", self.optimization_step ) if not isinstance(self.optimization_step, lowerCAmelCase_ ): raise ValueError("Invalid optimization_step" ) lowercase__ = state_dict.get("update_after_step", self.update_after_step ) if not isinstance(self.update_after_step, lowerCAmelCase_ ): raise ValueError("Invalid update_after_step" ) lowercase__ = state_dict.get("use_ema_warmup", self.use_ema_warmup ) if not isinstance(self.use_ema_warmup, lowerCAmelCase_ ): raise ValueError("Invalid use_ema_warmup" ) lowercase__ = state_dict.get("inv_gamma", self.inv_gamma ) if not isinstance(self.inv_gamma, (float, int) ): raise ValueError("Invalid inv_gamma" ) lowercase__ = state_dict.get("power", self.power ) if not isinstance(self.power, (float, int) ): raise ValueError("Invalid power" ) lowercase__ = state_dict.get("shadow_params", lowerCAmelCase_ ) if shadow_params is not None: lowercase__ = shadow_params if not isinstance(self.shadow_params, lowerCAmelCase_ ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(lowerCAmelCase_, torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): lowerCAmelCase_: List[str] = True from torch.cuda.amp import autocast lowerCAmelCase_: Optional[int] = logging.getLogger(__name__) @dataclass class a__ : snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=_a , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) snake_case_ = field( default=_a , metadata={"help": "Whether to log verbose messages or not."} , ) snake_case_ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) snake_case_ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) snake_case_ = field( default=0.999995 , metadata={"help": "Decay of gumbel temperature during training."} ) def __a ( A , A ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__ = logging.WARNING if model_args.verbose_logging: lowercase__ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase__ = logging.INFO logger.setLevel(A ) @dataclass class a__ : snake_case_ = field( default=_a , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default=_a , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) snake_case_ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'" ) } , ) snake_case_ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to \'file\'"} , ) snake_case_ = field( default=_a , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there\'s no validation split" } , ) snake_case_ = field( default=_a , metadata={"help": "The number of processes to use for the preprocessing."} , ) snake_case_ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class a__ : snake_case_ = 42 snake_case_ = 42 snake_case_ = "longest" snake_case_ = None snake_case_ = None def __call__( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.feature_extractor.pad( UpperCAmelCase__, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) lowercase__ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowercase__ = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase__ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowercase__ = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase__ = 1 lowercase__ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase__ = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=UpperCAmelCase__, min_masks=2, ) return batch class a__ ( _a ): def __init__( self, *_UpperCAmelCase, _UpperCAmelCase=1, _UpperCAmelCase=0, _UpperCAmelCase=1.0, **_UpperCAmelCase ): '''simple docstring''' super().__init__(*UpperCAmelCase__, **UpperCAmelCase__ ) lowercase__ = 0 lowercase__ = max_gumbel_temp lowercase__ = min_gumbel_temp lowercase__ = gumbel_temp_decay def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' model.train() lowercase__ = self._prepare_inputs(UpperCAmelCase__ ) if self.use_amp: with autocast(): lowercase__ = self.compute_loss(UpperCAmelCase__, UpperCAmelCase__ ) else: lowercase__ = self.compute_loss(UpperCAmelCase__, UpperCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase__ = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: lowercase__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase__, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) return loss.detach() def __a ( ): '''simple docstring''' lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase__ = parser.parse_args_into_dataclasses() configure_logger(A , A ) # Downloading and loading a dataset from the hub. lowercase__ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase__ = DatasetDict() lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase__ = DatasetDict() lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase__ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=A ) def prepare_dataset(A ): # check that all files have the correct sampling rate lowercase__ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase__ = datasets.map( A , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long lowercase__ = vectorized_datasets.filter( lambda A : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(A ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase__ = vectorized_datasets.map( A , batched=A , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase__ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm=\'layer\'" ) lowercase__ = WavaVecaForPreTraining(A ) lowercase__ = DataCollatorForWavaVecaPretraining(model=A , feature_extractor=A ) lowercase__ = WavaVecaPreTrainer( model=A , data_collator=A , args=A , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=A , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" def __a ( A ): lowercase__ = min(A ) # min() finds the minimum value lowercase__ = max(A ) # max() finds the maximum value lowercase__ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowercase__ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(A , A ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowercase__ = 0 for count in range(A ): while holes[count] > 0: holes[count] -= 1 lowercase__ = count + min_val i += 1 def __a ( ): lowercase__ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(A ) print("Sorted order is:" , " ".join(A ) ) if __name__ == "__main__": main()
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def __a ( A = True , *A , **A ): '''simple docstring''' if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) lowercase__ = False if main_process_only: lowercase__ = PartialState().local_process_index == 0 return _tqdm(*__a , **__a , disable=__a )
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a__ ( unittest.TestCase ): @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.dummy_uncond_unet lowercase__ = KarrasVeScheduler() lowercase__ = KarrasVePipeline(unet=snake_case_, scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe(num_inference_steps=2, generator=snake_case_, output_type="numpy" ).images lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe(num_inference_steps=2, generator=snake_case_, output_type="numpy", return_dict=snake_case_ )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a__ ( unittest.TestCase ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = "google/ncsnpp-celebahq-256" lowercase__ = UNetaDModel.from_pretrained(snake_case_ ) lowercase__ = KarrasVeScheduler() lowercase__ = KarrasVePipeline(unet=snake_case_, scheduler=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe(num_inference_steps=20, generator=snake_case_, output_type="numpy" ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCAmelCase_: List[str] = logging.get_logger(__name__) lowerCAmelCase_: Union[str, Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class a__ ( lowercase__ ): snake_case_ = "deberta-v2" def __init__( self, _UpperCAmelCase=12_8100, _UpperCAmelCase=1536, _UpperCAmelCase=24, _UpperCAmelCase=24, _UpperCAmelCase=6144, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-7, _UpperCAmelCase=False, _UpperCAmelCase=-1, _UpperCAmelCase=0, _UpperCAmelCase=True, _UpperCAmelCase=None, _UpperCAmelCase=0, _UpperCAmelCase="gelu", **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = relative_attention lowercase__ = max_relative_positions lowercase__ = pad_token_id lowercase__ = position_biased_input # Backwards compatibility if type(UpperCAmelCase__ ) == str: lowercase__ = [x.strip() for x in pos_att_type.lower().split("|" )] lowercase__ = pos_att_type lowercase__ = vocab_size lowercase__ = layer_norm_eps lowercase__ = kwargs.get("pooler_hidden_size", UpperCAmelCase__ ) lowercase__ = pooler_dropout lowercase__ = pooler_hidden_act class a__ ( lowercase__ ): @property def snake_case__ ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase__ = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def snake_case__ ( self ): '''simple docstring''' return 12 def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = -1, _UpperCAmelCase = -1, _UpperCAmelCase = -1, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = 3, _UpperCAmelCase = 40, _UpperCAmelCase = 40, _UpperCAmelCase = None, ): '''simple docstring''' lowercase__ = super().generate_dummy_inputs(preprocessor=UpperCAmelCase__, framework=UpperCAmelCase__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" def __a ( A , A , A ): '''simple docstring''' if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: str = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[int] = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: str = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Dict = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class a__ ( UpperCAmelCase_ ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() lowercase__ = 8 # DPR tok lowercase__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase__ = os.path.join(self.tmpdirname, "dpr_tokenizer" ) os.makedirs(_lowercase, exist_ok=_lowercase ) lowercase__ = os.path.join(_lowercase, DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowercase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ = dict(zip(_lowercase, range(len(_lowercase ) ) ) ) lowercase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ = {"unk_token": "<unk>"} lowercase__ = os.path.join(self.tmpdirname, "bart_tokenizer" ) os.makedirs(_lowercase, exist_ok=_lowercase ) lowercase__ = os.path.join(_lowercase, BART_VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ = os.path.join(_lowercase, BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(_lowercase ) ) def snake_case__ ( self ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer" ) ) def snake_case__ ( self ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer" ) ) def snake_case__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def snake_case__ ( self ): '''simple docstring''' lowercase__ = os.path.join(self.tmpdirname, "rag_tokenizer" ) lowercase__ = RagConfig(question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict() ) lowercase__ = RagTokenizer(question_encoder=self.get_dpr_tokenizer(), generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_lowercase ) rag_tokenizer.save_pretrained(_lowercase ) lowercase__ = RagTokenizer.from_pretrained(_lowercase, config=_lowercase ) self.assertIsInstance(new_rag_tokenizer.question_encoder, _lowercase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab(), rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator, _lowercase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab(), rag_tokenizer.generator.get_vocab() ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) lowercase__ = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowercase__ = tokenizer(_lowercase ) self.assertIsNotNone(_lowercase ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) lowercase__ = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowercase__ = tokenizer(_lowercase ) self.assertIsNotNone(_lowercase )
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_: Optional[Any] = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCAmelCase_: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowerCAmelCase_: Tuple = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class a__ : snake_case_ = 42 snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ = _str_to_version_tuple(self.version_str ) def __repr__( self ): '''simple docstring''' return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def snake_case__ ( self ): '''simple docstring''' return self.major, self.minor, self.patch def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if isinstance(A_, A_ ): return Version(A_ ) elif isinstance(A_, A_ ): return other raise TypeError(F'''{other} (type {type(A_ )}) cannot be compared to version.''' ) def __eq__( self, _UpperCAmelCase ): '''simple docstring''' try: lowercase__ = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self ): '''simple docstring''' return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def snake_case__ ( cls, _UpperCAmelCase ): '''simple docstring''' lowercase__ = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def snake_case__ ( self ): '''simple docstring''' return self.version_str def __a ( A ): '''simple docstring''' lowercase__ = _VERSION_REG.match(A ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(A ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def __a ( A ): '''simple docstring''' return ".".join(str(A ) for v in version_tuple )
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) class a__ ( metaclass=__lowercase ): snake_case_ = ["flax"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["flax"] )
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __a ( A ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) lowerCAmelCase_: Tuple = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class a__ ( _a ): @staticmethod def snake_case__ ( _UpperCAmelCase ): '''simple docstring''' lowercase__ = parser.add_parser( "convert", help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=__UpperCamelCase, required=__UpperCamelCase, help="Model\'s type." ) train_parser.add_argument( "--tf_checkpoint", type=__UpperCamelCase, required=__UpperCamelCase, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=__UpperCamelCase, required=__UpperCamelCase, help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config", type=__UpperCamelCase, default="", help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name", type=__UpperCamelCase, default=__UpperCamelCase, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=__UpperCamelCase ) def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, *_UpperCAmelCase, ): '''simple docstring''' lowercase__ = logging.get_logger("transformers-cli/converting" ) self._logger.info(F'''Loading model {model_type}''' ) lowercase__ = model_type lowercase__ = tf_checkpoint lowercase__ = pytorch_dump_output lowercase__ = config lowercase__ = finetuning_task_name def snake_case__ ( self ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) if "ckpt" in self._tf_checkpoint.lower(): lowercase__ = self._tf_checkpoint lowercase__ = "" else: lowercase__ = self._tf_checkpoint lowercase__ = "" convert_transfo_xl_checkpoint_to_pytorch( __UpperCamelCase, self._config, self._pytorch_dump_output, __UpperCamelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__UpperCamelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase_: str = 6_3_7_8_1_3_7.0 lowerCAmelCase_: Tuple = 6_3_5_6_7_5_2.3_1_4_2_4_5 lowerCAmelCase_: Tuple = 6_3_7_8_1_3_7 def __a ( A , A , A , A ): '''simple docstring''' lowercase__ = (AXIS_A - AXIS_B) / AXIS_A lowercase__ = atan((1 - flattening) * tan(radians(A ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(A ) ) ) lowercase__ = radians(A ) lowercase__ = radians(A ) # Equation lowercase__ = sin((phi_a - phi_a) / 2 ) lowercase__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowercase__ = sqrt(sin_sq_phi + (cos(A ) * cos(A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(A ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __a ( A , A ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / 'cache' lowercase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / 'cache' lowercase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / 'cache' lowercase__ = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __a ( A , A ): '''simple docstring''' lowercase__ = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} lowercase__ = features.copy() lowercase__ = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = tmp_path / 'cache' lowercase__ = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / 'cache' lowercase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowercase__ = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __a ( A , A , A ): '''simple docstring''' if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__ = jsonl_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__ = [jsonl_path] lowercase__ = tmp_path / 'cache' lowercase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowercase__ = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( A , A , A=("train",) ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: lowercase__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / 'cache' lowercase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ = JsonDatasetReader({"train": jsonl_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / 'cache' lowercase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = JsonDatasetReader({"train": jsonl_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A , A , A ): '''simple docstring''' if split: lowercase__ = {split: jsonl_path} else: lowercase__ = 'train' lowercase__ = {'train': jsonl_path, 'test': jsonl_path} lowercase__ = tmp_path / 'cache' lowercase__ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowercase__ = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __a ( A ): '''simple docstring''' return json.load(lowerCAmelCase__ ) def __a ( A ): '''simple docstring''' return [json.loads(lowerCAmelCase__ ) for line in buffer] class a__ : @pytest.mark.parametrize("lines, load_json_function", [(True, load_json_lines), (False, load_json)] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__ ).write() buffer.seek(0 ) lowercase__ = load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) assert isinstance(exported_content[0], UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at", [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ], ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__, orient=UpperCamelCase__ ).write() buffer.seek(0 ) lowercase__ = load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__, "keys" ) and not hasattr(exported_content[0], "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize("lines, load_json_function", [(True, load_json_lines), (False, load_json)] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__, num_proc=2 ).write() buffer.seek(0 ) lowercase__ = load_json_function(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) assert isinstance(exported_content[0], UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at", [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ], ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, lines=UpperCamelCase__, orient=UpperCamelCase__, num_proc=2 ).write() buffer.seek(0 ) lowercase__ = load_json(UpperCamelCase__ ) assert isinstance(UpperCamelCase__, UpperCamelCase__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__, "keys" ) and not hasattr(exported_content[0], "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase__ ) == 10 def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' with pytest.raises(UpperCamelCase__ ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, num_proc=0 ) @pytest.mark.parametrize("compression, extension", [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = tmp_path_factory.mktemp("data" ) / F'''test.json.{extension}''' lowercase__ = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase__, UpperCamelCase__, compression=UpperCamelCase__ ).write() with fsspec.open(UpperCamelCase__, "rb", compression="infer" ) as f: lowercase__ = f.read() with fsspec.open(UpperCamelCase__, "rb", compression="infer" ) as f: lowercase__ = f.read() assert exported_content == original_content
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase_: Tuple = logging.get_logger(__name__) class a__ ( a__ ): snake_case_ = "linear" snake_case_ = "cosine" snake_case_ = "cosine_with_restarts" snake_case_ = "polynomial" snake_case_ = "constant" snake_case_ = "constant_with_warmup" snake_case_ = "piecewise_constant" def __a ( A , A = -1 ): '''simple docstring''' return LambdaLR(A , lambda A : 1 , last_epoch=A ) def __a ( A , A , A = -1 ): '''simple docstring''' def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1.0 , A ) ) return 1.0 return LambdaLR(A , A , last_epoch=A ) def __a ( A , A , A = -1 ): '''simple docstring''' lowercase__ = {} lowercase__ = step_rules.split("," ) for rule_str in rule_list[:-1]: lowercase__ , lowercase__ = rule_str.split(":" ) lowercase__ = int(A ) lowercase__ = float(A ) lowercase__ = value lowercase__ = float(rule_list[-1] ) def create_rules_function(A , A ): def rule_func(A ) -> float: lowercase__ = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase__ = create_rules_function(A , A ) return LambdaLR(A , A , last_epoch=A ) def __a ( A , A , A , A=-1 ): '''simple docstring''' def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(A , A , A ) def __a ( A , A , A , A = 0.5 , A = -1 ): '''simple docstring''' def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) lowercase__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(A ) * 2.0 * progress )) ) return LambdaLR(A , A , A ) def __a ( A , A , A , A = 1 , A = -1 ): '''simple docstring''' def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) lowercase__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(A ) * progress) % 1.0) )) ) return LambdaLR(A , A , A ) def __a ( A , A , A , A=1e-7 , A=1.0 , A=-1 ): '''simple docstring''' lowercase__ = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(A ): if current_step < num_warmup_steps: return float(A ) / float(max(1 , A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase__ = lr_init - lr_end lowercase__ = num_training_steps - num_warmup_steps lowercase__ = 1 - (current_step - num_warmup_steps) / decay_steps lowercase__ = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(A , A , A ) lowerCAmelCase_: Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( A , A , A = None , A = None , A = None , A = 1 , A = 1.0 , A = -1 , ): '''simple docstring''' lowercase__ = SchedulerType(A ) lowercase__ = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(A , last_epoch=A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(A , step_rules=A , last_epoch=A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(A , num_warmup_steps=A , last_epoch=A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( A , num_warmup_steps=A , num_training_steps=A , num_cycles=A , last_epoch=A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( A , num_warmup_steps=A , num_training_steps=A , power=A , last_epoch=A , ) return schedule_func( A , num_warmup_steps=A , num_training_steps=A , last_epoch=A )
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" def __a ( A , A ): '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(A , int(b / 2 ) ) * actual_power(A , int(b / 2 ) ) else: return a * actual_power(A , int(b / 2 ) ) * actual_power(A , int(b / 2 ) ) def __a ( A , A ): '''simple docstring''' if b < 0: return 1 / actual_power(A , A ) return actual_power(A , A ) if __name__ == "__main__": print(power(-2, -3))
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy lowerCAmelCase_: Optional[Any] = logging.get_logger(__name__) class a__ ( __UpperCAmelCase ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = feature_size lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = kwargs.pop("padding_side", "right" ) lowercase__ = kwargs.pop("return_attention_mask", lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, ): '''simple docstring''' if isinstance(lowerCAmelCase_, (list, tuple) ) and isinstance(processed_features[0], (dict, BatchFeature) ): lowercase__ = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) lowercase__ = processed_features[self.model_input_names[0]] lowercase__ = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCAmelCase_ ) == 0: if return_attention_mask: lowercase__ = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase__ = required_input[0] if isinstance(lowerCAmelCase_, (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase__ = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCAmelCase_ ): lowercase__ = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCAmelCase_ ): lowercase__ = "tf" elif is_torch_tensor(lowerCAmelCase_ ): lowercase__ = "pt" elif isinstance(lowerCAmelCase_, (int, float, list, tuple, np.ndarray) ): lowercase__ = "np" else: raise ValueError( F'''type of {first_element} unknown: {type(lowerCAmelCase_ )}. ''' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0], (int, float) ): lowercase__ = to_numpy(lowerCAmelCase_ ) else: lowercase__ = [to_numpy(lowerCAmelCase_ ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase__ = self._get_padding_strategies(padding=lowerCAmelCase_, max_length=lowerCAmelCase_ ) lowercase__ = processed_features[self.model_input_names[0]] lowercase__ = len(lowerCAmelCase_ ) if not all(len(lowerCAmelCase_ ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) lowercase__ = [] for i in range(lowerCAmelCase_ ): lowercase__ = {k: v[i] for k, v in processed_features.items()} # truncation lowercase__ = self._truncate( lowerCAmelCase_, max_length=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, truncation=lowerCAmelCase_, ) truncated_inputs.append(lowerCAmelCase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase__ = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase__ = PaddingStrategy.MAX_LENGTH lowercase__ = {} for i in range(lowerCAmelCase_ ): # padding lowercase__ = self._pad( truncated_inputs[i], max_length=lowerCAmelCase_, padding_strategy=lowerCAmelCase_, pad_to_multiple_of=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_, ) for key, value in outputs.items(): if key not in batch_outputs: lowercase__ = [] if value.dtype is np.dtype(np.floataa ): lowercase__ = value.astype(np.floataa ) batch_outputs[key].append(lowerCAmelCase_ ) return BatchFeature(lowerCAmelCase_, tensor_type=lowerCAmelCase_ ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = PaddingStrategy.DO_NOT_PAD, _UpperCAmelCase = None, _UpperCAmelCase = None, ): '''simple docstring''' lowercase__ = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase__ = len(lowerCAmelCase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase__ = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase__ = np.ones(len(lowerCAmelCase_ ), dtype=np.intaa ) if needs_to_be_padded: lowercase__ = max_length - len(lowerCAmelCase_ ) if self.padding_side == "right": if return_attention_mask: lowercase__ = np.pad( processed_features["attention_mask"], (0, difference) ) lowercase__ = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase__ = np.pad( lowerCAmelCase_, lowerCAmelCase_, "constant", constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase__ = np.pad( processed_features["attention_mask"], (difference, 0) ) lowercase__ = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase__ = np.pad( lowerCAmelCase_, lowerCAmelCase_, "constant", constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) lowercase__ = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase__ = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase__ = len(lowerCAmelCase_ ) > max_length if needs_to_be_truncated: lowercase__ = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase__ = processed_features["attention_mask"][:max_length] return processed_features def snake_case__ ( self, _UpperCAmelCase=False, _UpperCAmelCase=None ): '''simple docstring''' if padding is not False: if padding is True: lowercase__ = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCAmelCase_, lowerCAmelCase_ ): lowercase__ = PaddingStrategy(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_, lowerCAmelCase_ ): lowercase__ = padding else: lowercase__ = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" from __future__ import annotations def __a ( A , A = None ): '''simple docstring''' lowercase__ = word_bank or [] # create a table lowercase__ = len(a_ ) + 1 lowercase__ = [] for _ in range(a_ ): table.append([] ) # seed value lowercase__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(a_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a_ )] == word: lowercase__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a_ )]: combination.reverse() return table[len(a_ )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = RoCBertTokenizer snake_case_ = None snake_case_ = False snake_case_ = True snake_case_ = filter_non_english def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] lowercase__ = {} lowercase__ = {} for i, value in enumerate(_A ): lowercase__ = i lowercase__ = i lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["word_shape_file"] ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file, "w", encoding="utf-8" ) as word_shape_writer: json.dump(_A, _A, ensure_ascii=_A ) with open(self.word_pronunciation_file, "w", encoding="utf-8" ) as word_pronunciation_writer: json.dump(_A, _A, ensure_ascii=_A ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) lowercase__ = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(_A, ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_A ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_A ), [5, 6, 2, 5, 7, 8] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ), ["ah", "\u535A", "\u63A8", "zz"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = RoCBertBasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ), ["hello"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = RoCBertBasicTokenizer(do_lower_case=_A, strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ), ["h\u00E9llo"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = RoCBertBasicTokenizer(do_lower_case=_A, strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ), ["hello"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = RoCBertBasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ), ["hello"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = RoCBertBasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = RoCBertBasicTokenizer(do_lower_case=_A, strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = RoCBertBasicTokenizer(do_lower_case=_A, strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = RoCBertBasicTokenizer(do_lower_case=_A, never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowercase__ = {} for i, token in enumerate(_A ): lowercase__ = i lowercase__ = RoCBertWordpieceTokenizer(vocab=_A, unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ), [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ), ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ), ["[UNK]", "runn", "##ing"] ) def snake_case__ ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def snake_case__ ( self ): '''simple docstring''' self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def snake_case__ ( self ): '''simple docstring''' self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: lowercase__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]] ) def snake_case__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_A, **_A ) lowercase__ = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' lowercase__ = tokenizer_r.encode_plus( _A, return_attention_mask=_A, return_token_type_ids=_A, return_offsets_mapping=_A, add_special_tokens=_A, ) lowercase__ = tokenizer_r.do_lower_case if hasattr(_A, "do_lower_case" ) else False lowercase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = ["的", "人", "有"] lowercase__ = "".join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = True lowercase__ = self.tokenizer_class.from_pretrained(_A, **_A ) lowercase__ = self.rust_tokenizer_class.from_pretrained(_A, **_A ) lowercase__ = tokenizer_p.encode(_A, add_special_tokens=_A ) lowercase__ = tokenizer_r.encode(_A, add_special_tokens=_A ) lowercase__ = tokenizer_r.convert_ids_to_tokens(_A ) lowercase__ = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A, _A ) self.assertListEqual(_A, _A ) lowercase__ = False lowercase__ = self.rust_tokenizer_class.from_pretrained(_A, **_A ) lowercase__ = self.tokenizer_class.from_pretrained(_A, **_A ) lowercase__ = tokenizer_r.encode(_A, add_special_tokens=_A ) lowercase__ = tokenizer_p.encode(_A, add_special_tokens=_A ) lowercase__ = tokenizer_r.convert_ids_to_tokens(_A ) lowercase__ = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A, _A ) self.assertListEqual(_A, _A ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) lowercase__ = tokenizer.encode("你好", add_special_tokens=_A ) lowercase__ = tokenizer.encode("你是谁", add_special_tokens=_A ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_A ) lowercase__ = tokenizer.build_inputs_with_special_tokens(_A, _A ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "你好,你是谁" lowercase__ = tokenizer.tokenize(_A ) lowercase__ = tokenizer.convert_tokens_to_ids(_A ) lowercase__ = tokenizer.convert_tokens_to_shape_ids(_A ) lowercase__ = tokenizer.convert_tokens_to_pronunciation_ids(_A ) lowercase__ = tokenizer.prepare_for_model( _A, _A, _A, add_special_tokens=_A ) lowercase__ = tokenizer.encode_plus(_A, add_special_tokens=_A ) self.assertEqual(_A, _A )
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_: Union[str, Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_: str = ["DeiTFeatureExtractor"] UpperCAmelCase_: Optional[int] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_: Tuple = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_: Union[str, Any] = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCAmelCase_: Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_: List[str] = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } lowerCAmelCase_: str = { "google/electra-small-generator": 5_1_2, "google/electra-base-generator": 5_1_2, "google/electra-large-generator": 5_1_2, "google/electra-small-discriminator": 5_1_2, "google/electra-base-discriminator": 5_1_2, "google/electra-large-discriminator": 5_1_2, } lowerCAmelCase_: List[str] = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class a__ ( _a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ElectraTokenizer def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=True, _UpperCAmelCase="[UNK]", _UpperCAmelCase="[SEP]", _UpperCAmelCase="[PAD]", _UpperCAmelCase="[CLS]", _UpperCAmelCase="[MASK]", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, tokenizer_file=_UpperCAmelCase, do_lower_case=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, tokenize_chinese_chars=_UpperCAmelCase, strip_accents=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase", _UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents", _UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars", _UpperCAmelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(_UpperCAmelCase, normalizer_state.pop("type" ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**_UpperCAmelCase ) lowercase__ = do_lower_case def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(_UpperCAmelCase, name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=7, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=99, _UpperCAmelCase=32, _UpperCAmelCase=2, _UpperCAmelCase=4, _UpperCAmelCase=37, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=16, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=3, _UpperCAmelCase=4, _UpperCAmelCase=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 384 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = "gelu" lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = 128 lowercase__ = 2 lowercase__ = 9 lowercase__ = 1 lowercase__ = None def snake_case__ ( self ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=_UpperCAmelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TFConvBertModel(config=_UpperCAmelCase ) lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase__ = [input_ids, input_mask] lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TFConvBertForMaskedLM(config=_UpperCAmelCase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) lowercase__ = tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFConvBertForTokenClassification(config=_UpperCAmelCase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): snake_case_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False def snake_case__ ( self ): '''simple docstring''' lowercase__ = TFConvBertModelTester(self ) lowercase__ = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=37 ) def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True lowercase__ = True if hasattr(_UpperCAmelCase, "use_cache" ): lowercase__ = True lowercase__ = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester, "key_length", _UpperCAmelCase ) for model_class in self.all_model_classes: lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase, saved_model=_UpperCAmelCase ) lowercase__ = os.path.join(_UpperCAmelCase, "saved_model", "1" ) lowercase__ = tf.keras.models.load_model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) if self.is_encoder_decoder: lowercase__ = outputs["encoder_hidden_states"] lowercase__ = outputs["encoder_attentions"] else: lowercase__ = outputs["hidden_states"] lowercase__ = outputs["attentions"] self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase ) lowercase__ = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True lowercase__ = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester, "key_length", _UpperCAmelCase ) lowercase__ = getattr(self.model_tester, "key_length", _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase ): lowercase__ = len(_UpperCAmelCase ) self.assertEqual(out_len % 2, 0 ) lowercase__ = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(_UpperCAmelCase ): lowercase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) lowercase__ = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states, _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states, _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states, _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states, _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = [1, 6, 768] self.assertEqual(output.shape, _UpperCAmelCase ) lowercase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3], _UpperCAmelCase, atol=1E-4 )
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class a__ ( __lowerCAmelCase ): def snake_case__ ( self ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def snake_case__ ( self ): '''simple docstring''' lowercase__ = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(lowerCamelCase__ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self._create_example_records() lowercase__ = Dataset.from_list(lowerCamelCase__ ) self.assertListEqual(dset.column_names, ["col_1", "col_2"] ) for i, r in enumerate(lowerCamelCase__ ): self.assertDictEqual(lowerCamelCase__, example_records[i] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self._create_example_records() lowercase__ = Dataset.from_list(lowerCamelCase__ ) lowercase__ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info, dset_from_dict.info ) def snake_case__ ( self ): # checks what happens with missing columns '''simple docstring''' lowercase__ = [{'''col_1''': 1}, {'''col_2''': '''x'''}] lowercase__ = Dataset.from_list(lowerCamelCase__ ) self.assertDictEqual(dset[0], {"col_1": 1} ) self.assertDictEqual(dset[1], {"col_1": None} ) # NB: first record is used for columns def snake_case__ ( self ): # checks if the type can be inferred from the second record '''simple docstring''' lowercase__ = [{'''col_1''': []}, {'''col_1''': [1, 2]}] lowercase__ = Dataset.from_list(lowerCamelCase__ ) self.assertEqual(dset.info.features["col_1"], Sequence(Value("int64" ) ) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase__ ), 0 ) self.assertListEqual(dset.column_names, [] )
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __a ( A , A ): lowercase__ = [] for part_id in partition_order: lowercase__ = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __a ( ): lowercase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ = spark.range(1_00 ).repartition(1 ) lowercase__ = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __a ( ): lowercase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ = spark.range(10 ).repartition(2 ) lowercase__ = [1, 0] lowercase__ = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. lowercase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowercase__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): lowercase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ = spark.range(10 ).repartition(1 ) lowercase__ = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __a ( ): lowercase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: lowercase__ = lambda A : x.reverse() lowercase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) lowercase__ = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): lowercase__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): lowercase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowercase__ = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): lowercase__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowercase__ = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): lowercase__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __a ( ): lowercase__ = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ = spark.range(1_00 ).repartition(1 ) lowercase__ = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase_: Tuple = logging.get_logger(__name__) def __a ( A , A , A ): '''simple docstring''' lowercase__ = UniSpeechSatForSequenceClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) lowercase__ = downstream_dict["projector.weight"] lowercase__ = downstream_dict["projector.bias"] lowercase__ = downstream_dict["model.post_net.linear.weight"] lowercase__ = downstream_dict["model.post_net.linear.bias"] return model def __a ( A , A , A ): '''simple docstring''' lowercase__ = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) lowercase__ = downstream_dict["model.linear.weight"] lowercase__ = downstream_dict["model.linear.bias"] return model def __a ( A , A , A ): '''simple docstring''' lowercase__ = UniSpeechSatForXVector.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) lowercase__ = downstream_dict["connector.weight"] lowercase__ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase__ = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] lowercase__ = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] lowercase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowercase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowercase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowercase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowercase__ = downstream_dict["objective.W"] return model @torch.no_grad() def __a ( A , A , A , A ): '''simple docstring''' lowercase__ = torch.load(UpperCamelCase__ , map_location="cpu" ) lowercase__ = checkpoint["Downstream"] lowercase__ = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) lowercase__ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): lowercase__ = convert_classification(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("ForAudioFrameClassification" ): lowercase__ = convert_diarization(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("ForXVector" ): lowercase__ = convert_xvector(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: lowercase__ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowerCAmelCase_: List[Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") lowerCAmelCase_: Optional[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class a__ ( unittest.TestCase ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase=7, _UpperCAmelCase=3, _UpperCAmelCase=30, _UpperCAmelCase=400, _UpperCAmelCase=True, _UpperCAmelCase=None, _UpperCAmelCase=True, _UpperCAmelCase=[0.5, 0.5, 0.5], _UpperCAmelCase=[0.5, 0.5, 0.5], _UpperCAmelCase=True, _UpperCAmelCase=1 / 255, _UpperCAmelCase=True, ): '''simple docstring''' lowercase__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_pad def snake_case__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False ): '''simple docstring''' if not batched: lowercase__ = image_inputs[0] if isinstance(_UpperCAmelCase, Image.Image ): lowercase__ , lowercase__ = image.size else: lowercase__ , lowercase__ = image.shape[1], image.shape[2] if w < h: lowercase__ = int(self.size["shortest_edge"] * h / w ) lowercase__ = self.size["shortest_edge"] elif w > h: lowercase__ = self.size["shortest_edge"] lowercase__ = int(self.size["shortest_edge"] * w / h ) else: lowercase__ = self.size["shortest_edge"] lowercase__ = self.size["shortest_edge"] else: lowercase__ = [] for image in image_inputs: lowercase__ , lowercase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ = max(_UpperCAmelCase, key=lambda _UpperCAmelCase : item[0] )[0] lowercase__ = max(_UpperCAmelCase, key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( _a , unittest.TestCase ): snake_case_ = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self ): '''simple docstring''' lowercase__ = DeformableDetrImageProcessingTester(self ) @property def snake_case__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase, "image_mean" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "image_std" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "do_normalize" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "do_resize" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "do_rescale" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "do_pad" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "size" ) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad, _UpperCAmelCase ) lowercase__ = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=_UpperCAmelCase ) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase, batched=_UpperCAmelCase ) lowercase__ = image_processing(_UpperCAmelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCAmelCase, numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ = image_processing(_UpperCAmelCase, return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase, batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCAmelCase, torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ = image_processing(_UpperCAmelCase, return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(_UpperCAmelCase, batched=_UpperCAmelCase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r" ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = {"image_id": 3_9769, "annotations": target} # encode them lowercase__ = DeformableDetrImageProcessor() lowercase__ = image_processing(images=_UpperCAmelCase, annotations=_UpperCAmelCase, return_tensors="pt" ) # verify pixel values lowercase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape, _UpperCAmelCase ) lowercase__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], _UpperCAmelCase, atol=1E-4 ) ) # verify area lowercase__ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], _UpperCAmelCase ) ) # verify boxes lowercase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape, _UpperCAmelCase ) lowercase__ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], _UpperCAmelCase, atol=1E-3 ) ) # verify image_id lowercase__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], _UpperCAmelCase ) ) # verify is_crowd lowercase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], _UpperCAmelCase ) ) # verify class_labels lowercase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], _UpperCAmelCase ) ) # verify orig_size lowercase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], _UpperCAmelCase ) ) # verify size lowercase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], _UpperCAmelCase ) ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r" ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} lowercase__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowercase__ = DeformableDetrImageProcessor(format="coco_panoptic" ) lowercase__ = image_processing(images=_UpperCAmelCase, annotations=_UpperCAmelCase, masks_path=_UpperCAmelCase, return_tensors="pt" ) # verify pixel values lowercase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape, _UpperCAmelCase ) lowercase__ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], _UpperCAmelCase, atol=1E-4 ) ) # verify area lowercase__ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], _UpperCAmelCase ) ) # verify boxes lowercase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape, _UpperCAmelCase ) lowercase__ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], _UpperCAmelCase, atol=1E-3 ) ) # verify image_id lowercase__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], _UpperCAmelCase ) ) # verify is_crowd lowercase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], _UpperCAmelCase ) ) # verify class_labels lowercase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], _UpperCAmelCase ) ) # verify masks lowercase__ = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(), _UpperCAmelCase ) # verify orig_size lowercase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], _UpperCAmelCase ) ) # verify size lowercase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], _UpperCAmelCase ) )
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase_: List[str] = "src/transformers" lowerCAmelCase_: Any = "docs/source/en/tasks" def __a ( A , A , A ): '''simple docstring''' with open(A , "r" , encoding="utf-8" , newline="\n" ) as f: lowercase__ = f.readlines() # Find the start prompt. lowercase__ = 0 while not lines[start_index].startswith(A ): start_index += 1 start_index += 1 lowercase__ = start_index while not lines[end_index].startswith(A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase_: Dict = direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase_: Dict = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase_: Union[str, Any] = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def __a ( A ): '''simple docstring''' lowercase__ = TASK_GUIDE_TO_MODELS[task_guide] lowercase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(A , set() ) lowercase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def __a ( A , A=False ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = _find_text_in_file( filename=os.path.join(A , A ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowercase__ = get_model_list_for_task(A ) if current_list != new_list: if overwrite: with open(os.path.join(A , A ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' " to fix this." ) if __name__ == "__main__": lowerCAmelCase_: Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase_: Dict = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" def __a ( A ): '''simple docstring''' stooge(A , 0 , len(A ) - 1 ) return arr def __a ( A , A , A ): '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase__ , lowercase__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(A , A , (h - t) ) # Recursively sort last 2/3 elements stooge(A , i + t , (A) ) # Recursively sort first 2/3 elements stooge(A , A , (h - t) ) if __name__ == "__main__": lowerCAmelCase_: int = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_: Union[str, Any] = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_: List[str] = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCAmelCase_: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __a ( ): '''simple docstring''' lowercase__ = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=A , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=A , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=A ) return parser.parse_args() def __a ( ): '''simple docstring''' lowercase__ = parse_args() # Import training_script as a module. lowercase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase__ = script_fpath.stem lowercase__ = importlib.import_module(A ) # Patch sys.argv lowercase__ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" import numpy as np import datasets lowerCAmelCase_: Any = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" lowerCAmelCase_: Optional[int] = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" lowerCAmelCase_: List[str] = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def snake_case__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float", id="sequence" ), id="X" ), } ), ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = np.array(_UpperCAmelCase ) lowercase__ = np.array(_UpperCAmelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction lowercase__ = X - np.mean(_UpperCAmelCase ) lowercase__ = np.cov(reference_distribution.T ) try: lowercase__ = np.linalg.inv(_UpperCAmelCase ) except np.linalg.LinAlgError: lowercase__ = np.linalg.pinv(_UpperCAmelCase ) lowercase__ = np.dot(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = np.dot(_UpperCAmelCase, X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase_: Union[str, Any] = version.parse(importlib_metadata.version("nltk")) if NLTK_VERSION >= version.Version("3.6.4"): from nltk import word_tokenize lowerCAmelCase_: Any = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" lowerCAmelCase_: Optional[int] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" lowerCAmelCase_: List[Any] = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def snake_case__ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence" ), "references": datasets.Value("string", id="sequence" ), } ), codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"], reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ], ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=0.9, _UpperCAmelCase=3, _UpperCAmelCase=0.5 ): '''simple docstring''' if NLTK_VERSION >= version.Version("3.6.5" ): lowercase__ = [ meteor_score.single_meteor_score( word_tokenize(_UpperCAmelCase ), word_tokenize(_UpperCAmelCase ), alpha=_UpperCAmelCase, beta=_UpperCAmelCase, gamma=_UpperCAmelCase ) for ref, pred in zip(_UpperCAmelCase, _UpperCAmelCase ) ] else: lowercase__ = [ meteor_score.single_meteor_score(_UpperCAmelCase, _UpperCAmelCase, alpha=_UpperCAmelCase, beta=_UpperCAmelCase, gamma=_UpperCAmelCase ) for ref, pred in zip(_UpperCAmelCase, _UpperCAmelCase ) ] return {"meteor": np.mean(_UpperCAmelCase )}
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class a__ ( metaclass=_a ): snake_case_ = ["torch", "scipy"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["torch", "scipy"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "scipy"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "scipy"] )
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_: Optional[int] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["input_features", "is_longer"] def __init__( self, _UpperCAmelCase=64, _UpperCAmelCase=4_8000, _UpperCAmelCase=480, _UpperCAmelCase=10, _UpperCAmelCase=1024, _UpperCAmelCase=0.0, _UpperCAmelCase=False, _UpperCAmelCase = 0, _UpperCAmelCase = 1_4000, _UpperCAmelCase = None, _UpperCAmelCase = "fusion", _UpperCAmelCase = "repeatpad", **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, return_attention_mask=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = top_db lowercase__ = truncation lowercase__ = padding lowercase__ = fft_window_size lowercase__ = (fft_window_size >> 1) + 1 lowercase__ = hop_length lowercase__ = max_length_s lowercase__ = max_length_s * sampling_rate lowercase__ = sampling_rate lowercase__ = frequency_min lowercase__ = frequency_max lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=_UpperCAmelCase, min_frequency=_UpperCAmelCase, max_frequency=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, norm=_UpperCAmelCase, mel_scale="htk", ) lowercase__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=_UpperCAmelCase, min_frequency=_UpperCAmelCase, max_frequency=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.fft_window_size, "hann" ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=_UpperCAmelCase, log_mel="dB", ) return log_mel_spectrogram.T def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowercase__ = [0] # randomly choose index for each part lowercase__ = np.random.choice(ranges[0] ) lowercase__ = np.random.choice(ranges[1] ) lowercase__ = np.random.choice(ranges[2] ) lowercase__ = mel[idx_front : idx_front + chunk_frames, :] lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :] lowercase__ = mel[idx_back : idx_back + chunk_frames, :] lowercase__ = torch.tensor(mel[None, None, :] ) lowercase__ = torch.nn.functional.interpolate( _UpperCAmelCase, size=[chunk_frames, 64], mode="bilinear", align_corners=_UpperCAmelCase ) lowercase__ = mel_shrink[0][0].numpy() lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowercase__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowercase__ = len(_UpperCAmelCase ) - max_length lowercase__ = np.random.randint(0, overflow + 1 ) lowercase__ = waveform[idx : idx + max_length] lowercase__ = self._np_extract_fbank_features(_UpperCAmelCase, self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowercase__ = self._np_extract_fbank_features(_UpperCAmelCase, self.mel_filters ) lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowercase__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowercase__ = np.stack([mel, mel, mel, mel], axis=0 ) lowercase__ = False else: lowercase__ = self._random_mel_fusion(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) lowercase__ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: lowercase__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowercase__ = int(max_length / len(_UpperCAmelCase ) ) lowercase__ = np.stack(np.tile(_UpperCAmelCase, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowercase__ = int(max_length / len(_UpperCAmelCase ) ) lowercase__ = np.stack(np.tile(_UpperCAmelCase, _UpperCAmelCase ) ) lowercase__ = np.pad(_UpperCAmelCase, (0, max_length - waveform.shape[0]), mode="constant", constant_values=0 ) if truncation == "fusion": lowercase__ = self._np_extract_fbank_features(_UpperCAmelCase, self.mel_filters ) lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: lowercase__ = self._np_extract_fbank_features(_UpperCAmelCase, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = truncation if truncation is not None else self.truncation lowercase__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray(_UpperCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. lowercase__ = [ self._get_input_mel(_UpperCAmelCase, max_length if max_length else self.nb_max_samples, _UpperCAmelCase, _UpperCAmelCase ) for waveform in raw_speech ] lowercase__ = [] lowercase__ = [] for mel, longer in padded_inputs: input_mel.append(_UpperCAmelCase ) is_longer.append(_UpperCAmelCase ) if truncation == "fusion" and sum(_UpperCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowercase__ = np.random.randint(0, len(_UpperCAmelCase ) ) lowercase__ = True if isinstance(input_mel[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowercase__ = [[longer] for longer in is_longer] lowercase__ = {"input_features": input_mel, "is_longer": is_longer} lowercase__ = BatchFeature(_UpperCAmelCase ) if return_tensors is not None: lowercase__ = input_features.convert_to_tensors(_UpperCAmelCase ) return input_features
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" def __a ( A ): '''simple docstring''' lowercase__ = len(A ) for i in range(1 , A ): lowercase__ = collection[i] lowercase__ = 0 lowercase__ = i - 1 while low <= high: lowercase__ = (low + high) // 2 if val < collection[mid]: lowercase__ = mid - 1 else: lowercase__ = mid + 1 for j in range(A , A , -1 ): lowercase__ = collection[j - 1] lowercase__ = val return collection if __name__ == "__main__": lowerCAmelCase_: str = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_: str = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" def __a ( A , A ): '''simple docstring''' lowercase__ = len(A ) + 1 lowercase__ = len(A ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowercase__ = [[0 for i in range(A )] for j in range(A )] # since string of zero length match pattern of zero length lowercase__ = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , A ): lowercase__ = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , A ): lowercase__ = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , A ): for j in range(1 , A ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowercase__ = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowercase__ = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowercase__ = dp[i - 1][j] else: lowercase__ = 0 else: lowercase__ = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") lowerCAmelCase_: List[str] = "aab" lowerCAmelCase_: Any = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCAmelCase_: List[Any] = Mapping[str, np.ndarray] lowerCAmelCase_: Tuple = Mapping[str, Any] # Is a nested dict. lowerCAmelCase_: str = 0.01 @dataclasses.dataclass(frozen=_a ) class a__ : snake_case_ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. snake_case_ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. snake_case_ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. snake_case_ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. snake_case_ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions snake_case_ = None # Optional remark about the protein. Included as a comment in output PDB # files snake_case_ = None # Templates used to generate this protein (prediction-only) snake_case_ = None # Chain corresponding to each parent snake_case_ = None def __a ( A ): '''simple docstring''' lowercase__ = r"(\[[A-Z]+\]\n)" lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = "X" # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def __a ( A , A = 0 ): '''simple docstring''' lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f'''REMARK {remark}''' ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ["N/A"] pdb_headers.append(f'''PARENT {' '.join(A )}''' ) return pdb_headers def __a ( A , A ): '''simple docstring''' lowercase__ = [] lowercase__ = pdb_str.split("\n" ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f'''REMARK {remark}''' ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ["N/A"] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [["N/A"]] def make_parent_line(A ) -> str: return f'''PARENT {' '.join(A )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ["N/A"] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def __a ( A ): '''simple docstring''' lowercase__ = residue_constants.restypes + ["X"] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = "ATOM" lowercase__ = atom_name if len(A ) == 4 else f''' {atom_name}''' lowercase__ = "" lowercase__ = "" lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = "" lowercase__ = "A" if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' f'''{res_name_a:>3} {chain_tag:>1}''' f'''{residue_index[i]:>4}{insertion_code:>1} ''' f'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' f'''{occupancy:>6.2f}{b_factor:>6.2f} ''' f'''{element:>2}{charge:>2}''' ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = "TER" lowercase__ = ( f'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(A ) def __a ( A ): '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def __a ( A , A , A = None , A = None , A = None , A = None , A = None , ): '''simple docstring''' return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( A ): '''simple docstring''' lowercase__ , lowercase__ = image.size lowercase__ , lowercase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase__ = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) lowercase__ = np.array(A ).astype(np.floataa ) / 255.0 lowercase__ = image[None].transpose(0 , 3 , 1 , 2 ) lowercase__ = torch.from_numpy(A ) return 2.0 * image - 1.0 class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' super().__init__() self.register_modules(vqvae=_UpperCAmelCase, unet=_UpperCAmelCase, scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self, _UpperCAmelCase = None, _UpperCAmelCase = 1, _UpperCAmelCase = 100, _UpperCAmelCase = 0.0, _UpperCAmelCase = None, _UpperCAmelCase = "pil", _UpperCAmelCase = True, ): '''simple docstring''' if isinstance(_UpperCAmelCase, PIL.Image.Image ): lowercase__ = 1 elif isinstance(_UpperCAmelCase, torch.Tensor ): lowercase__ = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCAmelCase )}''' ) if isinstance(_UpperCAmelCase, PIL.Image.Image ): lowercase__ = preprocess(_UpperCAmelCase ) lowercase__ , lowercase__ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase__ = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase__ = next(self.unet.parameters() ).dtype lowercase__ = randn_tensor(_UpperCAmelCase, generator=_UpperCAmelCase, device=self.device, dtype=_UpperCAmelCase ) lowercase__ = image.to(device=self.device, dtype=_UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_UpperCAmelCase, device=self.device ) lowercase__ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for t in self.progress_bar(_UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. lowercase__ = torch.cat([latents, image], dim=1 ) lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase, _UpperCAmelCase ) # predict the noise residual lowercase__ = self.unet(_UpperCAmelCase, _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE lowercase__ = self.vqvae.decode(_UpperCAmelCase ).sample lowercase__ = torch.clamp(_UpperCAmelCase, -1.0, 1.0 ) lowercase__ = image / 2 + 0.5 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __a ( ): '''simple docstring''' lowercase__ = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) lowercase__ = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(A ) DownloadCommand.register_subcommand(A ) EnvironmentCommand.register_subcommand(A ) RunCommand.register_subcommand(A ) ServeCommand.register_subcommand(A ) UserCommands.register_subcommand(A ) AddNewModelCommand.register_subcommand(A ) AddNewModelLikeCommand.register_subcommand(A ) LfsCommands.register_subcommand(A ) PTtoTFCommand.register_subcommand(A ) # Let's go lowercase__ = parser.parse_args() if not hasattr(A , "func" ): parser.print_help() exit(1 ) # Run lowercase__ = args.func(A ) service.run() if __name__ == "__main__": main()
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a__ : def __init__( self, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 32 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = "gelu" lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = None def snake_case__ ( self ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, pad_token_id=1, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ): '''simple docstring''' ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TFEsmModel(config=_UpperCAmelCase ) lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowercase__ = model(_UpperCAmelCase ) lowercase__ = [input_ids, input_mask] lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = True lowercase__ = TFEsmModel(config=_UpperCAmelCase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } lowercase__ = model(_UpperCAmelCase ) lowercase__ = [input_ids, input_mask] lowercase__ = model(_UpperCAmelCase, encoder_hidden_states=_UpperCAmelCase ) # Also check the case where encoder outputs are not passed lowercase__ = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TFEsmForMaskedLM(config=_UpperCAmelCase ) lowercase__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFEsmForTokenClassification(config=_UpperCAmelCase ) lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask} lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( _a , _a , unittest.TestCase ): snake_case_ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def snake_case__ ( self ): '''simple docstring''' lowercase__ = TFEsmModelTester(self ) lowercase__ = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=37 ) def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFEsmModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip("Protein models do not support embedding resizing." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("Protein models do not support embedding resizing." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase__ = model.get_bias() assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) for k, v in name.items(): assert isinstance(_UpperCAmelCase, tf.Variable ) else: lowercase__ = model.get_output_embeddings() assert x is None lowercase__ = model.get_bias() assert name is None @require_tf class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = [1, 6, 33] self.assertEqual(list(output.numpy().shape ), _UpperCAmelCase ) # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-2 ) ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) lowercase__ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__ = model(_UpperCAmelCase )[0] # compare the actual values for a slice. lowercase__ = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4 ) )
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = LEDTokenizer snake_case_ = LEDTokenizerFast snake_case_ = True def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ = {"unk_token": "<unk>"} lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCAmelCase ) ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def snake_case__ ( self ): '''simple docstring''' return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def snake_case__ ( self ): '''simple docstring''' return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ = tokenizer(_UpperCAmelCase, max_length=len(_UpperCAmelCase ), padding=_UpperCAmelCase, return_tensors="pt" ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 9), batch.input_ids.shape ) self.assertEqual((2, 9), batch.attention_mask.shape ) lowercase__ = batch.input_ids.tolist()[0] self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors="pt" ) self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("labels", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ = tokenizer(text_target=_UpperCAmelCase, max_length=32, padding="max_length", return_tensors="pt" ) self.assertEqual(32, targets["input_ids"].shape[1] ) @require_torch def snake_case__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ = tokenizer( ["I am a small frog" * 1024, "I am a small frog"], padding=_UpperCAmelCase, truncation=_UpperCAmelCase, return_tensors="pt" ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(batch.input_ids.shape, (2, 5122) ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = ["A long paragraph for summarization."] lowercase__ = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ = tokenizer(_UpperCAmelCase, return_tensors="pt" ) lowercase__ = tokenizer(text_target=_UpperCAmelCase, return_tensors="pt" ) lowercase__ = inputs["input_ids"] lowercase__ = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def snake_case__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase__ = ["Summary of the text.", "Another summary."] lowercase__ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase ) lowercase__ = [[0] * len(_UpperCAmelCase ) for x in encoded_output["input_ids"]] lowercase__ = tokenizer.pad(_UpperCAmelCase ) self.assertSequenceEqual(outputs["global_attention_mask"], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = self.tokenizer_class.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = "A, <mask> AllenNLP sentence." lowercase__ = tokenizer_r.encode_plus(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase, return_token_type_ids=_UpperCAmelCase ) lowercase__ = tokenizer_p.encode_plus(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase, return_token_type_ids=_UpperCAmelCase ) self.assertEqual(sum(tokens_r["token_type_ids"] ), sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ), sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ), ) lowercase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( _UpperCAmelCase, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __a ( A , A , A ): '''simple docstring''' lowercase__ = MobileBertConfig.from_json_file(A ) print(f'''Building PyTorch model from configuration: {config}''' ) lowercase__ = MobileBertForPreTraining(A ) # Load weights from tf checkpoint lowercase__ = load_tf_weights_in_mobilebert(A , A , A ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_: Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase_: Optional[Any] = numpy.array([0, 0]) lowerCAmelCase_: Optional[Any] = numpy.array([0.5, 0.8_660_254]) lowerCAmelCase_: List[str] = numpy.array([1, 0]) lowerCAmelCase_: Any = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __a ( A , A ): '''simple docstring''' lowercase__ = initial_vectors for _ in range(A ): lowercase__ = iteration_step(A ) return vectors def __a ( A ): '''simple docstring''' lowercase__ = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase__ = vectors[i + 1] new_vectors.append(A ) lowercase__ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __a ( A , A ): '''simple docstring''' lowercase__ = numpy.radians(A ) lowercase__ , lowercase__ = numpy.cos(A ), numpy.sin(A ) lowercase__ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(A , A ) def __a ( A ): '''simple docstring''' lowercase__ = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase__ , lowercase__ = zip(*A ) plt.plot(A , A ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_: Any = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" def __a ( A ): lowercase__ = [0] * len(A ) for i in range(1 , len(A ) ): # use last results for better performance - dynamic programming lowercase__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ = j return prefix_result def __a ( A ): return max(prefix_function(A ) ) if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a__ ( _a ): snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "OwlViTImageProcessor" snake_case_ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", _UpperCAmelCase, ) lowercase__ = kwargs.pop("feature_extractor" ) lowercase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase, _UpperCAmelCase ) def __call__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase="max_length", _UpperCAmelCase="np", **_UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(_UpperCAmelCase, _UpperCAmelCase ) or (isinstance(_UpperCAmelCase, _UpperCAmelCase ) and not isinstance(text[0], _UpperCAmelCase )): lowercase__ = [self.tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase )] elif isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(text[0], _UpperCAmelCase ): lowercase__ = [] # Maximum number of queries across batch lowercase__ = max([len(_UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(_UpperCAmelCase ) != max_num_queries: lowercase__ = t + [" "] * (max_num_queries - len(_UpperCAmelCase )) lowercase__ = self.tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase ) encodings.append(_UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": lowercase__ = np.concatenate([encoding["input_ids"] for encoding in encodings], axis=0 ) lowercase__ = np.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowercase__ = jnp.concatenate([encoding["input_ids"] for encoding in encodings], axis=0 ) lowercase__ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowercase__ = torch.cat([encoding["input_ids"] for encoding in encodings], dim=0 ) lowercase__ = torch.cat([encoding["attention_mask"] for encoding in encodings], dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowercase__ = tf.stack([encoding["input_ids"] for encoding in encodings], axis=0 ) lowercase__ = tf.stack([encoding["attention_mask"] for encoding in encodings], axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) lowercase__ = BatchEncoding() lowercase__ = input_ids lowercase__ = attention_mask if query_images is not None: lowercase__ = BatchEncoding() lowercase__ = self.image_processor( _UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase ).pixel_values lowercase__ = query_pixel_values if images is not None: lowercase__ = self.image_processor(_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase ) if text is not None and images is not None: lowercase__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowercase__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ), tensor_type=_UpperCAmelCase ) def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase, **_UpperCAmelCase ) def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase, **_UpperCAmelCase ) @property def snake_case__ ( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", _UpperCAmelCase, ) return self.image_processor_class @property def snake_case__ ( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", _UpperCAmelCase, ) return self.image_processor
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_: Union[str, Any] = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase_: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
def __a ( A ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: int = logging.get_logger(__name__) lowerCAmelCase_: Optional[Any] = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class a__ ( _a ): snake_case_ = "fnet" def __init__( self, _UpperCAmelCase=3_2000, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu_new", _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=4, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=False, _UpperCAmelCase=512, _UpperCAmelCase=3, _UpperCAmelCase=1, _UpperCAmelCase=2, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = use_tpu_fourier_optimizations lowercase__ = tpu_short_seq_length
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" def __a ( A , A ): '''simple docstring''' while b: lowercase__ , lowercase__ = b, a % b return a def __a ( A , A ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(A , a % b ) def __a ( ): '''simple docstring''' print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=[30, 30], _UpperCAmelCase=2, _UpperCAmelCase=3, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=32, _UpperCAmelCase=5, _UpperCAmelCase=4, _UpperCAmelCase=37, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=10, _UpperCAmelCase=0.02, _UpperCAmelCase=3, _UpperCAmelCase=None, _UpperCAmelCase=8, _UpperCAmelCase=10, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = scope lowercase__ = n_targets lowercase__ = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowercase__ = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowercase__ = num_patches + 1 + self.num_detection_tokens def snake_case__ ( self ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowercase__ = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowercase__ = [] for i in range(self.batch_size ): lowercase__ = {} lowercase__ = torch.randint( high=self.num_labels, size=(self.n_targets,), device=_UpperCAmelCase ) lowercase__ = torch.rand(self.n_targets, 4, device=_UpperCAmelCase ) labels.append(_UpperCAmelCase ) lowercase__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self ): '''simple docstring''' return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=_UpperCAmelCase, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = YolosModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = YolosForObjectDetection(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(pixel_values=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) lowercase__ = model(pixel_values=_UpperCAmelCase, labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( _a , _a , unittest.TestCase ): snake_case_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else () snake_case_ = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowercase__ = [] for i in range(self.model_tester.batch_size ): lowercase__ = {} lowercase__ = torch.ones( size=(self.model_tester.n_targets,), device=_UpperCAmelCase, dtype=torch.long ) lowercase__ = torch.ones( self.model_tester.n_targets, 4, device=_UpperCAmelCase, dtype=torch.float ) labels.append(_UpperCAmelCase ) lowercase__ = labels return inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ = YolosModelTester(self ) lowercase__ = ConfigTester(self, config_class=_UpperCAmelCase, has_text_modality=_UpperCAmelCase, hidden_size=37 ) def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase, nn.Linear ) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True # in YOLOS, the seq_len is different lowercase__ = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) lowercase__ = len(_UpperCAmelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) lowercase__ = 1 self.assertEqual(out_len + added_hidden_states, len(_UpperCAmelCase ) ) lowercase__ = outputs.attentions self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def snake_case__ ( self ): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase ) # YOLOS has a different seq_length lowercase__ = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = YolosModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __a ( ): '''simple docstring''' lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def snake_case__ ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase, return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(inputs.pixel_values ) # verify outputs lowercase__ = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape, _UpperCAmelCase ) lowercase__ = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]], device=_UpperCAmelCase, ) lowercase__ = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]], device=_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], _UpperCAmelCase, atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], _UpperCAmelCase, atol=1E-4 ) ) # verify postprocessing lowercase__ = image_processor.post_process_object_detection( _UpperCAmelCase, threshold=0.3, target_sizes=[image.size[::-1]] )[0] lowercase__ = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(_UpperCAmelCase ) lowercase__ = [75, 75, 17, 63, 17] lowercase__ = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(_UpperCAmelCase ) self.assertEqual(len(results["scores"] ), 5 ) self.assertTrue(torch.allclose(results["scores"], _UpperCAmelCase, atol=1E-4 ) ) self.assertSequenceEqual(results["labels"].tolist(), _UpperCAmelCase ) self.assertTrue(torch.allclose(results["boxes"][0, :], _UpperCAmelCase ) )
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_: List[Any] = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: str = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCAmelCase_: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCAmelCase_: List[str] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["input_features", "attention_mask"] def __init__( self, _UpperCAmelCase=80, _UpperCAmelCase=1_6000, _UpperCAmelCase=0.0, _UpperCAmelCase=10, _UpperCAmelCase=25, _UpperCAmelCase="hamming_window", _UpperCAmelCase=3_2768.0, _UpperCAmelCase=0.97, _UpperCAmelCase=1.0, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=False, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = feature_size lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = hop_length lowercase__ = win_length lowercase__ = frame_signal_scale lowercase__ = preemphasis_coeff lowercase__ = mel_floor lowercase__ = normalize_means lowercase__ = normalize_vars lowercase__ = win_function lowercase__ = return_attention_mask lowercase__ = win_length * sampling_rate // 1000 lowercase__ = hop_length * sampling_rate // 1000 lowercase__ = optimal_fft_length(self.sample_size ) lowercase__ = (self.n_fft // 2) + 1 def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if self.win_function == "hamming_window": lowercase__ = window_function(window_length=self.sample_size, name=self.win_function, periodic=_UpperCAmelCase ) else: lowercase__ = window_function(window_length=self.sample_size, name=self.win_function ) lowercase__ = mel_filter_bank( num_frequency_bins=self.n_freqs, num_mel_filters=self.feature_size, min_frequency=0.0, max_frequency=self.sampling_rate / 2.0, sampling_rate=self.sampling_rate, ) lowercase__ = spectrogram( one_waveform * self.frame_signal_scale, window=_UpperCAmelCase, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, center=_UpperCAmelCase, preemphasis=self.preemphasis_coeff, mel_filters=_UpperCAmelCase, mel_floor=self.mel_floor, log_mel="log", ) return msfc_features.T def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if self.normalize_means: lowercase__ = x[:input_length].mean(axis=0 ) lowercase__ = np.subtract(_UpperCAmelCase, _UpperCAmelCase ) if self.normalize_vars: lowercase__ = x[:input_length].std(axis=0 ) lowercase__ = np.divide(_UpperCAmelCase, _UpperCAmelCase ) if input_length < x.shape[0]: lowercase__ = padding_value # make sure array is in float32 lowercase__ = x.astype(np.floataa ) return x def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_UpperCAmelCase, _UpperCAmelCase, self.padding_value ) for x, n in zip(_UpperCAmelCase, _UpperCAmelCase )] def __call__( self, _UpperCAmelCase, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [raw_speech] # extract fbank features lowercase__ = [self._extract_mfsc_features(_UpperCAmelCase ) for one_waveform in raw_speech] # convert into correct format for padding lowercase__ = BatchFeature({"input_features": features} ) lowercase__ = self.pad( _UpperCAmelCase, padding=_UpperCAmelCase, max_length=_UpperCAmelCase, truncation=_UpperCAmelCase, pad_to_multiple_of=_UpperCAmelCase, return_attention_mask=_UpperCAmelCase, **_UpperCAmelCase, ) # make sure list is in array format lowercase__ = padded_inputs.get("input_features" ) if isinstance(input_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in input_features] lowercase__ = padded_inputs.get("attention_mask" ) if attention_mask is not None: lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowercase__ = ( np.array(_UpperCAmelCase, dtype=np.intaa ) if self._get_padding_strategies(_UpperCAmelCase, max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowercase__ = self.normalize( padded_inputs["input_features"], attention_mask=_UpperCAmelCase ) if return_tensors is not None: lowercase__ = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class a__ : snake_case_ = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) snake_case_ = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) snake_case_ = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=_a , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=_a , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) snake_case_ = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case_ = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) snake_case_ = field( default=_a , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) snake_case_ = field( default=_a , metadata={"help": "A csv or a json file containing the training data."} ) snake_case_ = field( default=_a , metadata={"help": "A csv or a json file containing the validation data."} ) snake_case_ = field(default=_a , metadata={"help": "A csv or a json file containing the test data."} ) def snake_case__ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: lowercase__ = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase__ = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class a__ : snake_case_ = field( default=_a , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=_a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case_ = field( default=_a , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def __a ( ): '''simple docstring''' lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase__ = training_args.get_process_log_level() logger.setLevel(A ) datasets.utils.logging.set_verbosity(A ) transformers.utils.logging.set_verbosity(A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase__ = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase__ = data_args.train_file.split("." )[-1] lowercase__ = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase__ = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(f'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files lowercase__ = load_dataset("csv" , data_files=A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase__ = load_dataset("json" , data_files=A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase__ = raw_datasets["train"].features["label"].names lowercase__ = len(A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase__ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=A , ) lowercase__ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase__ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase__ = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase__ = {"Refused": 0, "Entailed": 1} lowercase__ = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowercase__ = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(A ): # Tokenize the texts def _convert_table_text_to_pandas(A ): lowercase__ = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] lowercase__ = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase__ = examples["statement"] lowercase__ = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) lowercase__ = tokenizer(A , A , padding=A , max_length=A , truncation=A ) lowercase__ = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): lowercase__ = raw_datasets.map( A , batched=A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) lowercase__ = raw_datasets["train"] if data_args.max_train_samples is not None: lowercase__ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) lowercase__ = raw_datasets["validation"] if data_args.max_eval_samples is not None: lowercase__ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) lowercase__ = raw_datasets["test"] if data_args.max_predict_samples is not None: lowercase__ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(A ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(A ): lowercase__ = p.predictions[0] if isinstance(p.predictions , A ) else p.predictions lowercase__ = np.argmax(A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase__ = default_data_collator elif training_args.fpaa: lowercase__ = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) else: lowercase__ = None # Initialize our Trainer lowercase__ = Trainer( model=A , args=A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=A , tokenizer=A , data_collator=A , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=A ) lowercase__ = train_result.metrics lowercase__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A ) ) lowercase__ = min(A , len(A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , A ) trainer.save_metrics("train" , A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate(eval_dataset=A ) lowercase__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(A ) lowercase__ = min(A , len(A ) ) trainer.log_metrics("eval" , A ) trainer.save_metrics("eval" , A ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase__ = predict_dataset.remove_columns("label" ) lowercase__ = trainer.predict(A , metric_key_prefix="predict" ).predictions lowercase__ = np.argmax(A , axis=1 ) lowercase__ = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(A , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(A ): lowercase__ = label_list[item] writer.write(f'''{index}\t{item}\n''' ) lowercase__ = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**A ) else: trainer.create_model_card(**A ) def __a ( A ): '''simple docstring''' main() if __name__ == "__main__": main()
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class a__ : def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' return None class a__ : def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' return None class a__ ( unittest.TestCase ): snake_case_ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def snake_case__ ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase, "tf", 12, **_UpperCAmelCase ) @require_torch @slow def snake_case__ ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(_UpperCAmelCase, "pt", 12, **_UpperCAmelCase ) @require_torch @slow def snake_case__ ( self ): '''simple docstring''' from transformers import BertModel lowercase__ = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(_UpperCAmelCase ) ) vocab_file.flush() lowercase__ = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase__ = BertModel(BertConfig(vocab_size=len(_UpperCAmelCase ) ) ) model.save_pretrained(_UpperCAmelCase ) self._test_export(_UpperCAmelCase, "pt", 12, _UpperCAmelCase ) @require_tf @slow def snake_case__ ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase__ = self._test_export(_UpperCAmelCase, "tf", 12, **_UpperCAmelCase ) lowercase__ = quantize(Path(_UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def snake_case__ ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase__ = self._test_export(_UpperCAmelCase, "pt", 12, **_UpperCAmelCase ) lowercase__ = quantize(_UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(_UpperCAmelCase ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, **_UpperCAmelCase ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: lowercase__ = Path(_UpperCAmelCase ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) return path except Exception as e: self.fail(_UpperCAmelCase ) @require_torch @require_tokenizers @slow def snake_case__ ( self ): '''simple docstring''' from transformers import BertModel lowercase__ = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) lowercase__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_UpperCAmelCase, _UpperCAmelCase, "pt" ) @require_tf @require_tokenizers @slow def snake_case__ ( self ): '''simple docstring''' from transformers import TFBertModel lowercase__ = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) lowercase__ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(_UpperCAmelCase, _UpperCAmelCase, "tf" ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = FeatureExtractionPipeline(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] lowercase__ , lowercase__ , lowercase__ , lowercase__ = infer_shapes(_UpperCAmelCase, _UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3], _UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:], _UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name], {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"], {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"], {0: "batch"} ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = ["input_ids", "attention_mask", "token_type_ids"] lowercase__ = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} lowercase__ , lowercase__ = ensure_valid_input(FuncContiguousArgs(), _UpperCAmelCase, _UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(_UpperCAmelCase ), 3 ) # Should have exactly the same input names self.assertEqual(set(_UpperCAmelCase ), set(_UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(_UpperCAmelCase, (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase__ , lowercase__ = ensure_valid_input(FuncNonContiguousArgs(), _UpperCAmelCase, _UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(_UpperCAmelCase ), 1 ) self.assertEqual(len(_UpperCAmelCase ), 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0], tokens["input_ids"] ) self.assertEqual(ordered_input_names[0], "input_ids" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ), "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx", generated.as_posix() )
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a__ ( _a ): snake_case_ = 42 snake_case_ = 42 def __init__( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCAmelCase, scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self, _UpperCAmelCase = 1, _UpperCAmelCase = 2000, _UpperCAmelCase = None, _UpperCAmelCase = "pil", _UpperCAmelCase = True, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = self.unet.config.sample_size lowercase__ = (batch_size, 3, img_size, img_size) lowercase__ = self.unet lowercase__ = randn_tensor(_UpperCAmelCase, generator=_UpperCAmelCase ) * self.scheduler.init_noise_sigma lowercase__ = sample.to(self.device ) self.scheduler.set_timesteps(_UpperCAmelCase ) self.scheduler.set_sigmas(_UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ = self.unet(_UpperCAmelCase, _UpperCAmelCase ).sample lowercase__ = self.scheduler.step_correct(_UpperCAmelCase, _UpperCAmelCase, generator=_UpperCAmelCase ).prev_sample # prediction step lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ).sample lowercase__ = self.scheduler.step_pred(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, generator=_UpperCAmelCase ) lowercase__ , lowercase__ = output.prev_sample, output.prev_sample_mean lowercase__ = sample_mean.clamp(0, 1 ) lowercase__ = sample.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_UpperCAmelCase )
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" def __a ( A = 1_00_00_00 ): '''simple docstring''' lowercase__ = limit + 1 lowercase__ = [0] * limit for first_term in range(1 , A ): for n in range(A , A , A ): lowercase__ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase__ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (PNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(_UpperCAmelCase, 0, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step_prk(_UpperCAmelCase, 1, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step_plms(_UpperCAmelCase, 0, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step_plms(_UpperCAmelCase, 1, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1 ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps, torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ), ) def snake_case__ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001], [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase, beta_end=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 27 for scheduler_class in self.scheduler_classes: lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase__ = scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample def snake_case__ ( self ): '''simple docstring''' with self.assertRaises(_UpperCAmelCase ): lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample ).prev_sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop(prediction_type="v_prediction" ) lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase, beta_start=0.01 ) lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase, beta_start=0.01 ) lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" import numpy as np def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ = int(np.ceil((x_end - xa) / h ) ) lowercase__ = np.zeros((n + 1,) ) lowercase__ = ya lowercase__ = xa for k in range(A ): lowercase__ = f(A , y[k] ) lowercase__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) lowercase__ = f(x + h , y[k] + h * ka ) lowercase__ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: Optional[int] = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "xlnet" snake_case_ = ["mems"] snake_case_ = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, _UpperCAmelCase=3_2000, _UpperCAmelCase=1024, _UpperCAmelCase=24, _UpperCAmelCase=16, _UpperCAmelCase=4096, _UpperCAmelCase="gelu", _UpperCAmelCase=True, _UpperCAmelCase="bi", _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=None, _UpperCAmelCase=True, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=-1, _UpperCAmelCase=False, _UpperCAmelCase="last", _UpperCAmelCase=True, _UpperCAmelCase="tanh", _UpperCAmelCase=0.1, _UpperCAmelCase=5, _UpperCAmelCase=5, _UpperCAmelCase=5, _UpperCAmelCase=1, _UpperCAmelCase=2, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = d_model lowercase__ = n_layer lowercase__ = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) lowercase__ = d_model // n_head lowercase__ = ff_activation lowercase__ = d_inner lowercase__ = untie_r lowercase__ = attn_type lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = dropout lowercase__ = mem_len lowercase__ = reuse_len lowercase__ = bi_data lowercase__ = clamp_len lowercase__ = same_length lowercase__ = summary_type lowercase__ = summary_use_proj lowercase__ = summary_activation lowercase__ = summary_last_dropout lowercase__ = start_n_top lowercase__ = end_n_top lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead.", _UpperCAmelCase, ) lowercase__ = kwargs["use_cache"] lowercase__ = use_mems_eval lowercase__ = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) @property def snake_case__ ( self ): '''simple docstring''' logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __a ( A ): '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class a__ ( nn.Module ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' super().__init__() lowercase__ = module lowercase__ = nn.Sequential( nn.Linear(module.in_features, _UpperCAmelCase, bias=_UpperCAmelCase ), nn.Linear(_UpperCAmelCase, module.out_features, bias=_UpperCAmelCase ), ) lowercase__ = (2.0 / (5 * min(module.in_features, module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight, std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def snake_case__ ( self, _UpperCAmelCase, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return self.module(_UpperCAmelCase, *_UpperCAmelCase, **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module snake_case_ = "bigscience/bloom-1b7" # Constant values snake_case_ = 2.109659552692574 snake_case_ = "Hello my name is" snake_case_ = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) snake_case_ = 10 def snake_case__ ( self ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(self.model_name ) class a__ ( _a ): def snake_case__ ( self ): '''simple docstring''' super().setUp() # Models and tokenizer lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.floataa, device_map="auto" ) lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" ) def snake_case__ ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase, "quantization_config" ) ) lowercase__ = config.to_dict() lowercase__ = config.to_diff_dict() lowercase__ = config.to_json_string() def snake_case__ ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit lowercase__ = self.model_fpaa.get_memory_footprint() lowercase__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit, self.EXPECTED_RELATIVE_DIFFERENCE ) lowercase__ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def snake_case__ ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase, torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ) lowercase__ = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=_UpperCAmelCase ), self.EXPECTED_OUTPUTS ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = BitsAndBytesConfig() lowercase__ = True lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=_UpperCAmelCase, device_map="auto" ) lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ) lowercase__ = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=_UpperCAmelCase ), self.EXPECTED_OUTPUTS ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=_UpperCAmelCase, load_in_abit=_UpperCAmelCase, device_map="auto", bnb_abit_quant_type="nf4", ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ) lowercase__ = self.model_fpaa.to(torch.floataa ) lowercase__ = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ), max_new_tokens=10 ) # Check this does not throw an error lowercase__ = self.model_fpaa.to("cpu" ) # Check this does not throw an error lowercase__ = self.model_fpaa.half() # Check this does not throw an error lowercase__ = self.model_fpaa.float() def snake_case__ ( self ): '''simple docstring''' lowercase__ = AutoModelForSeqaSeqLM.from_pretrained("t5-small", load_in_abit=_UpperCAmelCase, device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a__ ( unittest.TestCase ): @classmethod def snake_case__ ( cls ): '''simple docstring''' lowercase__ = "t5-small" lowercase__ = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense lowercase__ = AutoTokenizer.from_pretrained(cls.model_name ) lowercase__ = "Translate in German: Hello, my dog is cute" def snake_case__ ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration lowercase__ = TaForConditionalGeneration._keep_in_fpaa_modules lowercase__ = None # test with `t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" ) lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_abit=_UpperCAmelCase, device_map="auto" ) lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) lowercase__ = modules def snake_case__ ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linearabit ) ) lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` lowercase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_abit=_UpperCAmelCase, device_map="auto" ) lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ).to(0 ) lowercase__ = model.generate(**_UpperCAmelCase ) class a__ ( _a ): def snake_case__ ( self ): '''simple docstring''' super().setUp() # model_name lowercase__ = "bigscience/bloom-560m" lowercase__ = "t5-small" # Different types of model lowercase__ = AutoModel.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" ) # Sequence classification model lowercase__ = AutoModelForSequenceClassification.from_pretrained( self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" ) # CausalLM model lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" ) # Seq2seq model lowercase__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name, load_in_abit=_UpperCAmelCase, device_map="auto" ) def snake_case__ ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class a__ ( _a ): def snake_case__ ( self ): '''simple docstring''' super().setUp() def snake_case__ ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): '''simple docstring''' lowercase__ = pipeline( "text-generation", model=self.model_name, model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa}, max_new_tokens=self.MAX_NEW_TOKENS, ) # Real second forward pass lowercase__ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class a__ ( _a ): def snake_case__ ( self ): '''simple docstring''' super().setUp() def snake_case__ ( self ): '''simple docstring''' lowercase__ = AutoModelForCausalLM.from_pretrained( self.model_name, load_in_abit=_UpperCAmelCase, device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ), {0, 1} ) # Check that inference pass works on the model lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ) # Second real batch lowercase__ = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=_UpperCAmelCase ), self.EXPECTED_OUTPUTS ) class a__ ( _a ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = "facebook/opt-350m" super().setUp() def snake_case__ ( self ): '''simple docstring''' if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ), {torch.cuda.current_device()} ) for param in model.parameters(): lowercase__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowercase__ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): lowercase__ = LoRALayer(module.q_proj, rank=16 ) lowercase__ = LoRALayer(module.k_proj, rank=16 ) lowercase__ = LoRALayer(module.v_proj, rank=16 ) # Step 3: dummy batch lowercase__ = self.tokenizer("Test batch ", return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowercase__ = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase, _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase, nn.Embedding ): self.assertTrue(module.weight.grad is None ) class a__ ( _a ): snake_case_ = "gpt2-xl" snake_case_ = 3.3191854854152187
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" def __a ( A ): '''simple docstring''' lowercase__ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase__ = True for i in range(0 , len(A ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False for i in range(1 , len(A ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase__ , lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") lowerCAmelCase_: Tuple = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCAmelCase_: List[Any] = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" from math import factorial def __a ( A , A ): '''simple docstring''' if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(A ) // (factorial(A ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", F'fifty-two card deck is: {combinations(5_2, 5)}\n', ) print( "If a class of 40 students must be arranged into groups of", F'4 for group projects, there are {combinations(4_0, 4)} ways', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", F'are {combinations(1_0, 3)} ways that first, second and', "third place can be awarded.", )
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __a ( A , A ): '''simple docstring''' assert isinstance(A , A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" lowercase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ = ParquetDatasetReader(A , cache_dir=A , keep_in_memory=A ).read() _check_parquet_dataset(A , A ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" lowercase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = ParquetDatasetReader(A , features=A , cache_dir=A ).read() _check_parquet_dataset(A , A ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" lowercase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ = ParquetDatasetReader(A , cache_dir=A , split=A ).read() _check_parquet_dataset(A , A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __a ( A , A , A ): '''simple docstring''' if issubclass(A , A ): lowercase__ = parquet_path elif issubclass(A , A ): lowercase__ = [parquet_path] lowercase__ = tmp_path / "cache" lowercase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ = ParquetDatasetReader(A , cache_dir=A ).read() _check_parquet_dataset(A , A ) def __a ( A , A , A=("train",) ): '''simple docstring''' assert isinstance(A , A ) for split in splits: lowercase__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" lowercase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ = ParquetDatasetReader( {"train": parquet_path} , cache_dir=A , keep_in_memory=A ).read() _check_parquet_datasetdict(A , A ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" lowercase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = ParquetDatasetReader({"train": parquet_path} , features=A , cache_dir=A ).read() _check_parquet_datasetdict(A , A ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A , A , A ): '''simple docstring''' if split: lowercase__ = {split: parquet_path} else: lowercase__ = "train" lowercase__ = {"train": parquet_path, "test": parquet_path} lowercase__ = tmp_path / "cache" lowercase__ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} lowercase__ = ParquetDatasetReader(A , cache_dir=A ).read() _check_parquet_datasetdict(A , A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __a ( A , A ): '''simple docstring''' lowercase__ = ParquetDatasetWriter(A , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowercase__ = pq.ParquetFile(tmp_path / "foo.parquet" ) lowercase__ = pf.read() assert dataset.data.table == output_table def __a ( A , A ): '''simple docstring''' lowercase__ = str(shared_datadir / "test_image_rgb.jpg" ) lowercase__ = {"image": [image_path]} lowercase__ = Features({"image": Image()} ) lowercase__ = Dataset.from_dict(A , features=A ) lowercase__ = ParquetDatasetWriter(A , tmp_path / "foo.parquet" ) assert writer.write() > 0 lowercase__ = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features lowercase__ = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=A ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def __a ( A , A ): '''simple docstring''' assert get_writer_batch_size(A ) == expected
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __a ( A ): '''simple docstring''' lowercase__ = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " f'''{test_file} instead.''' ) lowercase__ = components[-1] if not test_fn.endswith("py" ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowercase__ = components[:-1] + [test_fn.replace(".py" , "" )] lowercase__ = ".".join(A ) return test_module_path def __a ( A ): '''simple docstring''' lowercase__ = get_module_path(A ) lowercase__ = importlib.import_module(A ) return test_module def __a ( A ): '''simple docstring''' lowercase__ = [] lowercase__ = get_test_module(A ) for attr in dir(A ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(A , A ) ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def __a ( A ): '''simple docstring''' lowercase__ = [] lowercase__ = get_test_module(A ) for attr in dir(A ): lowercase__ = getattr(A , A ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowercase__ = getattr(A , "all_model_classes" , [] ) if len(A ) > 0: test_classes.append(A ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def __a ( A ): '''simple docstring''' lowercase__ = get_test_classes(A ) lowercase__ = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def __a ( A ): '''simple docstring''' lowercase__ = test_class() if hasattr(A , "setUp" ): test.setUp() lowercase__ = None if hasattr(A , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowercase__ = test.model_tester.__class__ return model_tester def __a ( A , A ): '''simple docstring''' lowercase__ = get_test_classes(A ) lowercase__ = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(A ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def __a ( A , A ): '''simple docstring''' lowercase__ = get_test_classes_for_model(A , A ) lowercase__ = [] for test_class in test_classes: lowercase__ = get_model_tester_from_test_class(A ) if tester_class is not None: tester_classes.append(A ) # sort with class names return sorted(A , key=lambda A : x.__name__ ) def __a ( A ): '''simple docstring''' lowercase__ = get_test_classes(A ) lowercase__ = {test_class: get_model_tester_from_test_class(A ) for test_class in test_classes} return test_tester_mapping def __a ( A ): '''simple docstring''' lowercase__ = get_model_classes(A ) lowercase__ = { model_class: get_test_classes_for_model(A , A ) for model_class in model_classes } return model_test_mapping def __a ( A ): '''simple docstring''' lowercase__ = get_model_classes(A ) lowercase__ = { model_class: get_tester_classes_for_model(A , A ) for model_class in model_classes } return model_to_tester_mapping def __a ( A ): '''simple docstring''' if isinstance(A , A ): return o elif isinstance(A , A ): return o.__name__ elif isinstance(A , (list, tuple) ): return [to_json(A ) for x in o] elif isinstance(A , A ): return {to_json(A ): to_json(A ) for k, v in o.items()} else: return o
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( A , A , A , A , A ): '''simple docstring''' with open(A ) as metadata_file: lowercase__ = json.load(A ) lowercase__ = LukeConfig(use_entity_aware_attention=A , **metadata["model_config"] ) # Load in the weights from the checkpoint_path lowercase__ = torch.load(A , map_location="cpu" )["module"] # Load the entity vocab file lowercase__ = load_original_entity_vocab(A ) # add an entry for [MASK2] lowercase__ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase__ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks lowercase__ = AddedToken("<ent>" , lstrip=A , rstrip=A ) lowercase__ = AddedToken("<ent2>" , lstrip=A , rstrip=A ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(A ) with open(os.path.join(A , "tokenizer_config.json" ) , "r" ) as f: lowercase__ = json.load(A ) lowercase__ = "MLukeTokenizer" with open(os.path.join(A , "tokenizer_config.json" ) , "w" ) as f: json.dump(A , A ) with open(os.path.join(A , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(A , A ) lowercase__ = MLukeTokenizer.from_pretrained(A ) # Initialize the embeddings of the special tokens lowercase__ = tokenizer.convert_tokens_to_ids(["@"] )[0] lowercase__ = tokenizer.convert_tokens_to_ids(["#"] )[0] lowercase__ = state_dict["embeddings.word_embeddings.weight"] lowercase__ = word_emb[ent_init_index].unsqueeze(0 ) lowercase__ = word_emb[enta_init_index].unsqueeze(0 ) lowercase__ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase__ = state_dict[bias_name] lowercase__ = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase__ = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase__ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase__ = f'''encoder.layer.{layer_index}.attention.self.''' lowercase__ = state_dict[prefix + matrix_name] lowercase__ = state_dict[prefix + matrix_name] lowercase__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase__ = state_dict["entity_embeddings.entity_embeddings.weight"] lowercase__ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) lowercase__ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase__ = state_dict["entity_predictions.bias"] lowercase__ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) lowercase__ = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase__ = LukeForMaskedLM(config=A ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) lowercase__ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): lowercase__ = state_dict[key] else: lowercase__ = state_dict[key] lowercase__ , lowercase__ = model.load_state_dict(A , strict=A ) if set(A ) != {"luke.embeddings.position_ids"}: raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(A ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase__ = MLukeTokenizer.from_pretrained(A , task="entity_classification" ) lowercase__ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." lowercase__ = (0, 9) lowercase__ = tokenizer(A , entity_spans=[span] , return_tensors="pt" ) lowercase__ = model(**A ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase__ = torch.Size((1, 33, 7_68) ) lowercase__ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase__ = torch.Size((1, 1, 7_68) ) lowercase__ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowercase__ = MLukeTokenizer.from_pretrained(A ) lowercase__ = "Tokyo is the capital of <mask>." lowercase__ = (24, 30) lowercase__ = tokenizer(A , entity_spans=[span] , return_tensors="pt" ) lowercase__ = model(**A ) lowercase__ = encoding["input_ids"][0].tolist() lowercase__ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) lowercase__ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(A ) lowercase__ = outputs.entity_logits[0][0].argmax().item() lowercase__ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(A ) ) model.save_pretrained(A ) def __a ( A ): '''simple docstring''' lowercase__ = ["[MASK]", "[PAD]", "[UNK]"] lowercase__ = [json.loads(A ) for line in open(A )] lowercase__ = {} for entry in data: lowercase__ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase__ = entity_id break lowercase__ = f'''{language}:{entity_name}''' lowercase__ = entity_id return new_mapping if __name__ == "__main__": lowerCAmelCase_: Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCAmelCase_: List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_: int = logging.get_logger(__name__) lowerCAmelCase_: Tuple = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class a__ ( _a , _a ): snake_case_ = "nat" snake_case_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, _UpperCAmelCase=4, _UpperCAmelCase=3, _UpperCAmelCase=64, _UpperCAmelCase=[3, 4, 6, 5], _UpperCAmelCase=[2, 4, 8, 16], _UpperCAmelCase=7, _UpperCAmelCase=3.0, _UpperCAmelCase=True, _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.1, _UpperCAmelCase="gelu", _UpperCAmelCase=0.02, _UpperCAmelCase=1E-5, _UpperCAmelCase=0.0, _UpperCAmelCase=None, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = len(_UpperCAmelCase ) lowercase__ = num_heads lowercase__ = kernel_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = layer_norm_eps lowercase__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) lowercase__ = layer_scale_init_value lowercase__ = ["stem"] + [F'''stage{idx}''' for idx in range(1, len(_UpperCAmelCase ) + 1 )] lowercase__ , lowercase__ = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase, out_indices=_UpperCAmelCase, stage_names=self.stage_names )
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: List[str] = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: List[Any] = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Dict = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCAmelCase_: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCAmelCase_: str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCAmelCase_: list[int] = [ord(letter) for letter in string.ascii_lowercase] lowerCAmelCase_: set[int] = {ord(char) for char in VALID_CHARS} lowerCAmelCase_: list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def __a ( A , A ): '''simple docstring''' lowercase__ = "" lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 for keychar, cipherchar in zip(cycle(A ) , A ): lowercase__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(A ) return decoded def __a ( A ): '''simple docstring''' lowercase__ = [] for key in product(A , repeat=3 ): lowercase__ = try_key(A , A ) if encoded is not None: possibles.append(A ) return possibles def __a ( A , A ): '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def __a ( A = "p059_cipher.txt" ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = Path(A ).parent.joinpath(A ).read_text(encoding="utf-8" ) lowercase__ = [int(A ) for number in data.strip().split("," )] lowercase__ = filter_valid_chars(A ) for common_word in COMMON_WORDS: lowercase__ = filter_common_word(A , A ) if len(A ) == 1: break lowercase__ = possibles[0] return sum(ord(A ) for char in decoded_text ) if __name__ == "__main__": print(F'{solution() = }')
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __a ( A ): '''simple docstring''' return (data["data"], data["target"]) def __a ( A , A , A ): '''simple docstring''' lowercase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(A , A ) # Predict target for test data lowercase__ = xgb.predict(A ) lowercase__ = predictions.reshape(len(A ) , 1 ) return predictions def __a ( ): '''simple docstring''' lowercase__ = fetch_california_housing() lowercase__ , lowercase__ = data_handling(A ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = train_test_split( A , A , test_size=0.25 , random_state=1 ) lowercase__ = xgboost(A , A , A ) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(A , A )}''' ) print(f'''Mean Square Error : {mean_squared_error(A , A )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__ ( nn.Module ): def __init__( self, _UpperCAmelCase = 16, _UpperCAmelCase = 88, _UpperCAmelCase = None, _UpperCAmelCase = 1, _UpperCAmelCase = 0.0, _UpperCAmelCase = 32, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = "geglu", _UpperCAmelCase = None, ): '''simple docstring''' super().__init__() lowercase__ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_UpperCAmelCase, attention_head_dim=_UpperCAmelCase, in_channels=_UpperCAmelCase, num_layers=_UpperCAmelCase, dropout=_UpperCAmelCase, norm_num_groups=_UpperCAmelCase, cross_attention_dim=_UpperCAmelCase, attention_bias=_UpperCAmelCase, sample_size=_UpperCAmelCase, num_vector_embeds=_UpperCAmelCase, activation_fn=_UpperCAmelCase, num_embeds_ada_norm=_UpperCAmelCase, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowercase__ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowercase__ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowercase__ = [1, 0] def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase = True, ): '''simple docstring''' lowercase__ = hidden_states lowercase__ = [] lowercase__ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowercase__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowercase__ = self.transformer_index_for_condition[i] lowercase__ = self.transformers[transformer_index]( _UpperCAmelCase, encoder_hidden_states=_UpperCAmelCase, timestep=_UpperCAmelCase, cross_attention_kwargs=_UpperCAmelCase, return_dict=_UpperCAmelCase, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowercase__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowercase__ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_UpperCAmelCase )
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=7, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=99, _UpperCAmelCase=32, _UpperCAmelCase=2, _UpperCAmelCase=4, _UpperCAmelCase=37, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=16, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=3, _UpperCAmelCase=4, _UpperCAmelCase=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = 384 lowercase__ = 2 lowercase__ = 4 lowercase__ = 37 lowercase__ = "gelu" lowercase__ = 0.1 lowercase__ = 0.1 lowercase__ = 512 lowercase__ = 16 lowercase__ = 2 lowercase__ = 0.02 lowercase__ = 3 lowercase__ = 4 lowercase__ = 128 lowercase__ = 2 lowercase__ = 9 lowercase__ = 1 lowercase__ = None def snake_case__ ( self ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=_UpperCAmelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TFConvBertModel(config=_UpperCAmelCase ) lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase__ = [input_ids, input_mask] lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TFConvBertForMaskedLM(config=_UpperCAmelCase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) lowercase__ = tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.num_choices, 1) ) lowercase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = TFConvBertForTokenClassification(config=_UpperCAmelCase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) lowercase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( _a , _a , unittest.TestCase ): snake_case_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False def snake_case__ ( self ): '''simple docstring''' lowercase__ = TFConvBertModelTester(self ) lowercase__ = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=37 ) def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True lowercase__ = True if hasattr(_UpperCAmelCase, "use_cache" ): lowercase__ = True lowercase__ = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester, "key_length", _UpperCAmelCase ) for model_class in self.all_model_classes: lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase, saved_model=_UpperCAmelCase ) lowercase__ = os.path.join(_UpperCAmelCase, "saved_model", "1" ) lowercase__ = tf.keras.models.load_model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) if self.is_encoder_decoder: lowercase__ = outputs["encoder_hidden_states"] lowercase__ = outputs["encoder_attentions"] else: lowercase__ = outputs["hidden_states"] lowercase__ = outputs["attentions"] self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase ) lowercase__ = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True lowercase__ = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length ) lowercase__ = getattr(self.model_tester, "key_length", _UpperCAmelCase ) lowercase__ = getattr(self.model_tester, "key_length", _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase ): lowercase__ = len(_UpperCAmelCase ) self.assertEqual(out_len % 2, 0 ) lowercase__ = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(_UpperCAmelCase ): lowercase__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) lowercase__ = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states, _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states, _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states, _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states, _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ = model(_UpperCAmelCase )[0] lowercase__ = [1, 6, 768] self.assertEqual(output.shape, _UpperCAmelCase ) lowercase__ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3], _UpperCAmelCase, atol=1E-4 )
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase_: int = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __a ( A ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(A ) def __a ( A ): '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main lowercase__ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(A , id=A )
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a__ ( _a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class a__ ( unittest.TestCase ): @property def snake_case__ ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = ort.SessionOptions() lowercase__ = False return options def snake_case__ ( self ): '''simple docstring''' lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lowercase__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", safety_checker=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = "A red cat sitting on a park bench" lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=_UpperCAmelCase, image=_UpperCAmelCase, mask_image=_UpperCAmelCase, guidance_scale=7.5, num_inference_steps=10, generator=_UpperCAmelCase, output_type="np", ) lowercase__ = output.images lowercase__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase__ = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lowercase__ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx" ) lowercase__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", scheduler=_UpperCAmelCase, safety_checker=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = "A red cat sitting on a park bench" lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=_UpperCAmelCase, image=_UpperCAmelCase, mask_image=_UpperCAmelCase, guidance_scale=7.5, num_inference_steps=20, generator=_UpperCAmelCase, output_type="np", ) lowercase__ = output.images lowercase__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase__ = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __a ( A , A ): '''simple docstring''' assert isinstance(A , A ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" lowercase__ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ = TextDatasetReader(A , cache_dir=A , keep_in_memory=A ).read() _check_text_dataset(A , A ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" lowercase__ = {"text": "string"} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = TextDatasetReader(A , features=A , cache_dir=A ).read() _check_text_dataset(A , A ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" lowercase__ = {"text": "string"} lowercase__ = TextDatasetReader(A , cache_dir=A , split=A ).read() _check_text_dataset(A , A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __a ( A , A , A ): '''simple docstring''' if issubclass(A , A ): lowercase__ = text_path elif issubclass(A , A ): lowercase__ = [text_path] lowercase__ = tmp_path / "cache" lowercase__ = {"text": "string"} lowercase__ = TextDatasetReader(A , cache_dir=A ).read() _check_text_dataset(A , A ) def __a ( A , A , A=("train",) ): '''simple docstring''' assert isinstance(A , A ) for split in splits: lowercase__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" lowercase__ = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase__ = TextDatasetReader({"train": text_path} , cache_dir=A , keep_in_memory=A ).read() _check_text_datasetdict(A , A ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowercase__ = {"text": "string"} lowercase__ = features.copy() if features else default_expected_features lowercase__ = ( Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase__ = TextDatasetReader({"train": text_path} , features=A , cache_dir=A ).read() _check_text_datasetdict(A , A ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __a ( A , A , A ): '''simple docstring''' if split: lowercase__ = {split: text_path} else: lowercase__ = "train" lowercase__ = {"train": text_path, "test": text_path} lowercase__ = tmp_path / "cache" lowercase__ = {"text": "string"} lowercase__ = TextDatasetReader(A , cache_dir=A ).read() _check_text_datasetdict(A , A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" from functools import lru_cache def __a ( A ): '''simple docstring''' lowercase__ = 2 lowercase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(A ) if n > 1: factors.add(A ) return factors @lru_cache def __a ( A ): '''simple docstring''' return len(unique_prime_factors(A ) ) def __a ( A ): '''simple docstring''' return len(set(A ) ) in (0, 1) def __a ( A ): '''simple docstring''' lowercase__ = 2 while True: # Increment each value of a generated range lowercase__ = [base + i for i in range(A )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ = [upf_len(A ) for x in group] checker.append(A ) # If all numbers in the list are equal, return the group variable. if equality(A ): return group # Increment our base variable by 1 base += 1 def __a ( A = 4 ): '''simple docstring''' lowercase__ = run(A ) return results[0] if len(A ) else None if __name__ == "__main__": print(solution())
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowerCAmelCase_: List[Any] = parse(importlib.metadata.version("torch")) def __a ( A , A , A ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) lowercase__ = STR_OPERATION_TO_FUNC[operation] if isinstance(A , A ): lowercase__ = parse(importlib.metadata.version(A ) ) return operation(A , parse(A ) ) def __a ( A , A ): '''simple docstring''' return compare_versions(A , A , A )
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
from __future__ import annotations def __a ( A , A , A ): '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def __a ( A , A , A ): '''simple docstring''' lowercase__ = OmegaConf.load(A ) lowercase__ = torch.load(A , map_location="cpu" )["model"] lowercase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowercase__ = {} lowercase__ = "first_stage_model." for key in keys: if key.startswith(A ): lowercase__ = state_dict[key] # extract state_dict for UNetLDM lowercase__ = {} lowercase__ = "model.diffusion_model." for key in keys: if key.startswith(A ): lowercase__ = state_dict[key] lowercase__ = config.model.params.first_stage_config.params lowercase__ = config.model.params.unet_config.params lowercase__ = VQModel(**A ).eval() vqvae.load_state_dict(A ) lowercase__ = UNetLDMModel(**A ).eval() unet.load_state_dict(A ) lowercase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=A , ) lowercase__ = LDMPipeline(A , A , A ) pipeline.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_: Optional[Any] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) lowerCAmelCase_: Tuple = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCAmelCase_: Optional[int] = logging.get_logger(__name__) lowerCAmelCase_: Union[str, Any] = R"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class a__ ( _a ): @add_start_docstrings(_UpperCAmelCase ) def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = max_length lowercase__ = max_position_embeddings @add_start_docstrings(_UpperCAmelCase ) def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = input_ids.shape[-1] lowercase__ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead.", _UpperCAmelCase, ) lowercase__ = start_length lowercase__ = max_new_tokens lowercase__ = start_length + max_new_tokens @add_start_docstrings(_UpperCAmelCase ) def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = max_time lowercase__ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_UpperCAmelCase ) def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class a__ ( _a ): @add_start_docstrings(_UpperCAmelCase ) def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return any(criteria(_UpperCAmelCase, _UpperCAmelCase ) for criteria in self ) @property def snake_case__ ( self ): '''simple docstring''' for stopping_criterium in self: if isinstance(_UpperCAmelCase, _UpperCAmelCase ): return stopping_criterium.max_length elif isinstance(_UpperCAmelCase, _UpperCAmelCase ): return stopping_criterium.max_length return None def __a ( A , A ): '''simple docstring''' lowercase__ = stopping_criteria.max_length lowercase__ = deepcopy(A ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , A ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=A ) ) return new_stopping_criteria
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowerCAmelCase_: Optional[Any] = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def __a ( A , A , A=None ): '''simple docstring''' if rng is None: lowercase__ = random.Random() lowercase__ = 1 for dim in shape: total_dims *= dim lowercase__ = [] for _ in range(A ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowercase__ = np.array(A , dtype=jnp.intaa ).reshape(A ) return output def __a ( A , A=None ): '''simple docstring''' lowercase__ = ids_tensor(A , vocab_size=2 , rng=A ) # make sure that at least one token is attended to for each batch lowercase__ = 1 return attn_mask @require_flax class a__ : snake_case_ = None snake_case_ = () def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowercase__ = 2 lowercase__ = inputs["input_ids"].shape[-1] // 2 lowercase__ = inputs["input_ids"][:max_batch_size, :sequence_length] lowercase__ = jnp.ones_like(_UpperCAmelCase ) lowercase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowercase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowercase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = False lowercase__ = max_length lowercase__ = 0 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ = getattr(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = pt_model_class(_UpperCAmelCase ).eval() lowercase__ = load_flax_weights_in_pytorch_model(_UpperCAmelCase, flax_model.params ) lowercase__ = flax_model.generate(_UpperCAmelCase ).sequences lowercase__ = pt_model.generate(torch.tensor(_UpperCAmelCase, dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowercase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist(), flax_generation_outputs.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = False lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = True lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = False lowercase__ = max_length lowercase__ = 2 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = False lowercase__ = max_length lowercase__ = 2 lowercase__ = 2 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0], input_ids.shape[0] * config.num_return_sequences ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = True lowercase__ = max_length lowercase__ = 0.8 lowercase__ = 10 lowercase__ = 0.3 lowercase__ = 1 lowercase__ = 8 lowercase__ = 9 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = max_length lowercase__ = 1 lowercase__ = 8 lowercase__ = 9 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() lowercase__ = max_length lowercase__ = 2 lowercase__ = 1 lowercase__ = 8 lowercase__ = 9 for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() # pad attention mask on the left lowercase__ = attention_mask.at[(0, 0)].set(0 ) lowercase__ = False lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() # pad attention mask on the left lowercase__ = attention_mask.at[(0, 0)].set(0 ) lowercase__ = True lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config() # pad attention mask on the left lowercase__ = attention_mask.at[(0, 0)].set(0 ) lowercase__ = 2 lowercase__ = max_length for model_class in self.all_generative_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = model.generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) lowercase__ = jit(model.generate ) lowercase__ = jit_generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) @require_flax class a__ ( unittest.TestCase ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) lowercase__ = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) lowercase__ = "Hello world" lowercase__ = tokenizer(_UpperCAmelCase, return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_UpperCAmelCase, "do_samples" ): model.generate(_UpperCAmelCase, do_samples=_UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_UpperCAmelCase, "foo" ): lowercase__ = {"foo": "bar"} model.generate(_UpperCAmelCase, **_UpperCAmelCase )
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class a__ ( unittest.TestCase ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase=7, _UpperCAmelCase=3, _UpperCAmelCase=18, _UpperCAmelCase=30, _UpperCAmelCase=400, _UpperCAmelCase=True, _UpperCAmelCase=32, _UpperCAmelCase=True, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size_divisor lowercase__ = do_rescale def snake_case__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class a__ ( _a , unittest.TestCase ): snake_case_ = GLPNImageProcessor if is_vision_available() else None def snake_case__ ( self ): '''simple docstring''' lowercase__ = GLPNImageProcessingTester(self ) @property def snake_case__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase, "do_resize" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "size_divisor" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "resample" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "do_rescale" ) ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase, Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCAmelCase, numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase, np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCAmelCase, torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase, torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class a__ : def __init__( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = str(id_ ) lowercase__ = None lowercase__ = None lowercase__ = [] lowercase__ = {} # {vertex:distance} def __lt__( self, _UpperCAmelCase ): '''simple docstring''' return self.key < other.key def __repr__( self ): '''simple docstring''' return self.id def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' self.neighbors.append(_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = weight def __a ( A , A , A , A ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , A ) graph[b - 1].add_edge(graph[a - 1] , A ) def __a ( A , A ): '''simple docstring''' lowercase__ = [] for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = graph[:] while q: lowercase__ = min(A ) q.remove(A ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] for i in range(1 , len(A ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __a ( A , A ): '''simple docstring''' for u in graph: lowercase__ = math.inf lowercase__ = None lowercase__ = 0 lowercase__ = list(A ) hq.heapify(A ) while h: lowercase__ = hq.heappop(A ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase__ = u lowercase__ = u.edges[v.id] hq.heapify(A ) for i in range(1 , len(A ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __a ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) UpperCAmelCase_: Tuple = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_: Any = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_: Union[str, Any] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys UpperCAmelCase_: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" class a__ : def __init__( self ): '''simple docstring''' lowercase__ = {} def snake_case__ ( self ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_UpperCAmelCase, " -> ", " -> ".join([str(_UpperCAmelCase ) for j in self.vertex[i]] ) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_UpperCAmelCase ) else: # else make a new vertex lowercase__ = [to_vertex] def snake_case__ ( self ): '''simple docstring''' lowercase__ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = True print(_UpperCAmelCase, end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_UpperCAmelCase, _UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_: Union[str, Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0