code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=7_6_8 )->Tuple: super().__init__(__UpperCamelCase ) _UpperCAmelCase = proj_size _UpperCAmelCase = CLIPVisionModel(__UpperCamelCase ) _UpperCAmelCase = PaintByExampleMapper(__UpperCamelCase ) _UpperCAmelCase = nn.LayerNorm(config.hidden_size ) _UpperCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _UpperCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = self.model(pixel_values=__UpperCamelCase ) _UpperCAmelCase = clip_output.pooler_output _UpperCAmelCase = self.mapper(latent_states[:, None] ) _UpperCAmelCase = self.final_layer_norm(__UpperCamelCase ) _UpperCAmelCase = self.proj_out(__UpperCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _a ( nn.Module): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : int )->Dict: super().__init__() _UpperCAmelCase = (config.num_hidden_layers + 1) // 5 _UpperCAmelCase = config.hidden_size _UpperCAmelCase = 1 _UpperCAmelCase = nn.ModuleList( [ BasicTransformerBlock(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , activation_fn='''gelu''' , attention_bias=__UpperCamelCase ) for _ in range(__UpperCamelCase ) ] ) def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] )->Union[str, Any]: for block in self.blocks: _UpperCAmelCase = block(__UpperCamelCase ) return hidden_states
326
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
1
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __A : Dict = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""input_values""", """attention_mask"""] def __init__( self : Union[str, Any] , __UpperCamelCase : int = 1 , __UpperCamelCase : int = 1_6_0_0_0 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : int = 8_0 , __UpperCamelCase : int = 1_6 , __UpperCamelCase : int = 6_4 , __UpperCamelCase : str = "hann_window" , __UpperCamelCase : float = 1.0 , __UpperCamelCase : float = 8_0 , __UpperCamelCase : float = 7_6_0_0 , __UpperCamelCase : float = 1e-10 , __UpperCamelCase : int = 2 , __UpperCamelCase : bool = True , **__UpperCamelCase : Optional[int] , )->List[Any]: super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = do_normalize _UpperCAmelCase = return_attention_mask _UpperCAmelCase = num_mel_bins _UpperCAmelCase = hop_length _UpperCAmelCase = win_length _UpperCAmelCase = win_function _UpperCAmelCase = frame_signal_scale _UpperCAmelCase = fmin _UpperCAmelCase = fmax _UpperCAmelCase = mel_floor _UpperCAmelCase = reduction_factor _UpperCAmelCase = win_length * sampling_rate // 1_0_0_0 _UpperCAmelCase = hop_length * sampling_rate // 1_0_0_0 _UpperCAmelCase = optimal_fft_length(self.sample_size ) _UpperCAmelCase = (self.n_fft // 2) + 1 _UpperCAmelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCamelCase ) _UpperCAmelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , __UpperCamelCase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , __UpperCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase__ ( __UpperCamelCase : List[np.ndarray] , __UpperCamelCase : List[np.ndarray] , __UpperCamelCase : float = 0.0 )->List[np.ndarray]: if attention_mask is not None: _UpperCAmelCase = np.array(__UpperCamelCase , np.intaa ) _UpperCAmelCase = [] for vector, length in zip(__UpperCamelCase , attention_mask.sum(-1 ) ): _UpperCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: _UpperCAmelCase = padding_value normed_input_values.append(__UpperCamelCase ) else: _UpperCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , )->np.ndarray: _UpperCAmelCase = spectrogram( __UpperCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : List[str] , __UpperCamelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCamelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : Dict , )->BatchFeature: if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: _UpperCAmelCase = self._process_audio( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase , ) else: _UpperCAmelCase = None if audio_target is not None: _UpperCAmelCase = self._process_audio( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase , ) if inputs is None: return inputs_target else: _UpperCAmelCase = inputs_target['''input_values'''] _UpperCAmelCase = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: _UpperCAmelCase = decoder_attention_mask return inputs def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase : bool = False , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : Dict , )->BatchFeature: _UpperCAmelCase = isinstance(__UpperCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) _UpperCAmelCase = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): _UpperCAmelCase = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase = speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase = [speech] # needed to make pad() work on spectrogram inputs _UpperCAmelCase = self.feature_size # convert into correct format for padding if is_target: _UpperCAmelCase = [self._extract_mel_features(__UpperCamelCase ) for waveform in speech] _UpperCAmelCase = BatchFeature({'''input_values''': features} ) _UpperCAmelCase = self.num_mel_bins else: _UpperCAmelCase = BatchFeature({'''input_values''': speech} ) _UpperCAmelCase = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = feature_size_hack # convert input values to correct format _UpperCAmelCase = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): _UpperCAmelCase = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__UpperCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _UpperCAmelCase = [array.astype(np.floataa ) for array in input_values] elif isinstance(__UpperCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _UpperCAmelCase = input_values.astype(np.floataa ) # convert attention_mask to correct format _UpperCAmelCase = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: _UpperCAmelCase = [np.asarray(__UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _UpperCAmelCase = ( attention_mask if self._get_padding_strategies(__UpperCamelCase , max_length=__UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _UpperCAmelCase = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=__UpperCamelCase , padding_value=self.padding_value ) if return_tensors is not None: _UpperCAmelCase = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs def lowercase__ ( self : int )->Dict[str, Any]: _UpperCAmelCase = super().to_dict() # Don't serialize these as they are derived from the other properties. _UpperCAmelCase = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
326
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
1
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __A : int = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __A : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def lowercase ( _SCREAMING_SNAKE_CASE : Vector , _SCREAMING_SNAKE_CASE : Vector ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(_SCREAMING_SNAKE_CASE ) - np.asarray(_SCREAMING_SNAKE_CASE )) ** 2 ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Vector , _SCREAMING_SNAKE_CASE : Vector ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ** (1 / 2) if __name__ == "__main__": def lowercase ( ): '''simple docstring''' from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_0000 , globals=globals() , ) ) benchmark()
326
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder): """simple docstring""" def lowercase__ ( self : Union[str, Any] )->Dict: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__UpperCamelCase , ) def lowercase__ ( self : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] )->Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] )->int: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCamelCase ) class _a ( datasets.BeamBasedBuilder): """simple docstring""" def lowercase__ ( self : Optional[int] )->Optional[Any]: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__UpperCamelCase , ) def lowercase__ ( self : int , __UpperCamelCase : Dict , __UpperCamelCase : str )->Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def lowercase__ ( self : Any , __UpperCamelCase : Any , __UpperCamelCase : str )->str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCamelCase ) def lowercase ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def lowercase ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class _a ( lowerCAmelCase): """simple docstring""" @require_beam def lowercase__ ( self : int )->str: _UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = DummyBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowercase__ ( self : Any )->int: import apache_beam as beam _UpperCAmelCase = beam.io.parquetio.WriteToParquet _UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = DummyBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: _UpperCAmelCase = partial(__UpperCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowercase__ ( self : Dict )->Dict: with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = DummyBeamDataset(cache_dir=__UpperCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = NestedBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) _UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : List[str] = { "nielsr/canine-s": 2048, } # Unicode defines 1,114,112 total “codepoints” __A : Union[str, Any] = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __A : Dict = 0 __A : List[Any] = 0XE000 __A : Any = 0XE001 __A : Optional[int] = 0XE002 __A : List[Any] = 0XE003 __A : Dict = 0XE004 # Maps special codepoints to human-readable names. __A : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __A : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , __UpperCamelCase : Any=chr(__UpperCamelCase ) , __UpperCamelCase : Any=chr(__UpperCamelCase ) , __UpperCamelCase : List[Any]=chr(__UpperCamelCase ) , __UpperCamelCase : List[str]=chr(__UpperCamelCase ) , __UpperCamelCase : Tuple=chr(__UpperCamelCase ) , __UpperCamelCase : Optional[Any]=chr(__UpperCamelCase ) , __UpperCamelCase : Dict=False , __UpperCamelCase : List[Any]=2_0_4_8 , **__UpperCamelCase : str , )->List[str]: _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , model_max_length=__UpperCamelCase , **__UpperCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. _UpperCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _UpperCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _UpperCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } _UpperCAmelCase = UNICODE_VOCAB_SIZE _UpperCAmelCase = len(self._special_codepoints ) @property def lowercase__ ( self : List[str] )->int: return self._unicode_vocab_size def lowercase__ ( self : str , __UpperCamelCase : str )->List[str]: return list(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str )->int: try: return ord(__UpperCamelCase ) except TypeError: raise ValueError(F'invalid token: \'{token}\'' ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int )->str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__UpperCamelCase ) except TypeError: raise ValueError(F'invalid id: {index}' ) def lowercase__ ( self : Dict , __UpperCamelCase : List[str] )->Union[str, Any]: return "".join(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowercase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False )->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) _UpperCAmelCase = [1] + ([0] * len(__UpperCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__UpperCamelCase )) + [1] return result def lowercase__ ( self : Tuple , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowercase__ ( self : int , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Dict: return ()
326
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(add_help=_SCREAMING_SNAKE_CASE , allow_abbrev=_SCREAMING_SNAKE_CASE ) # The main config parser _UpperCAmelCase = config_command_parser(_SCREAMING_SNAKE_CASE ) # The subparser to add commands to _UpperCAmelCase = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(_SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(_SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_config_parser() _UpperCAmelCase = config_parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
326
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
1
"""simple docstring""" from math import sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" _UpperCAmelCase = True # 0 and 1 are none primes. if number <= 1: _UpperCAmelCase = False for divisor in range(2 , int(round(sqrt(_SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _UpperCAmelCase = False break # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _UpperCAmelCase = list(range(2 , n + 1 ) ) _UpperCAmelCase = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _UpperCAmelCase = 0 # filters actual prime numbers. _UpperCAmelCase = [x for x in begin_list if x != 0] # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" _UpperCAmelCase = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_SCREAMING_SNAKE_CASE ): ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" _UpperCAmelCase = [] # this list will be returns of the function. # potential prime number factors. _UpperCAmelCase = 2 _UpperCAmelCase = number if number == 0 or number == 1: ans.append(_SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(_SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(_SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase = 0 # prime factorization of 'number' _UpperCAmelCase = prime_factorization(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" _UpperCAmelCase = 0 # prime factorization of 'number' _UpperCAmelCase = prime_factorization(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(_SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" _UpperCAmelCase = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _UpperCAmelCase = get_prime_numbers(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) # run variable for while-loops. _UpperCAmelCase = 0 _UpperCAmelCase = None # exit variable. for break up the loops _UpperCAmelCase = True while i < len_pn and loop: _UpperCAmelCase = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _UpperCAmelCase = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (len(_SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase = 0 while numbera != 0: _UpperCAmelCase = numbera % numbera _UpperCAmelCase = numbera _UpperCAmelCase = rest # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _UpperCAmelCase = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _UpperCAmelCase = prime_factorization(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = prime_factorization(_SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _UpperCAmelCase = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): ans *= n else: _UpperCAmelCase = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _UpperCAmelCase = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" _UpperCAmelCase = 0 _UpperCAmelCase = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and is_prime( _SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' assert ( is_prime(_SCREAMING_SNAKE_CASE ) and is_prime(_SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _UpperCAmelCase = p_number_a + 1 # jump to the next number _UpperCAmelCase = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(_SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(_SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" _UpperCAmelCase = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(_SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" _UpperCAmelCase = get_divisors(_SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(_SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _UpperCAmelCase = gcd(abs(_SCREAMING_SNAKE_CASE ) , abs(_SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" _UpperCAmelCase = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 1 # this will be return for _ in range(n - 1 ): _UpperCAmelCase = ans ans += fiba _UpperCAmelCase = tmp return ans
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
1
"""simple docstring""" from __future__ import annotations __A : List[str] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __A : Dict = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase ( _SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = -1 for j in range(i + 1 , _SCREAMING_SNAKE_CASE ): if arr[i] < arr[j]: _UpperCAmelCase = arr[j] break result.append(_SCREAMING_SNAKE_CASE ) return result def lowercase ( _SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' _UpperCAmelCase = [] for i, outer in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = -1 for inner in arr[i + 1 :]: if outer < inner: _UpperCAmelCase = inner break result.append(_SCREAMING_SNAKE_CASE ) return result def lowercase ( _SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [] _UpperCAmelCase = [-1] * arr_size for index in reversed(range(_SCREAMING_SNAKE_CASE ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _UpperCAmelCase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __A : List[Any] = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
326
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" class _a : """simple docstring""" def __init__( self : List[Any] )->List[str]: _UpperCAmelCase = {} def lowercase__ ( self : Optional[int] )->None: print(self.vertex ) for i in self.vertex: print(__UpperCamelCase , ''' -> ''' , ''' -> '''.join([str(__UpperCamelCase ) for j in self.vertex[i]] ) ) def lowercase__ ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : int )->None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__UpperCamelCase ) else: # else make a new vertex _UpperCAmelCase = [to_vertex] def lowercase__ ( self : Optional[int] )->None: # visited array for storing already visited nodes _UpperCAmelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : list )->None: # mark start vertex as visited _UpperCAmelCase = True print(__UpperCamelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": __A : str = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : list[str] ): '''simple docstring''' _UpperCAmelCase = '''''' for word_or_phrase in separated: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
326
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate _UpperCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _UpperCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _a : """simple docstring""" def __init__( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any]=9_9 , __UpperCamelCase : List[str]=1_3 , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : Any=9 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Any=True , __UpperCamelCase : str=False , __UpperCamelCase : Optional[Any]=3_2 , __UpperCamelCase : List[str]=5 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : Any=3_7 , __UpperCamelCase : str=8 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Tuple=0.0_0_2 , __UpperCamelCase : Dict=1 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Dict=None , )->int: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def lowercase__ ( self : Optional[int] )->Union[str, Any]: return TaConfig.from_pretrained('''google/umt5-base''' ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : str=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[Any]=None , )->Optional[int]: if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowercase__ ( self : Dict )->Optional[Any]: _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, input_dict def lowercase__ ( self : Any )->Optional[int]: _UpperCAmelCase , _UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self : Dict )->List[str]: return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase__ ( self : Tuple )->Optional[Any]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase__ ( self : Dict , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , )->int: _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , ) _UpperCAmelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , )->List[str]: _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() # first forward pass _UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = model(__UpperCamelCase )['''last_hidden_state'''] _UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase )['''last_hidden_state'''] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , )->List[Any]: _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval() _UpperCAmelCase = model(**__UpperCamelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() ) @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCamelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCamelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCamelCase__ = [0.8, 0.9] def lowercase__ ( self : Optional[Any] )->Tuple: _UpperCAmelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def lowercase__ ( self : Tuple )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCamelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def lowercase__ ( self : Optional[int] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase ) def lowercase__ ( self : Optional[int] )->Tuple: _UpperCAmelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(__UpperCamelCase ).eval() model.to(__UpperCamelCase ) _UpperCAmelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), } for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ) _UpperCAmelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def lowercase__ ( self : str )->List[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase): """simple docstring""" @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def lowercase__ ( self : List[Any] )->Optional[Any]: _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCamelCase ).to(__UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCamelCase , legacy=__UpperCamelCase ) _UpperCAmelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors='''pt''' , padding=__UpperCamelCase ).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids.to(__UpperCamelCase ) ) _UpperCAmelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
326
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
1
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _a ( tf.keras.layers.Layer): """simple docstring""" def __init__( self : Any , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : List[str] , __UpperCamelCase : int = None , __UpperCamelCase : int = None )->int: super().__init__() _UpperCAmelCase = pad_token_id _UpperCAmelCase = max_length _UpperCAmelCase = vocab _UpperCAmelCase = merges _UpperCAmelCase = BytePairTokenizer(__UpperCamelCase , __UpperCamelCase , sequence_length=__UpperCamelCase ) @classmethod def lowercase__ ( cls : Union[str, Any] , __UpperCamelCase : GPTaTokenizer , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Any )->List[str]: _UpperCAmelCase = [''' '''.join(__UpperCamelCase ) for m in tokenizer.bpe_ranks.keys()] _UpperCAmelCase = tokenizer.get_vocab() return cls(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) @classmethod def lowercase__ ( cls : List[str] , __UpperCamelCase : Union[str, os.PathLike] , *__UpperCamelCase : List[str] , **__UpperCamelCase : Dict )->int: _UpperCAmelCase = GPTaTokenizer.from_pretrained(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) return cls.from_tokenizer(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) @classmethod def lowercase__ ( cls : Optional[Any] , __UpperCamelCase : List[str] )->Dict: return cls(**__UpperCamelCase ) def lowercase__ ( self : int )->Dict: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : int = None )->List[str]: _UpperCAmelCase = self.tf_tokenizer(__UpperCamelCase ) _UpperCAmelCase = tf.ones_like(__UpperCamelCase ) if self.pad_token_id is not None: # pad the tokens up to max length _UpperCAmelCase = max_length if max_length is not None else self.max_length if max_length is not None: _UpperCAmelCase , _UpperCAmelCase = pad_model_inputs( __UpperCamelCase , max_seq_length=__UpperCamelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : str = None , _SCREAMING_SNAKE_CASE : str = None , _SCREAMING_SNAKE_CASE : str = None , ): '''simple docstring''' if config_name_or_path is None: _UpperCAmelCase = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: _UpperCAmelCase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _UpperCAmelCase = question_encoder_name_or_path _UpperCAmelCase = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. _UpperCAmelCase = RagConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = gen_config _UpperCAmelCase = question_encoder_config _UpperCAmelCase = model_class.from_pretrained_question_encoder_generator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE ) rag_model.save_pretrained(_SCREAMING_SNAKE_CASE ) # Sanity check. model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # Save tokenizers. _UpperCAmelCase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) __A : str = parser.parse_args() __A : Optional[int] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
326
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __A : Dict = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """Whether tp freeze the encoder."""}) UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """Whether to freeze the embeddings."""}) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""}) UpperCamelCase__ = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) UpperCamelCase__ = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase__ = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase__ = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) UpperCamelCase__ = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase__ = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""}) UpperCamelCase__ = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""}) UpperCamelCase__ = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""}) UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """Source language id for translation."""}) UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """Target language id for translation."""}) UpperCamelCase__ = field(default=lowerCAmelCase , metadata={"""help""": """# num_beams to use for evaluation."""}) UpperCamelCase__ = field( default=lowerCAmelCase , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f'{split}_results.json' ) ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(_SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_SCREAMING_SNAKE_CASE , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _UpperCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _UpperCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_SCREAMING_SNAKE_CASE ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _UpperCAmelCase = SeqaSeqDataset # Get datasets _UpperCAmelCase = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) _UpperCAmelCase = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _UpperCAmelCase = ( dataset_class( _SCREAMING_SNAKE_CASE , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer _UpperCAmelCase = ( build_compute_metrics_fn(data_args.task , _SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None ) _UpperCAmelCase = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _UpperCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _UpperCAmelCase = train_result.metrics _UpperCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCAmelCase = trainer.evaluate(metric_key_prefix='''val''' ) _UpperCAmelCase = data_args.n_val _UpperCAmelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _UpperCAmelCase = trainer.predict(test_dataset=_SCREAMING_SNAKE_CASE , metric_key_prefix='''test''' ) _UpperCAmelCase = test_output.metrics _UpperCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _UpperCAmelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , _SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(_SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate: _UpperCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = lmap(str.strip , _SCREAMING_SNAKE_CASE ) write_txt_file(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(_SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' main() if __name__ == "__main__": main()
326
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
1
"""simple docstring""" import os __A : Dict = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 while index < len(_SCREAMING_SNAKE_CASE ) - 1: _UpperCAmelCase = SYMBOLS[numerals[index]] _UpperCAmelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = '''''' _UpperCAmelCase = num // 1000 numerals += m_count * "M" num %= 1000 _UpperCAmelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 _UpperCAmelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowercase ( _SCREAMING_SNAKE_CASE : str = "/p089_roman.txt" ): '''simple docstring''' _UpperCAmelCase = 0 with open(os.path.dirname(_SCREAMING_SNAKE_CASE ) + roman_numerals_filename ) as filea: _UpperCAmelCase = filea.readlines() for line in lines: _UpperCAmelCase = line.strip() _UpperCAmelCase = parse_roman_numerals(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = generate_roman_numerals(_SCREAMING_SNAKE_CASE ) savings += len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
326
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
1
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __A : List[Any] = 8 def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any]=BITS ): '''simple docstring''' _UpperCAmelCase = x.device _UpperCAmelCase = (x * 255).int().clamp(0 , 255 ) _UpperCAmelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = rearrange(_SCREAMING_SNAKE_CASE , '''d -> d 1 1''' ) _UpperCAmelCase = rearrange(_SCREAMING_SNAKE_CASE , '''b c h w -> b c 1 h w''' ) _UpperCAmelCase = ((x & mask) != 0).float() _UpperCAmelCase = rearrange(_SCREAMING_SNAKE_CASE , '''b c d h w -> b (c d) h w''' ) _UpperCAmelCase = bits * 2 - 1 return bits def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str]=BITS ): '''simple docstring''' _UpperCAmelCase = x.device _UpperCAmelCase = (x > 0).int() _UpperCAmelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa ) _UpperCAmelCase = rearrange(_SCREAMING_SNAKE_CASE , '''d -> d 1 1''' ) _UpperCAmelCase = rearrange(_SCREAMING_SNAKE_CASE , '''b (c d) h w -> b c d h w''' , d=8 ) _UpperCAmelCase = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def lowercase ( self : Any , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _UpperCAmelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _UpperCAmelCase = self.bit_scale if self.config.clip_sample: _UpperCAmelCase = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _UpperCAmelCase = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _UpperCAmelCase = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else '''cpu''' _UpperCAmelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise _UpperCAmelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def lowercase ( self : Tuple , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : torch.FloatTensor , _SCREAMING_SNAKE_CASE : Optional[Any]="epsilon" , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : bool = True , ): '''simple docstring''' _UpperCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _UpperCAmelCase , _UpperCAmelCase = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 ) else: _UpperCAmelCase = None # 1. compute alphas, betas _UpperCAmelCase = self.alphas_cumprod[t] _UpperCAmelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one _UpperCAmelCase = 1 - alpha_prod_t _UpperCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _UpperCAmelCase = model_output else: raise ValueError(f'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" _UpperCAmelCase = self.bit_scale if self.config.clip_sample: _UpperCAmelCase = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _UpperCAmelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCAmelCase = 0 if t > 0: _UpperCAmelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device ) _UpperCAmelCase = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise _UpperCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : UNetaDConditionModel , __UpperCamelCase : Union[DDIMScheduler, DDPMScheduler] , __UpperCamelCase : Optional[float] = 1.0 , )->List[str]: super().__init__() _UpperCAmelCase = bit_scale _UpperCAmelCase = ( ddim_bit_scheduler_step if isinstance(__UpperCamelCase , __UpperCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : Tuple , __UpperCamelCase : Optional[int] = 2_5_6 , __UpperCamelCase : Optional[int] = 2_5_6 , __UpperCamelCase : Optional[int] = 5_0 , __UpperCamelCase : Optional[torch.Generator] = None , __UpperCamelCase : Optional[int] = 1 , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , **__UpperCamelCase : Dict , )->Union[Tuple, ImagePipelineOutput]: _UpperCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=__UpperCamelCase , ) _UpperCAmelCase = decimal_to_bits(__UpperCamelCase ) * self.bit_scale _UpperCAmelCase = latents.to(self.device ) self.scheduler.set_timesteps(__UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample _UpperCAmelCase = bits_to_decimal(__UpperCamelCase ) if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
326
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return number | (1 << position) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return number & ~(1 << position) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return number ^ (1 << position) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return ((number >> position) & 1) == 1 def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __A : Optional[Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __A : List[str] = json.load(f) @require_torch class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int , __UpperCamelCase : List[str] )->str: return FSMTTokenizer.from_pretrained(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] )->str: _UpperCAmelCase = FSMTForConditionalGeneration.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 2_6.0], ['''ru-en''', 2_2.0], ['''en-de''', 2_2.0], ['''de-en''', 2_9.0], ] ) @slow def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str )->int: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _UpperCAmelCase = F'facebook/wmt19-{pair}' _UpperCAmelCase = self.get_tokenizer(__UpperCamelCase ) _UpperCAmelCase = self.get_model(__UpperCamelCase ) _UpperCAmelCase = bleu_data[pair]['''src'''] _UpperCAmelCase = bleu_data[pair]['''tgt'''] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors='''pt''' , truncation=__UpperCamelCase , padding='''longest''' ).to(__UpperCamelCase ) _UpperCAmelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _UpperCAmelCase = tokenizer.batch_decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) _UpperCAmelCase = calculate_bleu(__UpperCamelCase , __UpperCamelCase ) print(__UpperCamelCase ) self.assertGreaterEqual(scores['''bleu'''] , __UpperCamelCase )
326
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
1
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : int , __UpperCamelCase : Dict , __UpperCamelCase : str=1_3 , __UpperCamelCase : Union[str, Any]=7 , __UpperCamelCase : str=True , __UpperCamelCase : int=True , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Optional[int]=9_9 , __UpperCamelCase : Dict=3_2 , __UpperCamelCase : int=5 , __UpperCamelCase : int=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Tuple=5_1_2 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : Dict=None , )->str: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase__ ( self : int )->str: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] )->List[str]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = BioGptModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , )->Dict: _UpperCAmelCase = BioGptForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , *__UpperCamelCase : str )->List[str]: _UpperCAmelCase = BioGptModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # create attention mask _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCamelCase ) _UpperCAmelCase = self.seq_length // 2 _UpperCAmelCase = 0 # first forward pass _UpperCAmelCase , _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _UpperCAmelCase = ids_tensor((1,) , __UpperCamelCase ).item() + 1 _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _UpperCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__UpperCamelCase )] , dim=1 , ) # get two different outputs _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )['''last_hidden_state'''] _UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase , attention_mask=__UpperCamelCase )['''last_hidden_state'''] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , *__UpperCamelCase : Tuple )->Optional[int]: _UpperCAmelCase = BioGptModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCamelCase ) # first forward pass _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )['''last_hidden_state'''] _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[ '''last_hidden_state''' ] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Dict , *__UpperCamelCase : int , __UpperCamelCase : List[Any]=False )->Tuple: _UpperCAmelCase = BioGptForCausalLM(__UpperCamelCase ) model.to(__UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowercase__ ( self : str , __UpperCamelCase : Any , *__UpperCamelCase : List[Any] )->int: _UpperCAmelCase = BioGptModel(__UpperCamelCase ) _UpperCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , *__UpperCamelCase : Any )->Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = BioGptForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : str )->int: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCamelCase__ = (BioGptForCausalLM,) if is_torch_available() else () UpperCamelCase__ = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = False def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = BioGptModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[str] )->int: self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] )->str: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__UpperCamelCase ) def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__UpperCamelCase , gradient_checkpointing=__UpperCamelCase ) def lowercase__ ( self : Optional[int] )->List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : int )->Union[str, Any]: _UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__UpperCamelCase ) _UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _UpperCAmelCase = '''left''' # Define PAD Token = EOS Token = 50256 _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = model.config.eos_token_id # use different length sentences to test batching _UpperCAmelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors='''pt''' , padding=__UpperCamelCase ) _UpperCAmelCase = inputs['''input_ids'''].to(__UpperCamelCase ) _UpperCAmelCase = model.generate( input_ids=__UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(__UpperCamelCase ) , ) _UpperCAmelCase = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids=__UpperCamelCase ) _UpperCAmelCase = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() _UpperCAmelCase = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids=__UpperCamelCase , max_length=model.config.max_length - num_paddings ) _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def lowercase__ ( self : Dict )->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = BioGptModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__ ( self : int )->str: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = BioGptForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = '''multi_label_classification''' _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase = BioGptForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) _UpperCAmelCase = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = 4_2_3_8_4 _UpperCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : str )->Optional[Any]: _UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__UpperCamelCase ) torch.manual_seed(0 ) _UpperCAmelCase = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__UpperCamelCase ) _UpperCAmelCase = model.generate( **__UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__UpperCamelCase , ) _UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A : List[Any] = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
1
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] )->int: return F'gaussian_noise_s={seed}_shape={"_".join([str(__UpperCamelCase ) for s in shape] )}.npy' def lowercase__ ( self : Optional[Any] )->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : str , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Optional[int]=(4, 4, 6_4, 6_4) , __UpperCamelCase : Optional[Any]=False )->List[Any]: _UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCamelCase , __UpperCamelCase ) ) , dtype=__UpperCamelCase ) return image def lowercase__ ( self : Optional[int] , __UpperCamelCase : str=False , __UpperCamelCase : str="CompVis/stable-diffusion-v1-4" )->Union[str, Any]: _UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase = '''bf16''' if fpaa else None _UpperCAmelCase , _UpperCAmelCase = FlaxUNetaDConditionModel.from_pretrained( __UpperCamelCase , subfolder='''unet''' , dtype=__UpperCamelCase , revision=__UpperCamelCase ) return model, params def lowercase__ ( self : Any , __UpperCamelCase : Optional[Any]=0 , __UpperCamelCase : int=(4, 7_7, 7_6_8) , __UpperCamelCase : str=False )->int: _UpperCAmelCase = jnp.bfloataa if fpaa else jnp.floataa _UpperCAmelCase = jnp.array(load_hf_numpy(self.get_file_format(__UpperCamelCase , __UpperCamelCase ) ) , dtype=__UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [1_7, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1_0_0_0, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict )->str: _UpperCAmelCase , _UpperCAmelCase = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=__UpperCamelCase ) _UpperCAmelCase = self.get_latents(__UpperCamelCase , fpaa=__UpperCamelCase ) _UpperCAmelCase = self.get_encoder_hidden_states(__UpperCamelCase , fpaa=__UpperCamelCase ) _UpperCAmelCase = model.apply( {'''params''': params} , __UpperCamelCase , jnp.array(__UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCamelCase , ).sample assert sample.shape == latents.shape _UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase = jnp.array(__UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [1_7, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1_0_0_0, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def lowercase__ ( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any )->Dict: _UpperCAmelCase , _UpperCAmelCase = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=__UpperCamelCase ) _UpperCAmelCase = self.get_latents(__UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=__UpperCamelCase ) _UpperCAmelCase = self.get_encoder_hidden_states(__UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=__UpperCamelCase ) _UpperCAmelCase = model.apply( {'''params''': params} , __UpperCamelCase , jnp.array(__UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=__UpperCamelCase , ).sample assert sample.shape == latents.shape _UpperCAmelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _UpperCAmelCase = jnp.array(__UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-2 )
326
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __A : str = logging.get_logger(__name__) __A : Any = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """trajectory_transformer""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int]=1_0_0 , __UpperCamelCase : Union[str, Any]=5 , __UpperCamelCase : Any=1 , __UpperCamelCase : str=1 , __UpperCamelCase : Optional[int]=2_4_9 , __UpperCamelCase : List[Any]=6 , __UpperCamelCase : Dict=1_7 , __UpperCamelCase : str=2_5 , __UpperCamelCase : int=4 , __UpperCamelCase : Any=4 , __UpperCamelCase : Union[str, Any]=1_2_8 , __UpperCamelCase : str=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : List[str]=0.0_0_0_6 , __UpperCamelCase : Union[str, Any]=5_1_2 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : Tuple=1e-12 , __UpperCamelCase : List[str]=1 , __UpperCamelCase : Dict=True , __UpperCamelCase : str=1 , __UpperCamelCase : Tuple=5_0_2_5_6 , __UpperCamelCase : Union[str, Any]=5_0_2_5_6 , **__UpperCamelCase : Optional[int] , )->Tuple: _UpperCAmelCase = vocab_size _UpperCAmelCase = action_weight _UpperCAmelCase = reward_weight _UpperCAmelCase = value_weight _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = block_size _UpperCAmelCase = action_dim _UpperCAmelCase = observation_dim _UpperCAmelCase = transition_dim _UpperCAmelCase = learning_rate _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = n_embd _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = resid_pdrop _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = kaiming_initializer_range _UpperCAmelCase = use_cache super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase )
326
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
1
"""simple docstring""" from collections.abc import Callable def lowercase ( _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' _UpperCAmelCase = a _UpperCAmelCase = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: _UpperCAmelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _UpperCAmelCase = mid else: _UpperCAmelCase = mid _UpperCAmelCase = start + (end - start) / 2.0 return mid def lowercase ( _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __A : Union[str, Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , '''sklearn''' ) return (preds == labels).mean() def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , '''sklearn''' ) _UpperCAmelCase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , '''sklearn''' ) _UpperCAmelCase = pearsonr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase = spearmanr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , '''sklearn''' ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ), f'Predictions and labels have mismatched lengths {len(_SCREAMING_SNAKE_CASE )} and {len(_SCREAMING_SNAKE_CASE )}' if task_name == "cola": return {"mcc": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "sst-2": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "mrpc": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif task_name == "sts-b": return pearson_and_spearman(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif task_name == "qqp": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "qnli": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "rte": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "wnli": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif task_name == "hans": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' warnings.warn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) requires_backends(_SCREAMING_SNAKE_CASE , '''sklearn''' ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError(f'Predictions and labels have mismatched lengths {len(_SCREAMING_SNAKE_CASE )} and {len(_SCREAMING_SNAKE_CASE )}' ) if task_name == "xnli": return {"acc": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError(_SCREAMING_SNAKE_CASE )
326
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """MCTCTFeatureExtractor""" UpperCamelCase__ = """AutoTokenizer""" def __init__( self : str , __UpperCamelCase : str , __UpperCamelCase : Any )->Optional[Any]: super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False def __call__( self : Union[str, Any] , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : Dict )->List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) _UpperCAmelCase = kwargs.pop('''raw_speech''' ) else: _UpperCAmelCase = kwargs.pop('''audio''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''sampling_rate''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''text''' , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: _UpperCAmelCase = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) if text is not None: _UpperCAmelCase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase = encodings['''input_ids'''] return inputs def lowercase__ ( self : List[str] , *__UpperCamelCase : str , **__UpperCamelCase : Tuple )->str: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Any )->Dict: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''input_features''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''labels''' , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if input_features is not None: _UpperCAmelCase = self.feature_extractor.pad(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if labels is not None: _UpperCAmelCase = self.tokenizer.pad(__UpperCamelCase , **__UpperCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase = labels['''input_ids'''] return input_features def lowercase__ ( self : Dict , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Optional[Any] )->Optional[Any]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @contextmanager def lowercase__ ( self : Optional[int] )->Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False
326
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int = 100 ): '''simple docstring''' _UpperCAmelCase = n * (n + 1) * (2 * n + 1) / 6 _UpperCAmelCase = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
1
"""simple docstring""" from math import pi, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(_SCREAMING_SNAKE_CASE ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(_SCREAMING_SNAKE_CASE ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase ( ): '''simple docstring''' assert gamma(0.5 ) == sqrt(_SCREAMING_SNAKE_CASE ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __A : Optional[Any] = 1.0 while num: __A : Union[str, Any] = float(input("Gamma of: ")) print(f'''gamma({num}) = {gamma(num)}''') print("\nEnter 0 to exit...")
326
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import math def lowercase ( ): '''simple docstring''' _UpperCAmelCase = input('''Enter message: ''' ) _UpperCAmelCase = int(input(f'Enter key [2-{len(_SCREAMING_SNAKE_CASE ) - 1}]: ' ) ) _UpperCAmelCase = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): _UpperCAmelCase = encrypt_message(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif mode.lower().startswith('''d''' ): _UpperCAmelCase = decrypt_message(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'Output:\n{text + "|"}' ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = [''''''] * key for col in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = col while pointer < len(_SCREAMING_SNAKE_CASE ): cipher_text[col] += message[pointer] pointer += key return "".join(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = math.ceil(len(_SCREAMING_SNAKE_CASE ) / key ) _UpperCAmelCase = key _UpperCAmelCase = (num_cols * num_rows) - len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [''''''] * num_cols _UpperCAmelCase = 0 _UpperCAmelCase = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _UpperCAmelCase = 0 row += 1 return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger(__name__) __A : Tuple = torch.device("cpu") def lowercase ( ): '''simple docstring''' _UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCAmelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = dct.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = val def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = [] for k in state_dict.keys(): _UpperCAmelCase = k if ".pwconv" in k: _UpperCAmelCase = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: _UpperCAmelCase = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: _UpperCAmelCase = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: _UpperCAmelCase = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: _UpperCAmelCase = k_new.split('''.''' ) if ls[2].isdigit(): _UpperCAmelCase = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: _UpperCAmelCase = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _UpperCAmelCase = 1000 _UpperCAmelCase = '''huggingface/label-files''' _UpperCAmelCase = '''imagenet-1k-id2label.json''' _UpperCAmelCase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) _UpperCAmelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _UpperCAmelCase = [3, 3, 6, 4] _UpperCAmelCase = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": _UpperCAmelCase = [3, 3, 9, 6] _UpperCAmelCase = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": _UpperCAmelCase = [4, 3, 10, 5] _UpperCAmelCase = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": _UpperCAmelCase = [4, 4, 12, 6] _UpperCAmelCase = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): _UpperCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' , check_hash=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCAmelCase = checkpoint _UpperCAmelCase = create_rename_keys(_SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model _UpperCAmelCase = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # prepare test inputs _UpperCAmelCase = prepare_img() _UpperCAmelCase = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) _UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # compare outputs from both models _UpperCAmelCase = get_expected_output(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") __A : List[Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
326
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : List[Any] = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """openai-gpt""" UpperCamelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[Any] , __UpperCamelCase : str=4_0_4_7_8 , __UpperCamelCase : Union[str, Any]=5_1_2 , __UpperCamelCase : Optional[int]=7_6_8 , __UpperCamelCase : Any=1_2 , __UpperCamelCase : Optional[int]=1_2 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : List[str]=1e-5 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : List[Any]="cls_index" , __UpperCamelCase : List[str]=True , __UpperCamelCase : Tuple=None , __UpperCamelCase : Any=True , __UpperCamelCase : Optional[int]=0.1 , **__UpperCamelCase : Union[str, Any] , )->Optional[Any]: _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**__UpperCamelCase )
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Tuple )->List[Any]: _UpperCAmelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _UpperCAmelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _UpperCAmelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _UpperCAmelCase = shift_tokens_right(__UpperCamelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) _UpperCAmelCase = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits _UpperCAmelCase = optax.softmax_cross_entropy(__UpperCamelCase , onehot(__UpperCamelCase , logits.shape[-1] ) ).mean() _UpperCAmelCase = -(labels.shape[-1] * loss.item()) _UpperCAmelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
326
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
1
"""simple docstring""" __A : Tuple = 0 # The first color of the flag. __A : List[str] = 1 # The second color of the flag. __A : Union[str, Any] = 2 # The third color of the flag. __A : str = (red, white, blue) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if not sequence: return [] if len(_SCREAMING_SNAKE_CASE ) == 1: return list(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0 _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) - 1 _UpperCAmelCase = 0 while mid <= high: if sequence[mid] == colors[0]: _UpperCAmelCase , _UpperCAmelCase = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _UpperCAmelCase , _UpperCAmelCase = sequence[high], sequence[mid] high -= 1 else: _UpperCAmelCase = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __A : str = input("Enter numbers separated by commas:\n").strip() __A : Any = [int(item.strip()) for item in user_input.split(",")] print(f'''{dutch_national_flag_sort(unsorted)}''')
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __A : Any = logging.get_logger(__name__) class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None @staticmethod def lowercase__ ( )->List[str]: raise NotImplementedError def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : Any )->str: raise NotImplementedError def lowercase__ ( self : Any , __UpperCamelCase : List[str] )->List[str]: raise NotImplementedError def lowercase__ ( self : List[Any] )->int: if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def lowercase__ ( cls : Optional[Any] )->Optional[Any]: return F'`pip install {cls.pip_package or cls.name}`' class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """optuna""" @staticmethod def lowercase__ ( )->int: return is_optuna_available() def lowercase__ ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : int )->Optional[Any]: return run_hp_search_optuna(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[str] )->List[Any]: return default_hp_space_optuna(__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """ray""" UpperCamelCase__ = """'ray[tune]'""" @staticmethod def lowercase__ ( )->Optional[Any]: return is_ray_available() def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : str )->Union[str, Any]: return run_hp_search_ray(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : List[str] )->Optional[int]: return default_hp_space_ray(__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """sigopt""" @staticmethod def lowercase__ ( )->Optional[Any]: return is_sigopt_available() def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : List[str] )->List[Any]: return run_hp_search_sigopt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Any )->Any: return default_hp_space_sigopt(__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """wandb""" @staticmethod def lowercase__ ( )->int: return is_wandb_available() def lowercase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : int )->Optional[Any]: return run_hp_search_wandb(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any] )->Tuple: return default_hp_space_wandb(__UpperCamelCase ) __A : List[Any] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = available_backends[0].name if len(_SCREAMING_SNAKE_CASE ) > 1: logger.info( f'{len(_SCREAMING_SNAKE_CASE )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
326
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __A : Any = logging.get_logger(__name__) __A : Any = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] __A : Dict = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) return sd def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple=rename_keys_prefix ): '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _UpperCAmelCase = key for name_pair in rename_keys_prefix: _UpperCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) _UpperCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _UpperCAmelCase = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _UpperCAmelCase = '''pretraining''' if "vcr" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048} elif "vqa" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048} elif "nlvr" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 1024} else: raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 512} _UpperCAmelCase = '''multichoice''' elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048} _UpperCAmelCase = '''vqa_advanced''' elif "vqa" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048, '''num_labels''': 3129} _UpperCAmelCase = '''vqa''' elif "nlvr" in checkpoint_path: _UpperCAmelCase = { '''visual_embedding_dim''': 1024, '''num_labels''': 2, } _UpperCAmelCase = '''nlvr''' _UpperCAmelCase = VisualBertConfig(**_SCREAMING_SNAKE_CASE ) # Load State Dict _UpperCAmelCase = load_state_dict(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = get_new_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if model_type == "pretraining": _UpperCAmelCase = VisualBertForPreTraining(_SCREAMING_SNAKE_CASE ) elif model_type == "vqa": _UpperCAmelCase = VisualBertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) elif model_type == "nlvr": _UpperCAmelCase = VisualBertForVisualReasoning(_SCREAMING_SNAKE_CASE ) elif model_type == "multichoice": _UpperCAmelCase = VisualBertForMultipleChoice(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Save Checkpoints Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") __A : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
326
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __A : List[Any] = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" __A : Union[str, Any] = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" __A : Optional[Any] = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' return float((preds == labels).mean() ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any]="binary" ): '''simple docstring''' _UpperCAmelCase = simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = {} for id_pred, label in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' _UpperCAmelCase = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _UpperCAmelCase = [(pred, label)] _UpperCAmelCase , _UpperCAmelCase = [], [] for question, preds_labels in question_map.items(): _UpperCAmelCase , _UpperCAmelCase = zip(*_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average='''macro''' ) fas.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) ) ems.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : Optional[int] )->Tuple: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def lowercase__ ( self : Any )->List[str]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def lowercase__ ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->Dict: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__UpperCamelCase , __UpperCamelCase )} elif self.config_name == "cb": return acc_and_fa(__UpperCamelCase , __UpperCamelCase , fa_avg='''macro''' ) elif self.config_name == "record": _UpperCAmelCase = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _UpperCAmelCase = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(__UpperCamelCase , __UpperCamelCase )[0] elif self.config_name == "multirc": return evaluate_multirc(__UpperCamelCase , __UpperCamelCase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
326
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
1
"""simple docstring""" from __future__ import annotations import requests __A : Tuple = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int = 1 , _SCREAMING_SNAKE_CASE : str = "new" , _SCREAMING_SNAKE_CASE : list | None = None ): '''simple docstring''' _UpperCAmelCase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(_SCREAMING_SNAKE_CASE ) - valid_terms ) ): _UpperCAmelCase = f'Invalid search term: {invalid_search_terms}' raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError _UpperCAmelCase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(_SCREAMING_SNAKE_CASE )} _UpperCAmelCase = {} for id_ in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
326
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __A : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") __A : str = {"target_lang": "fi", "source_lang": "en"} __A : int = ">>zh<<" __A : List[Any] = "Helsinki-NLP/" if is_torch_available(): __A : int = "pt" elif is_tf_available(): __A : Tuple = "tf" else: __A : Union[str, Any] = "jax" @require_sentencepiece class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = MarianTokenizer UpperCamelCase__ = False UpperCamelCase__ = True def lowercase__ ( self : List[str] )->Dict: super().setUp() _UpperCAmelCase = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = Path(self.tmpdirname ) save_json(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(__UpperCamelCase , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) _UpperCAmelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Dict , **__UpperCamelCase : List[Any] )->MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : List[str] )->Optional[Any]: return ( "This is a test", "This is a test", ) def lowercase__ ( self : Dict )->Optional[Any]: _UpperCAmelCase = '''</s>''' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCamelCase ) , 9 ) def lowercase__ ( self : Any )->Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) _UpperCAmelCase = en_de_tokenizer(['''I am a small frog'''] , return_tensors=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(__UpperCamelCase , batch.input_ids[0] ) _UpperCAmelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = [x.name for x in Path(__UpperCamelCase ).glob('''*''' )] self.assertIn('''source.spm''' , __UpperCamelCase ) MarianTokenizer.from_pretrained(__UpperCamelCase ) def lowercase__ ( self : int )->Dict: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = tok( ['''I am a small frog''' * 1_0_0_0, '''I am a small frog'''] , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def lowercase__ ( self : Optional[int] )->Any: # fmt: off _UpperCAmelCase = {'''input_ids''': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def lowercase__ ( self : Union[str, Any] )->Union[str, Any]: _UpperCAmelCase = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) _UpperCAmelCase = '''Tämä on testi''' _UpperCAmelCase = '''This is a test''' _UpperCAmelCase = [7_6, 7, 2_0_4_7, 2] _UpperCAmelCase = [6_9, 1_2, 1_1, 9_4_0, 2] _UpperCAmelCase = tokenizer(__UpperCamelCase ).input_ids self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer(text_target=__UpperCamelCase ).input_ids self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
326
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int=5 ): '''simple docstring''' assert masked_input.count('''<mask>''' ) == 1 _UpperCAmelCase = torch.tensor(tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) # Batch size 1 _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE )[0] # The last hidden-state is the first element of the output tuple _UpperCAmelCase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _UpperCAmelCase = logits[0, masked_index, :] _UpperCAmelCase = logits.softmax(dim=0 ) _UpperCAmelCase , _UpperCAmelCase = prob.topk(k=_SCREAMING_SNAKE_CASE , dim=0 ) _UpperCAmelCase = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) _UpperCAmelCase = tokenizer.mask_token _UpperCAmelCase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): _UpperCAmelCase = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(_SCREAMING_SNAKE_CASE ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __A : List[Any] = CamembertTokenizer.from_pretrained("camembert-base") __A : Optional[int] = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __A : Optional[int] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class _a : """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : Optional[Any] )->Optional[Any]: _UpperCAmelCase = data _UpperCAmelCase = [0X67_45_23_01, 0XEF_CD_AB_89, 0X98_BA_DC_FE, 0X10_32_54_76, 0XC3_D2_E1_F0] @staticmethod def lowercase__ ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple )->Optional[Any]: return ((n << b) | (n >> (3_2 - b))) & 0XFF_FF_FF_FF def lowercase__ ( self : Any )->int: _UpperCAmelCase = B'''\x80''' + B'''\x00''' * (6_3 - (len(self.data ) + 8) % 6_4) _UpperCAmelCase = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def lowercase__ ( self : int )->Dict: return [ self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data ) , 6_4 ) ] def lowercase__ ( self : str , __UpperCamelCase : int )->Any: _UpperCAmelCase = list(struct.unpack('''>16L''' , __UpperCamelCase ) ) + [0] * 6_4 for i in range(1_6 , 8_0 ): _UpperCAmelCase = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1 ) return w def lowercase__ ( self : str )->str: _UpperCAmelCase = self.padding() _UpperCAmelCase = self.split_blocks() for block in self.blocks: _UpperCAmelCase = self.expand_block(__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.h for i in range(0 , 8_0 ): if 0 <= i < 2_0: _UpperCAmelCase = (b & c) | ((~b) & d) _UpperCAmelCase = 0X5A_82_79_99 elif 2_0 <= i < 4_0: _UpperCAmelCase = b ^ c ^ d _UpperCAmelCase = 0X6E_D9_EB_A1 elif 4_0 <= i < 6_0: _UpperCAmelCase = (b & c) | (b & d) | (c & d) _UpperCAmelCase = 0X8F_1B_BC_DC elif 6_0 <= i < 8_0: _UpperCAmelCase = b ^ c ^ d _UpperCAmelCase = 0XCA_62_C1_D6 _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = ( self.rotate(__UpperCamelCase , 5 ) + f + e + k + expanded_block[i] & 0XFF_FF_FF_FF, a, self.rotate(__UpperCamelCase , 3_0 ), c, d, ) _UpperCAmelCase = ( self.h[0] + a & 0XFF_FF_FF_FF, self.h[1] + b & 0XFF_FF_FF_FF, self.h[2] + c & 0XFF_FF_FF_FF, self.h[3] + d & 0XFF_FF_FF_FF, self.h[4] + e & 0XFF_FF_FF_FF, ) return ("{:08x}" * 5).format(*self.h ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = B'''Test String''' assert SHAaHash(_SCREAMING_SNAKE_CASE ).final_hash() == hashlib.shaa(_SCREAMING_SNAKE_CASE ).hexdigest() # noqa: S324 def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: _UpperCAmelCase = f.read() else: _UpperCAmelCase = bytes(_SCREAMING_SNAKE_CASE , '''utf-8''' ) print(SHAaHash(_SCREAMING_SNAKE_CASE ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
326
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , **__UpperCamelCase : List[str] )->List[str]: super().__init__(**__UpperCamelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(__UpperCamelCase ) def lowercase__ ( self : Tuple , **__UpperCamelCase : Optional[int] )->List[Any]: _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} # preprocess args if "points_per_batch" in kwargs: _UpperCAmelCase = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: _UpperCAmelCase = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: _UpperCAmelCase = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: _UpperCAmelCase = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: _UpperCAmelCase = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: _UpperCAmelCase = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: _UpperCAmelCase = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: _UpperCAmelCase = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: _UpperCAmelCase = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: _UpperCAmelCase = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: _UpperCAmelCase = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: _UpperCAmelCase = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Any , __UpperCamelCase : Union[str, Any] , *__UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Union[str, Any]=None , **__UpperCamelCase : Optional[Any] )->Dict: return super().__call__(__UpperCamelCase , *__UpperCamelCase , num_workers=__UpperCamelCase , batch_size=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Dict=6_4 , __UpperCamelCase : int = 0 , __UpperCamelCase : float = 5_1_2 / 1_5_0_0 , __UpperCamelCase : Optional[int] = 3_2 , __UpperCamelCase : Optional[int] = 1 , )->str: _UpperCAmelCase = load_image(__UpperCamelCase ) _UpperCAmelCase = self.image_processor.size['''longest_edge'''] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.image_processor.generate_crop_boxes( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": _UpperCAmelCase = self.get_inference_context() with inference_context(): _UpperCAmelCase = self._ensure_tensor_on_device(__UpperCamelCase , device=self.device ) _UpperCAmelCase = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) _UpperCAmelCase = image_embeddings _UpperCAmelCase = grid_points.shape[1] _UpperCAmelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , __UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = grid_points[:, i : i + points_per_batch, :, :] _UpperCAmelCase = input_labels[:, i : i + points_per_batch] _UpperCAmelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase__ ( self : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any]=0.8_8 , __UpperCamelCase : str=0.9_5 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Union[str, Any]=1 , )->Optional[Any]: _UpperCAmelCase = model_inputs.pop('''input_boxes''' ) _UpperCAmelCase = model_inputs.pop('''is_last''' ) _UpperCAmelCase = model_inputs.pop('''original_sizes''' ).tolist() _UpperCAmelCase = model_inputs.pop('''reshaped_input_sizes''' ).tolist() _UpperCAmelCase = self.model(**__UpperCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _UpperCAmelCase = model_outputs['''pred_masks'''] _UpperCAmelCase = self.image_processor.post_process_masks( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , binarize=__UpperCamelCase ) _UpperCAmelCase = model_outputs['''iou_scores'''] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any=False , __UpperCamelCase : Dict=False , __UpperCamelCase : str=0.7 , )->Any: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) _UpperCAmelCase = torch.cat(__UpperCamelCase ) _UpperCAmelCase = torch.cat(__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.image_processor.post_process_for_mask_generation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = defaultdict(__UpperCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__UpperCamelCase ) _UpperCAmelCase = {} if output_rle_mask: _UpperCAmelCase = rle_mask if output_bboxes_mask: _UpperCAmelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
326
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
1
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) == 9 and set(_SCREAMING_SNAKE_CASE ) == set('''123456789''' ) def lowercase ( ): '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _UpperCAmelCase = 10_0002 * base_num if is_9_pandigital(_SCREAMING_SNAKE_CASE ): return candidate for base_num in range(333 , 99 , -1 ): _UpperCAmelCase = 100_2003 * base_num if is_9_pandigital(_SCREAMING_SNAKE_CASE ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=False ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = len(set_a.intersection(_SCREAMING_SNAKE_CASE ) ) if alternative_union: _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = len(set_a.union(_SCREAMING_SNAKE_CASE ) ) return intersection / union if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): _UpperCAmelCase = [element for element in set_a if element in set_b] if alternative_union: _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) / union else: _UpperCAmelCase = set_a + [element for element in set_b if element not in set_a] return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) return None if __name__ == "__main__": __A : List[Any] = {"a", "b", "c", "d", "e"} __A : Tuple = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
326
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A : Dict = logging.get_logger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Dict , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : List[Any] , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[int] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[Any] , )->int: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Dict , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , )->np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = to_numpy_array(__UpperCamelCase ) if do_resize: _UpperCAmelCase = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: _UpperCAmelCase = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: _UpperCAmelCase = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) if do_normalize: _UpperCAmelCase = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) _UpperCAmelCase = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase : Any , )->PIL.Image.Image: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) _UpperCAmelCase = make_batched(__UpperCamelCase ) _UpperCAmelCase = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] _UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
1
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
"""simple docstring""" from math import factorial def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(_SCREAMING_SNAKE_CASE ) // (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", f'''4 for group projects, there are {combinations(40, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f'''are {combinations(10, 3)} ways that first, second and''', "third place can be awarded.", )
326
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
1
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if not nums: raise ValueError('''List is empty''' ) return sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Tuple = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class _a ( unittest.TestCase): """simple docstring""" @classmethod def lowercase__ ( cls : Optional[Any] )->List[str]: _UpperCAmelCase = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def lowercase__ ( cls : str )->str: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def lowercase__ ( self : Union[str, Any] )->str: _UpperCAmelCase = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCamelCase , repo_id='''test-config''' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def lowercase__ ( self : str )->int: _UpperCAmelCase = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __UpperCamelCase , repo_id='''valid_org/test-config-org''' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def lowercase__ ( self : str )->str: CustomConfig.register_for_auto_class() _UpperCAmelCase = CustomConfig(attribute=4_2 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) _UpperCAmelCase = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 4_2 ) class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int )->Tuple: _UpperCAmelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase = c.n_embd + 1 # int _UpperCAmelCase = c.resid_pdrop + 1.0 # float _UpperCAmelCase = not c.scale_attn_weights # bool _UpperCAmelCase = c.summary_type + '''foo''' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(__UpperCamelCase , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(__UpperCamelCase , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(__UpperCamelCase , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(__UpperCamelCase , c.summary_type , '''mismatch for key: summary_type''' ) def lowercase__ ( self : Any )->Tuple: _UpperCAmelCase = PretrainedConfig() _UpperCAmelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __UpperCamelCase , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) _UpperCAmelCase = [key for key, value in config_common_kwargs.items() if value == getattr(__UpperCamelCase , __UpperCamelCase )] if len(__UpperCamelCase ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F' {", ".join(__UpperCamelCase )}.' ) def lowercase__ ( self : Optional[int] )->Optional[Any]: with self.assertRaises(__UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) _UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__ ( self : int )->Any: # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 5_0_0 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=__UpperCamelCase ) as mock_head: _UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self : int )->str: # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def lowercase__ ( self : Tuple )->Optional[int]: _UpperCAmelCase = AutoConfig.from_pretrained('''bert-base-cased''' ) _UpperCAmelCase = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(__UpperCamelCase , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase = ['''config.42.0.0.json'''] _UpperCAmelCase = 7_6_8 configuration.save_pretrained(__UpperCamelCase ) shutil.move(os.path.join(__UpperCamelCase , '''config.4.0.0.json''' ) , os.path.join(__UpperCamelCase , '''config.42.0.0.json''' ) ) _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def lowercase__ ( self : Dict )->Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _UpperCAmelCase = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers _UpperCAmelCase = '''v4.0.0''' _UpperCAmelCase , _UpperCAmelCase = new_transformers.models.auto.AutoConfig.from_pretrained( __UpperCamelCase , return_unused_kwargs=__UpperCamelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__UpperCamelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase = '''v3.0.0''' _UpperCAmelCase = old_transformers.models.auto.AutoConfig.from_pretrained(__UpperCamelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" from maths.prime_factors import prime_factors def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = f'Input value of [number={number}] must be an integer' raise TypeError(_SCREAMING_SNAKE_CASE ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(_SCREAMING_SNAKE_CASE ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
1
"""simple docstring""" __A : str = "Alexander Joslin" import operator as op from .stack import Stack def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} _UpperCAmelCase = Stack() _UpperCAmelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _UpperCAmelCase = operator_stack.peek() operator_stack.pop() _UpperCAmelCase = operand_stack.peek() operand_stack.pop() _UpperCAmelCase = operand_stack.peek() operand_stack.pop() _UpperCAmelCase = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : List[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") __A : Any = parser.parse_args() if args.model_type == "roberta": __A : str = RobertaForMaskedLM.from_pretrained(args.model_name) __A : List[str] = "roberta" elif args.model_type == "gpt2": __A : Dict = GPTaLMHeadModel.from_pretrained(args.model_name) __A : Optional[int] = "transformer" __A : List[Any] = model.state_dict() __A : Union[str, Any] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __A : Optional[int] = state_dict[f'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __A : Any = f'''{prefix}.embeddings.{w}.weight''' __A : Dict = state_dict[param_name] for w in ["weight", "bias"]: __A : Union[str, Any] = f'''{prefix}.embeddings.LayerNorm.{w}''' __A : str = state_dict[param_name] # Transformer Blocks # __A : Optional[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __A : Union[str, Any] = state_dict[ f'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] __A : str = state_dict[f'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __A : Optional[int] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __A : Optional[Any] = state_dict[f'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: __A : Tuple = state_dict[f'''lm_head.dense.{w}'''] __A : Tuple = state_dict[f'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __A : Any = state_dict[f'''{prefix}.ln_f.{w}'''] __A : Optional[int] = state_dict["lm_head.weight"] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
326
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
1
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __A : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __A : Tuple = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __A : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __A : Tuple = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) __A : List[str] = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions __A : Any = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) __A : int = tf.keras.preprocessing.image.img_to_array(test_image) __A : Optional[int] = np.expand_dims(test_image, axis=0) __A : str = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __A : int = "Normal" if result[0][0] == 1: __A : Optional[Any] = "Abnormality detected"
326
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
1
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Union[str, Any] = {"vocab_file": "vocab.txt"} __A : List[Any] = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } __A : Tuple = { "facebook/esm2_t6_8M_UR50D": 1024, "facebook/esm2_t12_35M_UR50D": 1024, } def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , '''r''' ) as f: _UpperCAmelCase = f.read().splitlines() return [l.strip() for l in lines] class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Dict="<unk>" , __UpperCamelCase : List[str]="<cls>" , __UpperCamelCase : int="<pad>" , __UpperCamelCase : int="<mask>" , __UpperCamelCase : List[Any]="<eos>" , **__UpperCamelCase : Tuple , )->Optional[int]: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = load_vocab_file(__UpperCamelCase ) _UpperCAmelCase = dict(enumerate(self.all_tokens ) ) _UpperCAmelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} _UpperCAmelCase = unk_token _UpperCAmelCase = cls_token _UpperCAmelCase = pad_token _UpperCAmelCase = mask_token _UpperCAmelCase = eos_token _UpperCAmelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowercase__ ( self : List[str] , __UpperCamelCase : int )->str: return self._id_to_token.get(__UpperCamelCase , self.unk_token ) def lowercase__ ( self : Tuple , __UpperCamelCase : str )->int: return self._token_to_id.get(__UpperCamelCase , self._token_to_id.get(self.unk_token ) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->List[str]: return text.split() def lowercase__ ( self : List[Any] , __UpperCamelCase : Tuple=False )->Dict: return len(self._id_to_token ) def lowercase__ ( self : str )->Tuple: return {token: i for i, token in enumerate(self.all_tokens )} def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str )->int: return self._token_to_id.get(__UpperCamelCase , self._token_to_id.get(self.unk_token ) ) def lowercase__ ( self : str , __UpperCamelCase : int )->str: return self._id_to_token.get(__UpperCamelCase , self.unk_token ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowercase__ ( self : Optional[int] , __UpperCamelCase : List , __UpperCamelCase : Optional[List] = None , __UpperCamelCase : bool = False )->List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _UpperCAmelCase = [1] + ([0] * len(__UpperCamelCase )) + [1] if token_ids_a is not None: mask += [0] * len(__UpperCamelCase ) + [1] return mask def lowercase__ ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] )->Optional[int]: _UpperCAmelCase = os.path.join(__UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__UpperCamelCase , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def lowercase__ ( self : Optional[Any] )->int: return self.get_vocab_size(with_added_tokens=__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : Union[List[str], List[AddedToken]] , __UpperCamelCase : bool = False )->int: return super()._add_tokens(__UpperCamelCase , special_tokens=__UpperCamelCase )
326
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants __A : List[str] = 300 # TEMPERATURE (unit = K) def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , ): '''simple docstring''' if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
326
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
1
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _a ( unittest.TestCase): """simple docstring""" def __init__( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Any=5_6 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=9_9 , __UpperCamelCase : str=3_2 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Any=2 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : Optional[Any]="gelu_new" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : List[str]=1_6 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : int=4 , __UpperCamelCase : Tuple="block_sparse" , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : List[str]=False , __UpperCamelCase : int=2 , __UpperCamelCase : Any=3 , )->Union[str, Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_choices _UpperCAmelCase = rescale_embeddings _UpperCAmelCase = attention_type _UpperCAmelCase = use_bias _UpperCAmelCase = block_size _UpperCAmelCase = num_random_blocks def lowercase__ ( self : Optional[int] )->Optional[Any]: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_attention_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self : Dict )->Tuple: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : List[str] )->Union[str, Any]: super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : int )->List[Any]: super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : List[Any] )->str: super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : List[str] )->Tuple: super().test_hidden_states_output() @slow def lowercase__ ( self : List[str] )->Union[str, Any]: for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__ ( self : Any )->Tuple: if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowercase__ ( self : Optional[Any] )->Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = model_class(__UpperCamelCase ) @jax.jit def model_jitted(__UpperCamelCase : Dict , __UpperCamelCase : List[Any]=None , **__UpperCamelCase : List[str] ): return model(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , **__UpperCamelCase ) with self.subTest('''JIT Enabled''' ): _UpperCAmelCase = model_jitted(**__UpperCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCAmelCase = model_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any]=1e-5 , __UpperCamelCase : Dict="outputs" , __UpperCamelCase : Dict=None )->str: # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
326
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
1
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : List[Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """cvt""" def __init__( self : int , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : Optional[int]=[7, 3, 3] , __UpperCamelCase : List[str]=[4, 2, 2] , __UpperCamelCase : Optional[int]=[2, 1, 1] , __UpperCamelCase : Optional[int]=[6_4, 1_9_2, 3_8_4] , __UpperCamelCase : Tuple=[1, 3, 6] , __UpperCamelCase : Optional[Any]=[1, 2, 1_0] , __UpperCamelCase : str=[4.0, 4.0, 4.0] , __UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , __UpperCamelCase : Optional[int]=[0.0, 0.0, 0.0] , __UpperCamelCase : List[Any]=[0.0, 0.0, 0.1] , __UpperCamelCase : str=[True, True, True] , __UpperCamelCase : Union[str, Any]=[False, False, True] , __UpperCamelCase : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , __UpperCamelCase : Tuple=[3, 3, 3] , __UpperCamelCase : Tuple=[1, 1, 1] , __UpperCamelCase : List[Any]=[2, 2, 2] , __UpperCamelCase : Tuple=[1, 1, 1] , __UpperCamelCase : List[str]=[1, 1, 1] , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Any=1e-12 , **__UpperCamelCase : Tuple , )->Tuple: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = depth _UpperCAmelCase = mlp_ratio _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = drop_rate _UpperCAmelCase = drop_path_rate _UpperCAmelCase = qkv_bias _UpperCAmelCase = cls_token _UpperCAmelCase = qkv_projection_method _UpperCAmelCase = kernel_qkv _UpperCAmelCase = padding_kv _UpperCAmelCase = stride_kv _UpperCAmelCase = padding_q _UpperCAmelCase = stride_q _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps
326
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : List[str] , )->int: _UpperCAmelCase = parent _UpperCAmelCase = 1_3 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = 2 _UpperCAmelCase = 9_9 _UpperCAmelCase = 0 _UpperCAmelCase = 3_2 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 5_1_2 _UpperCAmelCase = 1_6 _UpperCAmelCase = 2 _UpperCAmelCase = 0.0_2 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = '''last''' _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = 0 def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) _UpperCAmelCase = None if self.use_input_lengths: _UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , )->Tuple: _UpperCAmelCase = TFFlaubertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , )->Tuple: _UpperCAmelCase = TFFlaubertWithLMHeadModel(__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , )->List[Any]: _UpperCAmelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , )->Union[str, Any]: _UpperCAmelCase = TFFlaubertForSequenceClassification(__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : str , )->str: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFFlaubertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , )->Dict: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFFlaubertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase__ = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] )->List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = TFFlaubertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , emb_dim=3_7 ) def lowercase__ ( self : Union[str, Any] )->Optional[Any]: self.config_tester.run_common_tests() def lowercase__ ( self : Tuple )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCamelCase ) def lowercase__ ( self : int )->List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCamelCase ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCamelCase ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCamelCase ) @slow def lowercase__ ( self : Any )->Union[str, Any]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFFlaubertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) _UpperCAmelCase = tf.convert_to_tensor( [[0, 1_5_8, 7_3_5, 2_5_9_2, 1_4_2_4, 6_7_2_7, 8_2, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = tf.TensorShape((1, 8, 5_1_2) ) self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice. _UpperCAmelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
326
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __A : Optional[Any] = 4 __A : Dict = 3 class _a ( lowerCAmelCase): """simple docstring""" pass def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' for shard in shards: for i in range(_SCREAMING_SNAKE_CASE ): yield {"i": i, "shard": shard} def lowercase ( ): '''simple docstring''' _UpperCAmelCase = int(os.environ['''RANK'''] ) _UpperCAmelCase = int(os.environ['''WORLD_SIZE'''] ) _UpperCAmelCase = ArgumentParser() parser.add_argument('''--streaming''' , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--local_rank''' , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--num_workers''' , type=_SCREAMING_SNAKE_CASE , default=0 ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = args.streaming _UpperCAmelCase = args.num_workers _UpperCAmelCase = {'''shards''': [f'shard_{shard_idx}' for shard_idx in range(_SCREAMING_SNAKE_CASE )]} _UpperCAmelCase = IterableDataset.from_generator(_SCREAMING_SNAKE_CASE , gen_kwargs=_SCREAMING_SNAKE_CASE ) if not streaming: _UpperCAmelCase = Dataset.from_list(list(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = split_dataset_by_node(_SCREAMING_SNAKE_CASE , rank=_SCREAMING_SNAKE_CASE , world_size=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.utils.data.DataLoader(_SCREAMING_SNAKE_CASE , num_workers=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD _UpperCAmelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _UpperCAmelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __A : str = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : int = 1_0_1 )->Tuple: _UpperCAmelCase = length def __len__( self : int )->Optional[Any]: return self.length def __getitem__( self : Optional[Any] , __UpperCamelCase : Any )->int: return i class _a : """simple docstring""" def __call__( self : Any , __UpperCamelCase : Optional[Any] )->List[str]: return {"input_ids": torch.tensor(__UpperCamelCase ), "labels": torch.tensor(__UpperCamelCase )} class _a ( nn.Module): """simple docstring""" def __init__( self : Optional[Any] )->Dict: super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase = nn.Linear(1_2_0 , 8_0 ) def lowercase__ ( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict=None )->List[Any]: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( lowerCAmelCase): """simple docstring""" @require_torch_neuroncore def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F'--output_dir {output_dir}'.split() _UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( lowerCAmelCase): """simple docstring""" @require_torch_multi_gpu def lowercase__ ( self : str )->Dict: _UpperCAmelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F'--output_dir {output_dir}'.split() _UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __A : Any = HfArgumentParser((TrainingArguments,)) __A : str = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __A : Optional[Any] = DummyDataset(dataset_length) def lowercase ( _SCREAMING_SNAKE_CASE : EvalPrediction ): '''simple docstring''' _UpperCAmelCase = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __A : List[Any] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __A : int = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __A : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __A : List[Any] = 2 __A : Optional[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __A : int = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __A : Any = None
326
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
1
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __A : Optional[int] = 10 def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def lowercase ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = (left + right) // 3 + 1 _UpperCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _UpperCAmelCase = one_third - 1 elif array[two_third] < target: _UpperCAmelCase = two_third + 1 else: _UpperCAmelCase = one_third + 1 _UpperCAmelCase = two_third - 1 else: return -1 def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = (left + right) // 3 + 1 _UpperCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_SCREAMING_SNAKE_CASE , one_third - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[int] = input("Enter numbers separated by comma:\n").strip() __A : str = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __A : str = int(input("Enter the number to be found in the list:\n").strip()) __A : str = ite_ternary_search(collection, target) __A : Any = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f'''Iterative search: {target} found at positions: {resulta}''') print(f'''Recursive search: {target} found at positions: {resulta}''') else: print("Not found")
326
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
1
"""simple docstring""" # Function to print upper half of diamond (pyramid) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' for i in range(0 , _SCREAMING_SNAKE_CASE ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for i in range(_SCREAMING_SNAKE_CASE , 0 , -1 ): for _ in range(_SCREAMING_SNAKE_CASE , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(_SCREAMING_SNAKE_CASE ) # upper half reverse_floyd(_SCREAMING_SNAKE_CASE ) # lower half if __name__ == "__main__": print(r"| /\ | |- | |- |--| |\ /| |-") print(r"|/ \| |- |_ |_ |__| | \/ | |_") __A : Optional[Any] = 1 while K: __A : Any = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __A : Any = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
326
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __A : Dict = "src/diffusers" # Matches is_xxx_available() __A : Union[str, Any] = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla __A : List[str] = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") __A : Optional[Any] = "\n{0} = None\n" __A : Optional[Any] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" __A : Union[str, Any] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = _re_backend.findall(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(_SCREAMING_SNAKE_CASE ) def lowercase ( ): '''simple docstring''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking _UpperCAmelCase = 0 _UpperCAmelCase = {} # Go through the end of the file while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_single_line_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(_SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' if backend_specific_objects is None: _UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename _UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): _UpperCAmelCase = '''[''' + ''', '''.join(f'"{b}"' for b in backend.split('''_and_''' ) ) + ''']''' _UpperCAmelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for o in objects] ) _UpperCAmelCase = dummy_file return dummy_files def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=False ): '''simple docstring''' _UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _UpperCAmelCase = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''utils''' ) _UpperCAmelCase = { backend: os.path.join(_SCREAMING_SNAKE_CASE , f'dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } _UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCAmelCase = f.read() else: _UpperCAmelCase = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'Updating diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py as the main ' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f'diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' '''to fix this.''' ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __A : Optional[Any] = parser.parse_args() check_dummies(args.fix_and_overwrite)
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A : Dict = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Dict , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : float = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Any , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 3_8_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCAmelCase = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : float , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[int] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _UpperCAmelCase = size['''shortest_edge'''] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCAmelCase = int(shortest_edge / crop_pct ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__UpperCamelCase , size=(shortest_edge, shortest_edge) , data_format=__UpperCamelCase , **__UpperCamelCase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __UpperCamelCase , size=(shortest_edge, shortest_edge) , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->Tuple: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[Any] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : float = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase : str , )->PIL.Image.Image: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , crop_pct=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
1
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
1
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : Union[str, Any] = 16 __A : int = 32 def lowercase ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : DatasetDict , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : List[int] , _SCREAMING_SNAKE_CASE : int = 16 ): '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCAmelCase = DatasetDict( { '''train''': dataset['''train'''].select(_SCREAMING_SNAKE_CASE ), '''validation''': dataset['''train'''].select(_SCREAMING_SNAKE_CASE ), '''test''': dataset['''validation'''], } ) def tokenize_function(_SCREAMING_SNAKE_CASE : Any ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_SCREAMING_SNAKE_CASE : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = DataLoader( tokenized_datasets['''test'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = [] # Download the dataset _UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) # Create our splits _UpperCAmelCase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config['''lr'''] _UpperCAmelCase = int(config['''num_epochs'''] ) _UpperCAmelCase = int(config['''seed'''] ) _UpperCAmelCase = int(config['''batch_size'''] ) _UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase = MAX_GPU_BATCH_SIZE set_seed(_SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: _UpperCAmelCase = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) _UpperCAmelCase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = get_fold_dataloaders( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.loss _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase = [] for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.logits _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) _UpperCAmelCase = torch.stack(_SCREAMING_SNAKE_CASE , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase = metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) accelerator.print('''Average test metrics from all folds:''' , _SCREAMING_SNAKE_CASE ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=_SCREAMING_SNAKE_CASE , default=3 , help='''The number of splits to perform across the dataset''' ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A : Tuple = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : List[Any] , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : int = 0.9 , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : int , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = crop_pct _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase__ ( self : str , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[Any] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: _UpperCAmelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: _UpperCAmelCase = int(size['''height'''] / crop_pct ) else: _UpperCAmelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(__UpperCamelCase ) ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=__UpperCamelCase , default_to_square=__UpperCamelCase ) else: if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(__UpperCamelCase ) ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[Any] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : str , )->Any: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Any , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : int = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase : Any , )->PIL.Image.Image: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , crop_pct=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : int = logging.get_logger(__name__) __A : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} __A : int = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } __A : Dict = { "camembert-base": 512, } __A : Tuple = "▁" class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : Any="</s>" , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : Optional[Any]="<unk>" , __UpperCamelCase : Dict="<pad>" , __UpperCamelCase : int="<mask>" , __UpperCamelCase : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Optional[int] , )->None: # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) _UpperCAmelCase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _UpperCAmelCase = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} _UpperCAmelCase = len(self.fairseq_tokens_to_ids ) _UpperCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase__ ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False )->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def lowercase__ ( self : Any , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : Dict )->str: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowercase__ ( self : str )->int: _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self : int , __UpperCamelCase : str )->List[str]: return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : List[str] )->Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__UpperCamelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] )->List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self : List[str] , __UpperCamelCase : List[str] )->Dict: _UpperCAmelCase = [] _UpperCAmelCase = '''''' _UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCamelCase ) + token _UpperCAmelCase = True _UpperCAmelCase = [] else: current_sub_tokens.append(__UpperCamelCase ) _UpperCAmelCase = False out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def __getstate__( self : Union[str, Any] )->List[Any]: _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : List[Any] , __UpperCamelCase : int )->Optional[Any]: _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : int , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : int = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """xlm-prophetnet""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : Optional[int] , __UpperCamelCase : Optional[float] = 0.1 , __UpperCamelCase : Optional[Union[str, Callable]] = "gelu" , __UpperCamelCase : Optional[int] = 3_0_5_2_2 , __UpperCamelCase : Optional[int] = 1_0_2_4 , __UpperCamelCase : Optional[int] = 4_0_9_6 , __UpperCamelCase : Optional[int] = 1_2 , __UpperCamelCase : Optional[int] = 1_6 , __UpperCamelCase : Optional[int] = 4_0_9_6 , __UpperCamelCase : Optional[int] = 1_2 , __UpperCamelCase : Optional[int] = 1_6 , __UpperCamelCase : Optional[float] = 0.1 , __UpperCamelCase : Optional[float] = 0.1 , __UpperCamelCase : Optional[int] = 5_1_2 , __UpperCamelCase : Optional[float] = 0.0_2 , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[int] = 0 , __UpperCamelCase : Optional[int] = 2 , __UpperCamelCase : Optional[int] = 3_2 , __UpperCamelCase : Optional[int] = 1_2_8 , __UpperCamelCase : Optional[bool] = False , __UpperCamelCase : Optional[float] = 0.0 , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[int] = 0 , __UpperCamelCase : Optional[int] = 1 , __UpperCamelCase : Optional[int] = 2 , **__UpperCamelCase : Optional[Any] , )->List[Any]: _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = num_encoder_layers _UpperCAmelCase = num_encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = num_decoder_layers _UpperCAmelCase = num_decoder_attention_heads _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = init_std # Normal(0, this parameter) _UpperCAmelCase = activation_function # parameters for xlmprophetnet _UpperCAmelCase = ngram _UpperCAmelCase = num_buckets _UpperCAmelCase = relative_max_distance _UpperCAmelCase = disable_ngram_loss _UpperCAmelCase = eps # 3 Types of Dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = dropout _UpperCAmelCase = use_cache super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , add_cross_attention=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , **__UpperCamelCase , ) @property def lowercase__ ( self : List[str] )->int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowercase__ ( self : Any , __UpperCamelCase : List[str] )->Union[str, Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
326
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
1
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" from math import factorial class _a : """simple docstring""" def __init__( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple )->Optional[int]: _UpperCAmelCase = real if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = [1] * rank else: _UpperCAmelCase = rank def __repr__( self : Dict )->Dict: return ( F'{self.real}+' F'{"+".join(str(__UpperCamelCase )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def lowercase__ ( self : Optional[Any] )->List[Any]: _UpperCAmelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , __UpperCamelCase ) def __add__( self : int , __UpperCamelCase : str )->Any: if not isinstance(__UpperCamelCase , __UpperCamelCase ): return Dual(self.real + other , self.duals ) _UpperCAmelCase = self.duals.copy() _UpperCAmelCase = other.duals.copy() if len(__UpperCamelCase ) > len(__UpperCamelCase ): o_dual.extend([1] * (len(__UpperCamelCase ) - len(__UpperCamelCase )) ) elif len(__UpperCamelCase ) < len(__UpperCamelCase ): s_dual.extend([1] * (len(__UpperCamelCase ) - len(__UpperCamelCase )) ) _UpperCAmelCase = [] for i in range(len(__UpperCamelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , __UpperCamelCase ) UpperCamelCase__ = __add__ def __sub__( self : Optional[int] , __UpperCamelCase : int )->List[str]: return self + other * -1 def __mul__( self : int , __UpperCamelCase : Any )->Tuple: if not isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , __UpperCamelCase ) _UpperCAmelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , __UpperCamelCase ) UpperCamelCase__ = __mul__ def __truediv__( self : List[str] , __UpperCamelCase : Optional[Any] )->Union[str, Any]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , __UpperCamelCase ) raise ValueError def __floordiv__( self : Tuple , __UpperCamelCase : int )->Any: if not isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , __UpperCamelCase ) raise ValueError def __pow__( self : Union[str, Any] , __UpperCamelCase : Tuple )->Optional[Any]: if n < 0 or isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self _UpperCAmelCase = self for _ in range(n - 1 ): x *= self return x def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if not callable(_SCREAMING_SNAKE_CASE ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(_SCREAMING_SNAKE_CASE , (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('''differentiate() requires an int as input for order''' ) _UpperCAmelCase = Dual(_SCREAMING_SNAKE_CASE , 1 ) _UpperCAmelCase = func(_SCREAMING_SNAKE_CASE ) if order == 0: return result.real return result.duals[order - 1] * factorial(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
326
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
1
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __A : Optional[int] = ["small", "medium", "large"] __A : List[Any] = "lm_head.decoder.weight" __A : int = "lm_head.weight" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = d.pop(_SCREAMING_SNAKE_CASE ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __A : Any = parser.parse_args() for MODEL in DIALOGPT_MODELS: __A : str = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __A : Optional[int] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __A : List[Any] = "base_with_context" def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=_SCREAMING_SNAKE_CASE ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCAmelCase = weights[f'layers_{lyr_num}'] _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) _UpperCAmelCase = ly_weight['''attention'''] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=_SCREAMING_SNAKE_CASE ) for lyr_num, lyr in enumerate(model.encoders ): _UpperCAmelCase = weights[f'layers_{lyr_num}'] _UpperCAmelCase = ly_weight['''attention'''] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _UpperCAmelCase = weights[f'layers_{lyr_num}'] _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) _UpperCAmelCase = ly_weight['''self_attention'''] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _UpperCAmelCase = ly_weight['''MultiHeadDotProductAttention_0'''] _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) _UpperCAmelCase = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) _UpperCAmelCase = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _UpperCAmelCase = jnp.tree_util.tree_map(onp.array , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] _UpperCAmelCase = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) _UpperCAmelCase = inference.parse_training_gin_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inference.InferenceModel(args.checkpoint_path , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) _UpperCAmelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) _UpperCAmelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) _UpperCAmelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _UpperCAmelCase = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = load_decoder(ta_checkpoint['''target''']['''decoder'''] , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) _UpperCAmelCase = SpectrogramDiffusionPipeline( notes_encoder=_SCREAMING_SNAKE_CASE , continuous_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , melgan=_SCREAMING_SNAKE_CASE , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help="Path to the original jax model checkpoint.", ) __A : Dict = parser.parse_args() main(args)
326
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int]=1_3 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=True , __UpperCamelCase : Any=9_9 , __UpperCamelCase : Dict=3_2 , __UpperCamelCase : Any=2 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : Union[str, Any]=3_7 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Any=5_1_2 , __UpperCamelCase : str=1_6 , __UpperCamelCase : str=2 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : Any=None , )->Dict: _UpperCAmelCase = parent _UpperCAmelCase = 1_3 _UpperCAmelCase = 7 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 9_9 _UpperCAmelCase = 3_2 _UpperCAmelCase = 2 _UpperCAmelCase = 4 _UpperCAmelCase = 3_7 _UpperCAmelCase = '''gelu''' _UpperCAmelCase = 0.1 _UpperCAmelCase = 0.1 _UpperCAmelCase = 5_1_2 _UpperCAmelCase = 1_6 _UpperCAmelCase = 2 _UpperCAmelCase = 0.0_2 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = None def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[str] )->List[Any]: _UpperCAmelCase = TFRoFormerModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str )->str: _UpperCAmelCase = True _UpperCAmelCase = TFRoFormerForCausalLM(config=__UpperCamelCase ) _UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase__ ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Dict: _UpperCAmelCase = TFRoFormerForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : Optional[int] )->str: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFRoFormerForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] )->Union[str, Any]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFRoFormerForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] )->Tuple: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFRoFormerForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str )->int: _UpperCAmelCase = TFRoFormerForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : List[str] )->str: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = TFRoFormerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : Any )->Optional[int]: self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Optional[int] )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : str )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__UpperCamelCase ) def lowercase__ ( self : Any )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Optional[Any] )->Tuple: _UpperCAmelCase = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Tuple )->Optional[int]: _UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] # TODO Replace vocab size _UpperCAmelCase = 5_0_0_0_0 _UpperCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , __UpperCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _UpperCAmelCase = tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) @require_tf class _a ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = 1e-4 def lowercase__ ( self : Dict )->Union[str, Any]: _UpperCAmelCase = tf.constant([[4, 1_0]] ) _UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _UpperCAmelCase = emba(input_ids.shape ) _UpperCAmelCase = tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , atol=self.tolerance ) def lowercase__ ( self : Union[str, Any] )->int: _UpperCAmelCase = tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) _UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) _UpperCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , atol=self.tolerance ) @require_tf class _a ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = 1e-4 def lowercase__ ( self : Optional[int] )->Union[str, Any]: # 2,12,16,64 _UpperCAmelCase = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _UpperCAmelCase = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 _UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) _UpperCAmelCase = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] _UpperCAmelCase , _UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) _UpperCAmelCase = tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __UpperCamelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __UpperCamelCase , atol=self.tolerance )
326
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""image_processor""", """tokenizer"""] UpperCamelCase__ = """CLIPImageProcessor""" UpperCamelCase__ = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any=None , **__UpperCamelCase : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCamelCase , ) _UpperCAmelCase = kwargs.pop('''feature_extractor''' ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self : Union[str, Any] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Any=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Optional[int] )->List[Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCAmelCase = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if images is not None: _UpperCAmelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def lowercase__ ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : str )->Any: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[Any] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Dict )->List[Any]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowercase__ ( self : Any )->Optional[int]: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
326
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
1
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _a : """simple docstring""" UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = 1 UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = None def lowercase__ ( self : Any )->"DownloadConfig": return self.__class__(**{k: copy.deepcopy(__UpperCamelCase ) for k, v in self.__dict__.items()} )
326
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
1
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers __A : List[str] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase ( ): '''simple docstring''' _UpperCAmelCase = os.path.dirname(os.path.realpath(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''words.txt''' ) _UpperCAmelCase = '''''' with open(_SCREAMING_SNAKE_CASE ) as f: _UpperCAmelCase = f.readline() _UpperCAmelCase = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] _UpperCAmelCase = [ word for word in [sum(ord(_SCREAMING_SNAKE_CASE ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
326
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
1
"""simple docstring""" import itertools import math def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( ): '''simple docstring''' _UpperCAmelCase = 2 while True: if is_prime(_SCREAMING_SNAKE_CASE ): yield num num += 1 def lowercase ( _SCREAMING_SNAKE_CASE : int = 1_0001 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(f'''{solution() = }''')
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import re from filelock import FileLock try: import nltk __A : List[Any] = True except (ImportError, ModuleNotFoundError): __A : int = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' re.sub('''<n>''' , '''''' , _SCREAMING_SNAKE_CASE ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_SCREAMING_SNAKE_CASE ) )
326
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' return vector * sigmoid(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : List[str] = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """luke""" def __init__( self : Tuple , __UpperCamelCase : Optional[int]=5_0_2_6_7 , __UpperCamelCase : List[Any]=5_0_0_0_0_0 , __UpperCamelCase : Any=7_6_8 , __UpperCamelCase : str=2_5_6 , __UpperCamelCase : List[Any]=1_2 , __UpperCamelCase : Any=1_2 , __UpperCamelCase : List[str]=3_0_7_2 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : List[Any]=5_1_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : Dict=1e-12 , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Union[str, Any]=2 , **__UpperCamelCase : Union[str, Any] , )->List[Any]: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = entity_vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = entity_emb_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_entity_aware_attention _UpperCAmelCase = classifier_dropout
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __A : Optional[int] = "pt" elif is_tf_available(): __A : Dict = "tf" else: __A : Tuple = "jax" class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = PerceiverTokenizer UpperCamelCase__ = False def lowercase__ ( self : Dict )->Any: super().setUp() _UpperCAmelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : str )->str: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def lowercase__ ( self : int , **__UpperCamelCase : Optional[Any] )->PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=False , __UpperCamelCase : List[Any]=2_0 , __UpperCamelCase : Dict=5 )->Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _UpperCAmelCase = [] for i in range(len(__UpperCamelCase ) ): try: _UpperCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) _UpperCAmelCase = list(filter(lambda __UpperCamelCase : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , __UpperCamelCase ) ) _UpperCAmelCase = list(filter(lambda __UpperCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__UpperCamelCase ) , __UpperCamelCase ) ) if max_length is not None and len(__UpperCamelCase ) > max_length: _UpperCAmelCase = toks[:max_length] if min_length is not None and len(__UpperCamelCase ) < min_length and len(__UpperCamelCase ) > 0: while len(__UpperCamelCase ) < min_length: _UpperCAmelCase = toks + toks # toks_str = [t[1] for t in toks] _UpperCAmelCase = [t[0] for t in toks] # Ensure consistency _UpperCAmelCase = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) if " " not in output_txt and len(__UpperCamelCase ) > 1: _UpperCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCamelCase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCamelCase ) ) if with_prefix_space: _UpperCAmelCase = ''' ''' + output_txt _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) return output_txt, output_ids def lowercase__ ( self : List[str] )->Dict: _UpperCAmelCase = self.perceiver_tokenizer _UpperCAmelCase = '''Unicode €.''' _UpperCAmelCase = tokenizer(__UpperCamelCase ) _UpperCAmelCase = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , __UpperCamelCase ) # decoding _UpperCAmelCase = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , '''[CLS]Unicode €.[SEP]''' ) _UpperCAmelCase = tokenizer('''e è é ê ë''' ) _UpperCAmelCase = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , __UpperCamelCase ) # decoding _UpperCAmelCase = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def lowercase__ ( self : List[str] )->Union[str, Any]: _UpperCAmelCase = self.perceiver_tokenizer _UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off _UpperCAmelCase = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on _UpperCAmelCase = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) if FRAMEWORK != "jax": _UpperCAmelCase = list(batch.input_ids.numpy()[0] ) else: _UpperCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = self.perceiver_tokenizer _UpperCAmelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] _UpperCAmelCase = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , __UpperCamelCase ) self.assertIn('''attention_mask''' , __UpperCamelCase ) self.assertNotIn('''decoder_input_ids''' , __UpperCamelCase ) self.assertNotIn('''decoder_attention_mask''' , __UpperCamelCase ) def lowercase__ ( self : str )->Optional[Any]: _UpperCAmelCase = self.perceiver_tokenizer _UpperCAmelCase = [ '''Summary of the text.''', '''Another summary.''', ] _UpperCAmelCase = tokenizer( text_target=__UpperCamelCase , max_length=3_2 , padding='''max_length''' , truncation=__UpperCamelCase , return_tensors=__UpperCamelCase ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def lowercase__ ( self : Any )->int: # safety check on max_len default value so we are sure the test works _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _UpperCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = after_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) shutil.rmtree(__UpperCamelCase ) _UpperCAmelCase = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) _UpperCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = after_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _UpperCAmelCase = tokenizer.__class__.from_pretrained(__UpperCamelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Tuple: _UpperCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: _UpperCAmelCase = json.load(__UpperCamelCase ) with open(os.path.join(__UpperCamelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: _UpperCAmelCase = json.load(__UpperCamelCase ) _UpperCAmelCase = [F'<extra_id_{i}>' for i in range(1_2_5 )] _UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] _UpperCAmelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(__UpperCamelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__UpperCamelCase , __UpperCamelCase ) with open(os.path.join(__UpperCamelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__UpperCamelCase , __UpperCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _UpperCAmelCase = tokenizer_class.from_pretrained( __UpperCamelCase , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _UpperCAmelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__UpperCamelCase )] _UpperCAmelCase = tokenizer_class.from_pretrained( __UpperCamelCase , additional_special_tokens=__UpperCamelCase , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def lowercase__ ( self : Optional[int] )->Optional[int]: _UpperCAmelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def lowercase__ ( self : Union[str, Any] )->Any: pass def lowercase__ ( self : List[Any] )->List[Any]: pass def lowercase__ ( self : Dict )->int: pass def lowercase__ ( self : List[str] )->Union[str, Any]: pass def lowercase__ ( self : int )->str: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _UpperCAmelCase = self.get_tokenizers(fast=__UpperCamelCase , do_lower_case=__UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _UpperCAmelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] _UpperCAmelCase = tokenizer.convert_tokens_to_string(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
326
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[int] = "▁" __A : List[Any] = {"vocab_file": "spiece.model"} __A : Union[str, Any] = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } __A : Tuple = { "google/reformer-crime-and-punishment": 524288, } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : str="<unk>" , __UpperCamelCase : Optional[int]=[] , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Tuple , )->None: _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def lowercase__ ( self : Optional[int] )->Any: return self.sp_model.get_piece_size() def lowercase__ ( self : Union[str, Any] )->Dict[str, int]: _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict )->Union[str, Any]: _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : str , __UpperCamelCase : Optional[int] )->int: _UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str )->List[str]: return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[Any] )->List[Any]: return self.sp_model.piece_to_id(__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[str] )->Dict: if index < self.sp_model.get_piece_size(): _UpperCAmelCase = self.sp_model.IdToPiece(__UpperCamelCase ) return token def lowercase__ ( self : Any , __UpperCamelCase : Optional[Any] )->Tuple: _UpperCAmelCase = [] _UpperCAmelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token _UpperCAmelCase = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
326
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __A : List[str] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Optional[int] , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : Optional[Any] )->None: warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __A : List[str] = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def lowercase ( _SCREAMING_SNAKE_CASE : str = "dhaka" , _SCREAMING_SNAKE_CASE : int = 5 ): '''simple docstring''' _UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! _UpperCAmelCase = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _UpperCAmelCase = requests.get('''https://www.google.com/search''' , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = BeautifulSoup(html.text , '''html.parser''' ) _UpperCAmelCase = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) _UpperCAmelCase = json.dumps(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = json.loads(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , _SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 _UpperCAmelCase = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(_SCREAMING_SNAKE_CASE ) , ) _UpperCAmelCase = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , _SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ): if index >= max_images: return index _UpperCAmelCase = bytes(_SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) _UpperCAmelCase = bytes(_SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) _UpperCAmelCase = urllib.request.build_opener() _UpperCAmelCase = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = f'query_{query.replace(" " , "_" )}' if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 _SCREAMING_SNAKE_CASE , f'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: __A : Dict = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print("Please provide a search term.") raise
326
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : List[str] = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """rwkv""" UpperCamelCase__ = {"""max_position_embeddings""": """context_length"""} def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any]=5_0_2_7_7 , __UpperCamelCase : Dict=1_0_2_4 , __UpperCamelCase : Tuple=4_0_9_6 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : List[Any]=None , __UpperCamelCase : int=None , __UpperCamelCase : Any=1e-5 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : List[Any]=6 , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : Optional[Any]=True , **__UpperCamelCase : List[Any] , )->Any: _UpperCAmelCase = vocab_size _UpperCAmelCase = context_length _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = rescale_every _UpperCAmelCase = use_cache _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__( tie_word_embeddings=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase )
326
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
1
"""simple docstring""" from __future__ import annotations from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' def is_valid_tree(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> bool: if node is None: return True if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( _SCREAMING_SNAKE_CASE : TreeNode | None , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _SCREAMING_SNAKE_CASE , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _SCREAMING_SNAKE_CASE ) ) return is_binary_search_tree_recursive_check(_SCREAMING_SNAKE_CASE , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
1
"""simple docstring""" import torch from torch import nn class _a ( nn.Module): """simple docstring""" def __init__( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : str=False )->Any: super().__init__() _UpperCAmelCase = n_token _UpperCAmelCase = d_embed _UpperCAmelCase = d_proj _UpperCAmelCase = cutoffs + [n_token] _UpperCAmelCase = [0] + self.cutoffs _UpperCAmelCase = div_val _UpperCAmelCase = self.cutoffs[0] _UpperCAmelCase = len(self.cutoffs ) - 1 _UpperCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCamelCase , __UpperCamelCase ) ) ) else: self.out_projs.append(__UpperCamelCase ) self.out_layers.append(nn.Linear(__UpperCamelCase , __UpperCamelCase ) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCamelCase , __UpperCamelCase ) ) ) self.out_layers.append(nn.Linear(__UpperCamelCase , r_idx - l_idx ) ) _UpperCAmelCase = keep_order def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] )->List[str]: if proj is None: _UpperCAmelCase = nn.functional.linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCAmelCase = nn.functional.linear(__UpperCamelCase , proj.t().contiguous() ) _UpperCAmelCase = nn.functional.linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowercase__ ( self : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]=False )->Union[str, Any]: if labels is not None: # Shift so that tokens < n predict n _UpperCAmelCase = hidden[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) _UpperCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__UpperCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _UpperCAmelCase = labels != -1_0_0 _UpperCAmelCase = torch.zeros_like(__UpperCamelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = ( -nn.functional.log_softmax(__UpperCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__UpperCamelCase ) biases.append(__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) if labels is None: _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _UpperCAmelCase = torch.zeros_like(__UpperCamelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = 0 _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__UpperCamelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCAmelCase = (labels >= l_idx) & (labels < r_idx) _UpperCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCAmelCase = labels.index_select(0 , __UpperCamelCase ) - l_idx _UpperCAmelCase = head_logprob.index_select(0 , __UpperCamelCase ) _UpperCAmelCase = hidden.index_select(0 , __UpperCamelCase ) else: _UpperCAmelCase = hidden if i == 0: if labels is not None: _UpperCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) _UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCAmelCase = logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , __UpperCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowercase__ ( self : Any , __UpperCamelCase : Any )->Dict: if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__UpperCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__UpperCamelCase ) biases.append(__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__UpperCamelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) _UpperCAmelCase = head_logprob[:, -i] + tail_logprob_i _UpperCAmelCase = logprob_i return out
326
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Tuple=3_2 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : List[str]=1_0 , __UpperCamelCase : List[Any]=[8, 1_6, 3_2, 6_4] , __UpperCamelCase : List[Any]=[1, 1, 2, 1] , __UpperCamelCase : List[str]=True , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]="relu" , __UpperCamelCase : int=3 , __UpperCamelCase : Dict=None , __UpperCamelCase : Any=["stage2", "stage3", "stage4"] , __UpperCamelCase : Dict=[2, 3, 4] , __UpperCamelCase : Union[str, Any]=1 , )->Optional[Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = out_features _UpperCAmelCase = out_indices _UpperCAmelCase = num_groups def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] )->Tuple: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowercase__ ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple )->Union[str, Any]: _UpperCAmelCase = BitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase__ ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : int )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = BitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] )->Dict: _UpperCAmelCase = BitBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = BitBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self : Any )->Optional[int]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCamelCase__ = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Any )->List[Any]: _UpperCAmelCase = BitModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowercase__ ( self : Tuple )->Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[Any] )->List[str]: return @unittest.skip(reason='''Bit does not output attentions''' ) def lowercase__ ( self : Union[str, Any] )->int: pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def lowercase__ ( self : Any )->Any: pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def lowercase__ ( self : Any )->Any: pass def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[int]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=__UpperCamelCase ) for name, module in model.named_modules(): if isinstance(__UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) def lowercase__ ( self : Tuple )->Dict: def check_hidden_states_output(__UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] ): _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def lowercase__ ( self : int )->Union[str, Any]: pass def lowercase__ ( self : List[str] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Optional[Any] )->Union[str, Any]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = BitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _a ( unittest.TestCase): """simple docstring""" @cached_property def lowercase__ ( self : Optional[int] )->Any: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) ) @require_torch class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (BitBackbone,) if is_torch_available() else () UpperCamelCase__ = BitConfig UpperCamelCase__ = False def lowercase__ ( self : int )->Optional[int]: _UpperCAmelCase = BitModelTester(self )
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = {} _UpperCAmelCase = job['''started_at'''] _UpperCAmelCase = job['''completed_at'''] _UpperCAmelCase = date_parser.parse(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = date_parser.parse(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _UpperCAmelCase = start _UpperCAmelCase = end _UpperCAmelCase = duration_in_min return job_info def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'} _UpperCAmelCase = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' _UpperCAmelCase = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() _UpperCAmelCase = {} try: job_time.update({job['''name''']: extract_time_from_single_job(_SCREAMING_SNAKE_CASE ) for job in result['''jobs''']} ) _UpperCAmelCase = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = requests.get(url + f'&page={i + 2}' , headers=_SCREAMING_SNAKE_CASE ).json() job_time.update({job['''name''']: extract_time_from_single_job(_SCREAMING_SNAKE_CASE ) for job in result['''jobs''']} ) return job_time except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __A : Dict = parser.parse_args() __A : Optional[int] = get_job_time(args.workflow_run_id) __A : List[str] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
326
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : str = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """sew""" def __init__( self : Tuple , __UpperCamelCase : Optional[Any]=3_2 , __UpperCamelCase : Dict=7_6_8 , __UpperCamelCase : int=1_2 , __UpperCamelCase : Optional[Any]=1_2 , __UpperCamelCase : List[Any]=3_0_7_2 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : Optional[int]=1e-5 , __UpperCamelCase : Union[str, Any]="group" , __UpperCamelCase : int="gelu" , __UpperCamelCase : Any=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __UpperCamelCase : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __UpperCamelCase : Union[str, Any]=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __UpperCamelCase : Any=False , __UpperCamelCase : Tuple=1_2_8 , __UpperCamelCase : Tuple=1_6 , __UpperCamelCase : Tuple=True , __UpperCamelCase : int=0.0_5 , __UpperCamelCase : int=1_0 , __UpperCamelCase : str=2 , __UpperCamelCase : Optional[int]=0.0 , __UpperCamelCase : Union[str, Any]=1_0 , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : Tuple="mean" , __UpperCamelCase : Any=False , __UpperCamelCase : int=False , __UpperCamelCase : Optional[int]=2_5_6 , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : List[Any]=1 , __UpperCamelCase : Union[str, Any]=2 , **__UpperCamelCase : Dict , )->List[Any]: super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = feat_extract_norm _UpperCAmelCase = feat_extract_activation _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = conv_bias _UpperCAmelCase = num_conv_pos_embeddings _UpperCAmelCase = num_conv_pos_embedding_groups _UpperCAmelCase = len(self.conv_dim ) _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = intermediate_size _UpperCAmelCase = squeeze_factor _UpperCAmelCase = hidden_act _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = feat_proj_dropout _UpperCAmelCase = final_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase = apply_spec_augment _UpperCAmelCase = mask_time_prob _UpperCAmelCase = mask_time_length _UpperCAmelCase = mask_time_min_masks _UpperCAmelCase = mask_feature_prob _UpperCAmelCase = mask_feature_length _UpperCAmelCase = mask_feature_min_masks # ctc loss _UpperCAmelCase = ctc_loss_reduction _UpperCAmelCase = ctc_zero_infinity # sequence classification _UpperCAmelCase = use_weighted_layer_sum _UpperCAmelCase = classifier_proj_size @property def lowercase__ ( self : Optional[Any] )->List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _a ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict=7 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : Tuple=3_0 , __UpperCamelCase : Optional[int]=4_0_0 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Tuple=[0.5, 0.5, 0.5] , __UpperCamelCase : Union[str, Any]=[0.5, 0.5, 0.5] , __UpperCamelCase : int=True , __UpperCamelCase : Any=1 / 2_5_5 , __UpperCamelCase : Optional[int]=True , )->Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad def lowercase__ ( self : Optional[int] )->Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase__ ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any]=False )->Optional[int]: if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size['''shortest_edge'''] * h / w ) _UpperCAmelCase = self.size['''shortest_edge'''] elif w > h: _UpperCAmelCase = self.size['''shortest_edge'''] _UpperCAmelCase = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCAmelCase = self.size['''shortest_edge'''] _UpperCAmelCase = self.size['''shortest_edge'''] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] _UpperCAmelCase = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ConditionalDetrImageProcessor if is_vision_available() else None def lowercase__ ( self : int )->int: _UpperCAmelCase = ConditionalDetrImageProcessingTester(self ) @property def lowercase__ ( self : str )->List[str]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : str )->Tuple: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''size''' ) ) def lowercase__ ( self : Dict )->int: _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) _UpperCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowercase__ ( self : Tuple )->List[Any]: pass def lowercase__ ( self : Optional[Any] )->List[Any]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : List[Any] )->Tuple: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : Any )->List[Any]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase__ ( self : Any )->Optional[Any]: # prepare image and target _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them _UpperCAmelCase = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) _UpperCAmelCase = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors='''pt''' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCamelCase ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCamelCase ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCamelCase ) ) # verify class_labels _UpperCAmelCase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCamelCase ) ) # verify orig_size _UpperCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCamelCase ) ) # verify size _UpperCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCamelCase ) ) @slow def lowercase__ ( self : Tuple )->List[Any]: # prepare image, target and masks_path _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCAmelCase = json.loads(f.read() ) _UpperCAmelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} _UpperCAmelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCAmelCase = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) _UpperCAmelCase = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors='''pt''' ) # verify pixel values _UpperCAmelCase = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCamelCase , atol=1e-4 ) ) # verify area _UpperCAmelCase = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCamelCase ) ) # verify boxes _UpperCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCamelCase , atol=1e-3 ) ) # verify image_id _UpperCAmelCase = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCamelCase ) ) # verify is_crowd _UpperCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCamelCase ) ) # verify class_labels _UpperCAmelCase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCamelCase ) ) # verify masks _UpperCAmelCase = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __UpperCamelCase ) # verify orig_size _UpperCAmelCase = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCamelCase ) ) # verify size _UpperCAmelCase = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCamelCase ) )
326
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
1