code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float = 1E-12 , _SCREAMING_SNAKE_CASE : int = 100 , ): '''simple docstring''' assert np.shape(_SCREAMING_SNAKE_CASE )[0] == np.shape(_SCREAMING_SNAKE_CASE )[1] # Ensure proper dimensionality. assert np.shape(_SCREAMING_SNAKE_CASE )[0] == np.shape(_SCREAMING_SNAKE_CASE )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_SCREAMING_SNAKE_CASE ) == np.iscomplexobj(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.iscomplexobj(_SCREAMING_SNAKE_CASE ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_SCREAMING_SNAKE_CASE , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _UpperCAmelCase = False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. _UpperCAmelCase = np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Normalize the resulting output vector. _UpperCAmelCase = w / np.linalg.norm(_SCREAMING_SNAKE_CASE ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _UpperCAmelCase = vector.conj().T if is_complex else vector.T _UpperCAmelCase = np.dot(_SCREAMING_SNAKE_CASE , np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Check convergence. _UpperCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _UpperCAmelCase = True _UpperCAmelCase = lambda_ if is_complex: _UpperCAmelCase = np.real(lambda_ ) return lambda_, vector def lowercase ( ): '''simple docstring''' _UpperCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _UpperCAmelCase = np.array([41, 4, 20] ) _UpperCAmelCase = real_input_matrix.astype(np.complexaaa ) _UpperCAmelCase = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _UpperCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _UpperCAmelCase = real_input_matrix _UpperCAmelCase = real_vector elif problem_type == "complex": _UpperCAmelCase = complex_input_matrix _UpperCAmelCase = complex_vector # Our implementation. _UpperCAmelCase , _UpperCAmelCase = power_iteration(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _UpperCAmelCase , _UpperCAmelCase = np.linalg.eigh(_SCREAMING_SNAKE_CASE ) # Last eigenvalue is the maximum one. _UpperCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _UpperCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_SCREAMING_SNAKE_CASE ) - np.abs(_SCREAMING_SNAKE_CASE ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __A : List[str] = get_tests_dir("fixtures") __A : Optional[Any] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") __A : Union[str, Any] = get_tests_dir("fixtures/dummy-config.json") class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = 0 def lowercase__ ( self : Optional[int] )->Optional[int]: _UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : List[str] )->Dict: _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Dict )->Dict: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ).to_dict() config_dict.pop('''feature_extractor_type''' ) _UpperCAmelCase = WavaVecaFeatureExtractor(**__UpperCamelCase ) # save in new folder model_config.save_pretrained(__UpperCamelCase ) config.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) # make sure private variable is not incorrectly saved _UpperCAmelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : str )->str: _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple )->Any: with self.assertRaisesRegex( __UpperCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def lowercase__ ( self : Dict )->Any: with self.assertRaisesRegex( __UpperCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(__UpperCamelCase , revision='''aaaaaa''' ) def lowercase__ ( self : Tuple )->List[Any]: with self.assertRaisesRegex( __UpperCamelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase__ ( self : Optional[Any] )->int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__UpperCamelCase ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(__UpperCamelCase , trust_remote_code=__UpperCamelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def lowercase__ ( self : Optional[int] )->Union[str, Any]: try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoFeatureExtractor.register(__UpperCamelCase , __UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoFeatureExtractor.register(__UpperCamelCase , __UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCAmelCase = CustomFeatureExtractor.from_pretrained(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self : Any )->str: class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = True try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoFeatureExtractor.register(__UpperCamelCase , __UpperCamelCase ) # If remote code is not set, the default is to use local _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _UpperCAmelCase = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(__UpperCamelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
326
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = 1.5 _UpperCAmelCase = int(factor * num_class_images ) _UpperCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=_SCREAMING_SNAKE_CASE ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: _UpperCAmelCase = client.query(text=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1E4: break else: _UpperCAmelCase = int(factor * num_images ) _UpperCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = tqdm(desc='''downloading real regularization images''' , total=_SCREAMING_SNAKE_CASE ) with open(f'{class_data_dir}/caption.txt' , '''w''' ) as fa, open(f'{class_data_dir}/urls.txt' , '''w''' ) as fa, open( f'{class_data_dir}/images.txt' , '''w''' ) as fa: while total < num_class_images: _UpperCAmelCase = class_images[count] count += 1 try: _UpperCAmelCase = requests.get(images['''url'''] ) if img.status_code == 200: _UpperCAmelCase = Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'{class_data_dir}/images/{total}.jpg' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser('''''' , add_help=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=200 , type=_SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": __A : int = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
326
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
1
"""simple docstring""" from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _a : """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : Collection[float] | None = None )->None: if components is None: _UpperCAmelCase = [] _UpperCAmelCase = list(__UpperCamelCase ) def __len__( self : Optional[int] )->int: return len(self.__components ) def __str__( self : Any )->str: return "(" + ",".join(map(__UpperCamelCase , self.__components ) ) + ")" def __add__( self : Any , __UpperCamelCase : Vector )->Vector: _UpperCAmelCase = len(self ) if size == len(__UpperCamelCase ): _UpperCAmelCase = [self.__components[i] + other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )] return Vector(__UpperCamelCase ) else: raise Exception('''must have the same size''' ) def __sub__( self : str , __UpperCamelCase : Vector )->Vector: _UpperCAmelCase = len(self ) if size == len(__UpperCamelCase ): _UpperCAmelCase = [self.__components[i] - other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )] return Vector(__UpperCamelCase ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self : Optional[int] , __UpperCamelCase : float )->Vector: ... @overload def __mul__( self : Dict , __UpperCamelCase : Vector )->float: ... def __mul__( self : int , __UpperCamelCase : float | Vector )->float | Vector: if isinstance(__UpperCamelCase , (float, int) ): _UpperCAmelCase = [c * other for c in self.__components] return Vector(__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ) and len(self ) == len(__UpperCamelCase ): _UpperCAmelCase = len(self ) _UpperCAmelCase = [self.__components[i] * other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )] return sum(__UpperCamelCase ) else: # error case raise Exception('''invalid operand!''' ) def lowercase__ ( self : Union[str, Any] )->Vector: return Vector(self.__components ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int )->float: if isinstance(__UpperCamelCase , __UpperCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def lowercase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : float )->None: assert -len(self.__components ) <= pos < len(self.__components ) _UpperCAmelCase = value def lowercase__ ( self : Optional[Any] )->float: if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) _UpperCAmelCase = [c**2 for c in self.__components] return math.sqrt(sum(__UpperCamelCase ) ) def lowercase__ ( self : List[str] , __UpperCamelCase : Vector , __UpperCamelCase : bool = False )->float: _UpperCAmelCase = self * other _UpperCAmelCase = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return Vector([0] * dimension ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )) _UpperCAmelCase = [0] * dimension _UpperCAmelCase = 1 return Vector(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : Vector , _SCREAMING_SNAKE_CASE : Vector ): '''simple docstring''' assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (isinstance(_SCREAMING_SNAKE_CASE , (int, float) )) ) return x * scalar + y def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' random.seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [random.randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE )] return Vector(_SCREAMING_SNAKE_CASE ) class _a : """simple docstring""" def __init__( self : Dict , __UpperCamelCase : list[list[float]] , __UpperCamelCase : int , __UpperCamelCase : int )->None: _UpperCAmelCase = matrix _UpperCAmelCase = w _UpperCAmelCase = h def __str__( self : Optional[Any] )->str: _UpperCAmelCase = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : List[Any] , __UpperCamelCase : Matrix )->Matrix: if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase = [] for i in range(self.__height ): _UpperCAmelCase = [ self.__matrix[i][j] + other.component(__UpperCamelCase , __UpperCamelCase ) for j in range(self.__width ) ] matrix.append(__UpperCamelCase ) return Matrix(__UpperCamelCase , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self : Optional[Any] , __UpperCamelCase : Matrix )->Matrix: if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase = [] for i in range(self.__height ): _UpperCAmelCase = [ self.__matrix[i][j] - other.component(__UpperCamelCase , __UpperCamelCase ) for j in range(self.__width ) ] matrix.append(__UpperCamelCase ) return Matrix(__UpperCamelCase , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self : List[Any] , __UpperCamelCase : float )->Matrix: ... @overload def __mul__( self : Dict , __UpperCamelCase : Vector )->Vector: ... def __mul__( self : Union[str, Any] , __UpperCamelCase : float | Vector )->Vector | Matrix: if isinstance(__UpperCamelCase , __UpperCamelCase ): # matrix-vector if len(__UpperCamelCase ) == self.__width: _UpperCAmelCase = zero_vector(self.__height ) for i in range(self.__height ): _UpperCAmelCase = [ self.__matrix[i][j] * other.component(__UpperCamelCase ) for j in range(self.__width ) ] ans.change_component(__UpperCamelCase , sum(__UpperCamelCase ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(__UpperCamelCase , (int, float) ): # matrix-scalar _UpperCAmelCase = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__UpperCamelCase , self.__width , self.__height ) return None def lowercase__ ( self : Dict )->int: return self.__height def lowercase__ ( self : Dict )->int: return self.__width def lowercase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : int )->float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : float )->None: if 0 <= x < self.__height and 0 <= y < self.__width: _UpperCAmelCase = value else: raise Exception('''change_component: indices out of bounds''' ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->float: if self.__height != self.__width: raise Exception('''Matrix is not square''' ) _UpperCAmelCase = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__UpperCamelCase ) ): _UpperCAmelCase = minor[i][:y] + minor[i][y + 1 :] return Matrix(__UpperCamelCase , self.__width - 1 , self.__height - 1 ).determinant() def lowercase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : int )->float: if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__UpperCamelCase , __UpperCamelCase ) else: raise Exception('''Indices out of bounds''' ) def lowercase__ ( self : List[Any] )->float: if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _UpperCAmelCase = [ self.__matrix[0][y] * self.cofactor(0 , __UpperCamelCase ) for y in range(self.__width ) ] return sum(__UpperCamelCase ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = [[0] * n for _ in range(_SCREAMING_SNAKE_CASE )] return Matrix(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' random.seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [ [random.randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE ) ] return Matrix(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
326
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while b: _UpperCAmelCase , _UpperCAmelCase = b, a % b return a def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(_SCREAMING_SNAKE_CASE , a % b ) def lowercase ( ): '''simple docstring''' print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
326
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
1
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : int | str ): '''simple docstring''' _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def lowercase ( _SCREAMING_SNAKE_CASE : int = 100_0000 ): '''simple docstring''' _UpperCAmelCase = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) __A : str = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCAmelCase = k.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if k.startswith('''encoder''' ): _UpperCAmelCase = k.replace('''.attn''' , '''.self_attn''' ) _UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) _UpperCAmelCase = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): _UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) _UpperCAmelCase = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) _UpperCAmelCase = k.replace('''norm3''' , '''final_layer_norm''' ) return k def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: _UpperCAmelCase = sd.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd _UpperCAmelCase = v __A : Dict = ["START"] @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCAmelCase = model['''model'''] _UpperCAmelCase = BlenderbotConfig.from_json_file(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = BlenderbotForConditionalGeneration(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = m.model.state_dict().keys() _UpperCAmelCase = [] _UpperCAmelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCAmelCase = rename_state_dict_key(_SCREAMING_SNAKE_CASE ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCAmelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_SCREAMING_SNAKE_CASE ) m.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) m.half() m.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __A : List[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
326
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = (boundary[1] - boundary[0]) / steps _UpperCAmelCase = boundary[0] _UpperCAmelCase = boundary[1] _UpperCAmelCase = make_points(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = a + h while x < (b - h): yield x _UpperCAmelCase = x + h def lowercase ( _SCREAMING_SNAKE_CASE : int ): # enter your function here '''simple docstring''' _UpperCAmelCase = (x - 0) * (x - 0) return y def lowercase ( ): '''simple docstring''' _UpperCAmelCase = 0.0 # Lower bound of integration _UpperCAmelCase = 1.0 # Upper bound of integration _UpperCAmelCase = 10.0 # define number of steps or resolution _UpperCAmelCase = [a, b] # define boundary of integration _UpperCAmelCase = method_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f'y = {y}' ) if __name__ == "__main__": main()
326
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
1
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCAmelCase = ParquetDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = parquet_path elif issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = [parquet_path] _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCAmelCase = ParquetDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_parquet_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str]=("train",) ): '''simple docstring''' assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = ParquetDatasetReader({'''train''': parquet_path} , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if split: _UpperCAmelCase = {split: parquet_path} else: _UpperCAmelCase = '''train''' _UpperCAmelCase = {'''train''': parquet_path, '''test''': parquet_path} _UpperCAmelCase = tmp_path / '''cache''' _UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCAmelCase = ParquetDatasetReader(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ).read() _check_parquet_datasetdict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = ParquetDatasetWriter(_SCREAMING_SNAKE_CASE , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 _UpperCAmelCase = pq.ParquetFile(tmp_path / '''foo.parquet''' ) _UpperCAmelCase = pf.read() assert dataset.data.table == output_table def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = str(shared_datadir / '''test_image_rgb.jpg''' ) _UpperCAmelCase = {'''image''': [image_path]} _UpperCAmelCase = Features({'''image''': Image()} ) _UpperCAmelCase = Dataset.from_dict(_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ParquetDatasetWriter(_SCREAMING_SNAKE_CASE , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 _UpperCAmelCase = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features _UpperCAmelCase = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=_SCREAMING_SNAKE_CASE ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert get_writer_batch_size(_SCREAMING_SNAKE_CASE ) == expected
326
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
1
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowercase ( ): '''simple docstring''' _UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) TestCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) RunBeamCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) DummyDataCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Parse args _UpperCAmelCase , _UpperCAmelCase = parser.parse_known_args() if not hasattr(_SCREAMING_SNAKE_CASE , '''func''' ): parser.print_help() exit(1 ) _UpperCAmelCase = parse_unknown_args(_SCREAMING_SNAKE_CASE ) # Run _UpperCAmelCase = args.func(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
326
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __A : Optional[int] = TypeVar("T") class _a ( Generic[T]): """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : list[T] , __UpperCamelCase : Callable[[T, T], T] )->None: _UpperCAmelCase = None _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [any_type for _ in range(self.N )] + arr _UpperCAmelCase = fnc self.build() def lowercase__ ( self : int )->None: for p in range(self.N - 1 , 0 , -1 ): _UpperCAmelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : T )->None: p += self.N _UpperCAmelCase = v while p > 1: _UpperCAmelCase = p // 2 _UpperCAmelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : int )->T | None: # noqa: E741 _UpperCAmelCase , _UpperCAmelCase = l + self.N, r + self.N _UpperCAmelCase = None while l <= r: if l % 2 == 1: _UpperCAmelCase = self.st[l] if res is None else self.fn(__UpperCamelCase , self.st[l] ) if r % 2 == 0: _UpperCAmelCase = self.st[r] if res is None else self.fn(__UpperCamelCase , self.st[r] ) _UpperCAmelCase , _UpperCAmelCase = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __A : int = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __A : Any = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __A : Optional[int] = SegmentTree(test_array, min) __A : Union[str, Any] = SegmentTree(test_array, max) __A : List[str] = SegmentTree(test_array, lambda a, b: a + b) def lowercase ( ): '''simple docstring''' for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = reduce(_SCREAMING_SNAKE_CASE , test_array[i : j + 1] ) _UpperCAmelCase = reduce(_SCREAMING_SNAKE_CASE , test_array[i : j + 1] ) _UpperCAmelCase = reduce(lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert max_range == max_segment_tree.query(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert sum_range == sum_segment_tree.query(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) test_all_segments() for index, value in test_updates.items(): __A : str = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
326
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
1
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } __A : Tuple = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } __A : Any = { "ctrl": 256, } __A : Optional[Any] = { "Pregnancy": 168629, "Christianity": 7675, "Explain": 106423, "Fitness": 63440, "Saving": 63163, "Ask": 27171, "Ass": 95985, "Joke": 163509, "Questions": 45622, "Thoughts": 49605, "Retail": 52342, "Feminism": 164338, "Writing": 11992, "Atheism": 192263, "Netflix": 48616, "Computing": 39639, "Opinion": 43213, "Alone": 44967, "Funny": 58917, "Gaming": 40358, "Human": 4088, "India": 1331, "Joker": 77138, "Diet": 36206, "Legal": 11859, "Norman": 4939, "Tip": 72689, "Weight": 52343, "Movies": 46273, "Running": 23425, "Science": 2090, "Horror": 37793, "Confession": 60572, "Finance": 12250, "Politics": 16360, "Scary": 191985, "Support": 12654, "Technologies": 32516, "Teenage": 66160, "Event": 32769, "Learned": 67460, "Notion": 182770, "Wikipedia": 37583, "Books": 6665, "Extract": 76050, "Confessions": 102701, "Conspiracy": 75932, "Links": 63674, "Narcissus": 150425, "Relationship": 54766, "Relationships": 134796, "Reviews": 41671, "News": 4256, "Translation": 26820, "multilingual": 128406, } def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) return pairs class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = CONTROL_CODES def __init__( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple="<unk>" , **__UpperCamelCase : str )->Tuple: super().__init__(unk_token=__UpperCamelCase , **__UpperCamelCase ) with open(__UpperCamelCase , encoding='''utf-8''' ) as vocab_handle: _UpperCAmelCase = json.load(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(__UpperCamelCase , encoding='''utf-8''' ) as merges_handle: _UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in merges] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = {} @property def lowercase__ ( self : Union[str, Any] )->int: return len(self.encoder ) def lowercase__ ( self : Optional[int] )->Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Union[str, Any] )->Optional[int]: if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(__UpperCamelCase ) _UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _UpperCAmelCase = get_pairs(__UpperCamelCase ) if not pairs: return token while True: _UpperCAmelCase = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(__UpperCamelCase ): try: _UpperCAmelCase = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(__UpperCamelCase ) _UpperCAmelCase = new_word if len(__UpperCamelCase ) == 1: break else: _UpperCAmelCase = get_pairs(__UpperCamelCase ) _UpperCAmelCase = '''@@ '''.join(__UpperCamelCase ) _UpperCAmelCase = word[:-4] _UpperCAmelCase = word return word def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] )->int: _UpperCAmelCase = [] _UpperCAmelCase = re.findall(r'''\S+\n?''' , __UpperCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any )->Optional[int]: return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] )->str: return self.decoder.get(__UpperCamelCase , self.unk_token ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Tuple )->Optional[int]: _UpperCAmelCase = ''' '''.join(__UpperCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + '''\n''' ) _UpperCAmelCase = 0 with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) _UpperCAmelCase = token_index writer.write(''' '''.join(__UpperCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True}) UpperCamelCase__ = Features({"""audio""": Audio()}) UpperCamelCase__ = Features({"""labels""": ClassLabel}) UpperCamelCase__ = "audio" UpperCamelCase__ = "labels" def lowercase__ ( self : Tuple , __UpperCamelCase : Dict )->Union[str, Any]: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCamelCase ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) _UpperCAmelCase = copy.deepcopy(self ) _UpperCAmelCase = self.label_schema.copy() _UpperCAmelCase = features[self.label_column] _UpperCAmelCase = label_schema return task_template @property def lowercase__ ( self : str )->Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
326
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """bert-generation""" def __init__( self : Tuple , __UpperCamelCase : Dict=5_0_3_5_8 , __UpperCamelCase : Optional[int]=1_0_2_4 , __UpperCamelCase : List[Any]=2_4 , __UpperCamelCase : Dict=1_6 , __UpperCamelCase : Tuple=4_0_9_6 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Any=5_1_2 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : List[str]=1e-12 , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : List[Any]="absolute" , __UpperCamelCase : Tuple=True , **__UpperCamelCase : Union[str, Any] , )->Any: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache
326
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
1
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __A : int = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" __A : List[str] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" __A : str = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : int )->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=None )->Dict: return { "matthews_correlation": float(matthews_corrcoef(__UpperCamelCase , __UpperCamelCase , sample_weight=__UpperCamelCase ) ), }
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
1
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any]=1_3 , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : str=True , __UpperCamelCase : Any=True , __UpperCamelCase : int=True , __UpperCamelCase : Any=True , __UpperCamelCase : Any=True , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : Union[str, Any]=9_9 , __UpperCamelCase : Optional[Any]=0 , __UpperCamelCase : List[Any]=3_2 , __UpperCamelCase : Any=5 , __UpperCamelCase : int=4 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : List[str]=5_1_2 , __UpperCamelCase : Optional[Any]=1_2 , __UpperCamelCase : Dict=2 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : Any=3 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : str="last" , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , )->List[str]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_lengths _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = gelu_activation _UpperCAmelCase = sinusoidal_embeddings _UpperCAmelCase = causal _UpperCAmelCase = asm _UpperCAmelCase = n_langs _UpperCAmelCase = vocab_size _UpperCAmelCase = n_special _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = summary_type _UpperCAmelCase = use_proj _UpperCAmelCase = scope def lowercase__ ( self : Tuple )->str: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_input_lengths: _UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] )->List[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , )->Optional[int]: _UpperCAmelCase = FlaubertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , lengths=__UpperCamelCase , langs=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , langs=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : str , )->List[str]: _UpperCAmelCase = FlaubertWithLMHeadModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , )->Optional[Any]: _UpperCAmelCase = FlaubertForQuestionAnsweringSimple(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , )->str: _UpperCAmelCase = FlaubertForQuestionAnswering(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model( __UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , cls_index=__UpperCamelCase , is_impossible=__UpperCamelCase , p_mask=__UpperCamelCase , ) _UpperCAmelCase = model( __UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , cls_index=__UpperCamelCase , is_impossible=__UpperCamelCase , ) ((_UpperCAmelCase) , ) = result_with_labels.to_tuple() _UpperCAmelCase = model(__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase ) ((_UpperCAmelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , )->Dict: _UpperCAmelCase = FlaubertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , )->int: _UpperCAmelCase = self.num_labels _UpperCAmelCase = FlaubertForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , )->List[Any]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = FlaubertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Any )->Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict=False )->str: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def lowercase__ ( self : Optional[Any] )->List[str]: _UpperCAmelCase = FlaubertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , emb_dim=3_7 ) def lowercase__ ( self : List[Any] )->Any: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCamelCase ) def lowercase__ ( self : Optional[int] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCamelCase ) def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCamelCase ) def lowercase__ ( self : Optional[int] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCamelCase ) @slow def lowercase__ ( self : Optional[int] )->List[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = FlaubertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow @require_torch_gpu def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCAmelCase = True _UpperCAmelCase = model_class(config=__UpperCamelCase ) _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = torch.jit.trace( __UpperCamelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCamelCase , os.path.join(__UpperCamelCase , '''traced_model.pt''' ) ) _UpperCAmelCase = torch.jit.load(os.path.join(__UpperCamelCase , '''traced_model.pt''' ) , map_location=__UpperCamelCase ) loaded(inputs_dict['''input_ids'''].to(__UpperCamelCase ) , inputs_dict['''attention_mask'''].to(__UpperCamelCase ) ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _UpperCAmelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) )
326
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : list[float] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' print(f'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(_SCREAMING_SNAKE_CASE ): print(f'{i}\t\t{d}' ) def lowercase ( _SCREAMING_SNAKE_CASE : list[dict[str, int]] , _SCREAMING_SNAKE_CASE : list[float] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def lowercase ( _SCREAMING_SNAKE_CASE : list[dict[str, int]] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = [float('''inf''' )] * vertex_count _UpperCAmelCase = 0.0 for _ in range(vertex_count - 1 ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: _UpperCAmelCase = distance[u] + w _UpperCAmelCase = check_negative_cycle(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = int(input("Enter number of vertices: ").strip()) __A : List[Any] = int(input("Enter number of edges: ").strip()) __A : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __A , __A , __A : List[Any] = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __A : List[Any] = {"src": src, "dst": dest, "weight": weight} __A : List[Any] = int(input("\nEnter shortest path source:").strip()) __A : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) # We need to create solution object to save path. _UpperCAmelCase = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = run_maze(_SCREAMING_SNAKE_CASE , 0 , 0 , _SCREAMING_SNAKE_CASE ) if solved: print('''\n'''.join(str(_SCREAMING_SNAKE_CASE ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def lowercase ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) # Final check point. if i == j == (size - 1): _UpperCAmelCase = 1 return True _UpperCAmelCase = (not i < 0) and (not j < 0) # Check lower bounds _UpperCAmelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _UpperCAmelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _UpperCAmelCase = 1 # check for directions if ( run_maze(_SCREAMING_SNAKE_CASE , i + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j + 1 , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j - 1 , _SCREAMING_SNAKE_CASE ) ): return True _UpperCAmelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
1
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : float = math.inf , _SCREAMING_SNAKE_CASE : float = -math.inf , _SCREAMING_SNAKE_CASE : float = math.inf , _SCREAMING_SNAKE_CASE : float = -math.inf , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : float = 100 , _SCREAMING_SNAKE_CASE : float = 0.01 , _SCREAMING_SNAKE_CASE : float = 1 , ): '''simple docstring''' _UpperCAmelCase = False _UpperCAmelCase = search_prob _UpperCAmelCase = start_temperate _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = None while not search_end: _UpperCAmelCase = current_state.score() if best_state is None or current_score > best_state.score(): _UpperCAmelCase = current_state scores.append(_SCREAMING_SNAKE_CASE ) iterations += 1 _UpperCAmelCase = None _UpperCAmelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _UpperCAmelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor _UpperCAmelCase = neighbors.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _UpperCAmelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution _UpperCAmelCase = picked_neighbor else: _UpperCAmelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _UpperCAmelCase = picked_neighbor _UpperCAmelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _UpperCAmelCase = True else: _UpperCAmelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __A : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __A : Union[str, Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) __A : Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __A : Dict = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return (3 * x**2) - (6 * y) __A : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __A : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'''{local_min.score()}''' ) __A : Optional[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __A : List[str] = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f'''{local_min.score()}''' )
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""image_processor""", """tokenizer"""] UpperCamelCase__ = """FlavaImageProcessor""" UpperCamelCase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Union[str, Any] , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : str )->List[Any]: _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCamelCase , ) _UpperCAmelCase = kwargs.pop('''feature_extractor''' ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor def __call__( self : List[Any] , __UpperCamelCase : Optional[ImageInput] = None , __UpperCamelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Union[bool, str, TruncationStrategy] = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : Union[str, Any] , )->List[Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCAmelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if images is not None: _UpperCAmelCase = self.image_processor( __UpperCamelCase , return_image_mask=__UpperCamelCase , return_codebook_pixels=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if text is not None and images is not None: encoding.update(__UpperCamelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def lowercase__ ( self : Any , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[int] )->Any: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Dict )->Optional[Any]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowercase__ ( self : Any )->Any: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : Dict )->Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCamelCase , ) return self.image_processor_class @property def lowercase__ ( self : Any )->Tuple: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCamelCase , ) return self.image_processor
326
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num <= 0: raise ValueError('''Input must be a positive integer''' ) _UpperCAmelCase = [True] * (num + 1) _UpperCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[Any] = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = [int(_SCREAMING_SNAKE_CASE ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(_SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(_SCREAMING_SNAKE_CASE ) <= 254 for octet in octets ) if __name__ == "__main__": __A : Union[str, Any] = input().strip() __A : str = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
326
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
1
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , 0 , -1 ): _UpperCAmelCase = False for j in range(_SCREAMING_SNAKE_CASE , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _UpperCAmelCase , _UpperCAmelCase = unsorted[j - 1], unsorted[j] _UpperCAmelCase = True for j in range(_SCREAMING_SNAKE_CASE ): if unsorted[j] > unsorted[j + 1]: _UpperCAmelCase , _UpperCAmelCase = unsorted[j + 1], unsorted[j] _UpperCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[int] = input("Enter numbers separated by a comma:\n").strip() __A : str = [int(item) for item in user_input.split(",")] print(f'''{cocktail_shaker_sort(unsorted) = }''')
326
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) _UpperCAmelCase = '''''' while len(_SCREAMING_SNAKE_CASE ) % 3 != 0: _UpperCAmelCase = '''0''' + bin_string _UpperCAmelCase = [ bin_string[index : index + 3] for index in range(len(_SCREAMING_SNAKE_CASE ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase = 0 for index, val in enumerate(_SCREAMING_SNAKE_CASE ): oct_val += int(2 ** (2 - index) * int(_SCREAMING_SNAKE_CASE ) ) oct_string += str(_SCREAMING_SNAKE_CASE ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
326
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True _UpperCAmelCase = 4 _UpperCAmelCase = (1 << p) - 1 for _ in range(p - 2 ): _UpperCAmelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return [ord(_SCREAMING_SNAKE_CASE ) - 96 for elem in plain] def lowercase ( _SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , _SCREAMING_SNAKE_CASE ) print('''Decoded:''' , decode(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
326
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : bytes ): '''simple docstring''' return "".join([hex(_SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(_SCREAMING_SNAKE_CASE )] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if (len(_SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
326
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
1
"""simple docstring""" import random from typing import Any def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' for _ in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) _UpperCAmelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) _UpperCAmelCase , _UpperCAmelCase = data[b], data[a] return data if __name__ == "__main__": __A : Any = [0, 1, 2, 3, 4, 5, 6, 7] __A : List[Any] = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
326
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
"""simple docstring""" from math import ceil, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int = 100_0000 ): '''simple docstring''' _UpperCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _UpperCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _UpperCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
326
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
1
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params __A : List[str] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' for pegasus_name, hf_name in PATTERNS: _UpperCAmelCase = k.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return k def lowercase ( _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' _UpperCAmelCase = DEFAULTS.copy() cfg_kwargs.update(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = PegasusConfig(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = PegasusForConditionalGeneration(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch_model.model.state_dict() _UpperCAmelCase = {} for k, v in tf_weights.items(): _UpperCAmelCase = rename_state_dict_key(_SCREAMING_SNAKE_CASE ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: _UpperCAmelCase = v.T _UpperCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected _UpperCAmelCase = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) _UpperCAmelCase = mapping['''shared.weight'''] _UpperCAmelCase = mapping['''shared.weight'''] _UpperCAmelCase = {k: torch.zeros_like(_SCREAMING_SNAKE_CASE ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = torch_model.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def lowercase ( _SCREAMING_SNAKE_CASE : Any="./ckpt/aeslc/model.ckpt-32000" ): '''simple docstring''' _UpperCAmelCase = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {} _UpperCAmelCase = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(_SCREAMING_SNAKE_CASE , desc='''converting tf checkpoint to dict''' ): _UpperCAmelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCAmelCase = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = array return tf_weights def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).parent.name _UpperCAmelCase = task_specific_params[f'summarization_{dataset}']['''max_position_embeddings'''] _UpperCAmelCase = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=_SCREAMING_SNAKE_CASE ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_SCREAMING_SNAKE_CASE ) # convert model _UpperCAmelCase = get_tf_weights_as_numpy(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = task_specific_params[f'summarization_{dataset}'] if dataset == "large": _UpperCAmelCase = task_specific_params _UpperCAmelCase = convert_pegasus(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(_SCREAMING_SNAKE_CASE , Path(_SCREAMING_SNAKE_CASE ) / '''pytorch_model.bin''' ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") __A : Optional[int] = parser.parse_args() if args.save_dir is None: __A : Dict = Path(args.tf_ckpt_path).parent.name __A : Tuple = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
326
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""image_processor""", """tokenizer"""] UpperCamelCase__ = """ChineseCLIPImageProcessor""" UpperCamelCase__ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : Tuple )->Optional[int]: _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCamelCase , ) _UpperCAmelCase = kwargs.pop('''feature_extractor''' ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor def __call__( self : str , __UpperCamelCase : List[Any]=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , **__UpperCamelCase : str )->Union[str, Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCAmelCase = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if images is not None: _UpperCAmelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def lowercase__ ( self : str , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : Dict )->Dict: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : int , *__UpperCamelCase : Any , **__UpperCamelCase : int )->Dict: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowercase__ ( self : Dict )->Union[str, Any]: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : Union[str, Any] )->List[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCamelCase , ) return self.image_processor_class
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable __A : Any = list[list[float | int]] def lowercase ( _SCREAMING_SNAKE_CASE : Matrix , _SCREAMING_SNAKE_CASE : Matrix ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [[0 for _ in range(size + 1 )] for _ in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for row in range(_SCREAMING_SNAKE_CASE ): for col in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = matrix[row][col] _UpperCAmelCase = vector[row][0] _UpperCAmelCase = 0 _UpperCAmelCase = 0 while row < size and col < size: # pivoting _UpperCAmelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _UpperCAmelCase , _UpperCAmelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = augmented[rowa][col] / augmented[row][col] _UpperCAmelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _SCREAMING_SNAKE_CASE ): for row in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = augmented[row][col] / augmented[col][col] for cola in range(_SCREAMING_SNAKE_CASE , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_SCREAMING_SNAKE_CASE ) ] def lowercase ( _SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = [[0] for _ in range(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for x_val, y_val in enumerate(_SCREAMING_SNAKE_CASE ): for col in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = (x_val + 1) ** (size - col - 1) _UpperCAmelCase = y_val _UpperCAmelCase = solve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def interpolated_func(_SCREAMING_SNAKE_CASE : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_SCREAMING_SNAKE_CASE ) ) return interpolated_func def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowercase ( _SCREAMING_SNAKE_CASE : Callable[[int], int] = question_function , _SCREAMING_SNAKE_CASE : int = 10 ): '''simple docstring''' _UpperCAmelCase = [func(_SCREAMING_SNAKE_CASE ) for x_val in range(1 , order + 1 )] _UpperCAmelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _UpperCAmelCase = 0 _UpperCAmelCase = 42 _UpperCAmelCase = 42 for poly in polynomials: _UpperCAmelCase = 1 while func(_SCREAMING_SNAKE_CASE ) == poly(_SCREAMING_SNAKE_CASE ): x_val += 1 ret += poly(_SCREAMING_SNAKE_CASE ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
326
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : int )->None: _UpperCAmelCase = size _UpperCAmelCase = [0] * size _UpperCAmelCase = [0] * size @staticmethod def lowercase__ ( __UpperCamelCase : int )->int: return index | (index + 1) @staticmethod def lowercase__ ( __UpperCamelCase : int )->int: return (index & (index + 1)) - 1 def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : int )->None: _UpperCAmelCase = value while index < self.size: _UpperCAmelCase = self.get_prev(__UpperCamelCase ) + 1 if current_left_border == index: _UpperCAmelCase = value else: _UpperCAmelCase = max(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.get_next(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int )->int: right -= 1 # Because of right is exclusive _UpperCAmelCase = 0 while left <= right: _UpperCAmelCase = self.get_prev(__UpperCamelCase ) if left <= current_left: _UpperCAmelCase = max(__UpperCamelCase , self.tree[right] ) _UpperCAmelCase = current_left else: _UpperCAmelCase = max(__UpperCamelCase , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" __A : Dict = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __A : str = [{"type": "code", "content": INSTALL_CONTENT}] __A : Optional[int] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
326
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
1
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' return getitem, k def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return setitem, k, v def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return delitem, k def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , *_SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' try: return fun(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ), None except Exception as e: return None, e __A : Dict = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __A : Optional[int] = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __A : int = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __A : int = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __A : List[str] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __A : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = HashMap(initial_block_size=4 ) _UpperCAmelCase = {} for _, (fun, *args) in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase , _UpperCAmelCase = _run_operation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = _run_operation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) assert my_res == py_res assert str(_SCREAMING_SNAKE_CASE ) == str(_SCREAMING_SNAKE_CASE ) assert set(_SCREAMING_SNAKE_CASE ) == set(_SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) assert set(my.items() ) == set(py.items() ) def lowercase ( ): '''simple docstring''' def is_public(_SCREAMING_SNAKE_CASE : str ) -> bool: return not name.startswith('''_''' ) _UpperCAmelCase = {name for name in dir({} ) if is_public(_SCREAMING_SNAKE_CASE )} _UpperCAmelCase = {name for name in dir(HashMap() ) if is_public(_SCREAMING_SNAKE_CASE )} assert dict_public_names > hash_public_names
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : Optional[int] = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """unispeech-sat""" def __init__( self : List[Any] , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : str=7_6_8 , __UpperCamelCase : Optional[Any]=1_2 , __UpperCamelCase : str=1_2 , __UpperCamelCase : Optional[int]=3_0_7_2 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Any=0.0 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : Dict=1e-5 , __UpperCamelCase : Tuple="group" , __UpperCamelCase : Any="gelu" , __UpperCamelCase : str=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __UpperCamelCase : int=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase : Union[str, Any]=(1_0, 3, 3, 3, 3, 2, 2) , __UpperCamelCase : Tuple=False , __UpperCamelCase : Any=1_2_8 , __UpperCamelCase : str=1_6 , __UpperCamelCase : Any=False , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : str=0.0_5 , __UpperCamelCase : int=1_0 , __UpperCamelCase : int=2 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Dict=1_0 , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : str=3_2_0 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Union[str, Any]=1_0_0 , __UpperCamelCase : List[str]=2_5_6 , __UpperCamelCase : Optional[int]=2_5_6 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Optional[int]="mean" , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : int=False , __UpperCamelCase : Dict=2_5_6 , __UpperCamelCase : Optional[Any]=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __UpperCamelCase : str=(5, 3, 3, 1, 1) , __UpperCamelCase : Any=(1, 2, 3, 1, 1) , __UpperCamelCase : Union[str, Any]=5_1_2 , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Dict=5_0_4 , **__UpperCamelCase : str , )->int: super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = feat_extract_norm _UpperCAmelCase = feat_extract_activation _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = conv_bias _UpperCAmelCase = num_conv_pos_embeddings _UpperCAmelCase = num_conv_pos_embedding_groups _UpperCAmelCase = len(self.conv_dim ) _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = feat_proj_dropout _UpperCAmelCase = final_dropout _UpperCAmelCase = layerdrop _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = vocab_size _UpperCAmelCase = num_clusters _UpperCAmelCase = do_stable_layer_norm _UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase = apply_spec_augment _UpperCAmelCase = mask_time_prob _UpperCAmelCase = mask_time_length _UpperCAmelCase = mask_time_min_masks _UpperCAmelCase = mask_feature_prob _UpperCAmelCase = mask_feature_length _UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _UpperCAmelCase = num_codevectors_per_group _UpperCAmelCase = num_codevector_groups _UpperCAmelCase = contrastive_logits_temperature _UpperCAmelCase = feat_quantizer_dropout _UpperCAmelCase = num_negatives _UpperCAmelCase = codevector_dim _UpperCAmelCase = proj_codevector_dim _UpperCAmelCase = diversity_loss_weight # ctc loss _UpperCAmelCase = ctc_loss_reduction _UpperCAmelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = xvector_output_dim @property def lowercase__ ( self : int )->Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
326
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = t // 3600, (t // 60) % 60, t % 60 return f'{h}:{m:02d}:{s:02d}' if h != 0 else f'{m:02d}:{s:02d}' def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=300 ): '''simple docstring''' return f'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ' def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f' <th>{i}</th>\n' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _UpperCAmelCase = f'{elt:.6f}' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else str(_SCREAMING_SNAKE_CASE ) html_code += f' <td>{elt}</td>\n' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _a : """simple docstring""" UpperCamelCase__ = 5 UpperCamelCase__ = 0.2 def __init__( self : str , __UpperCamelCase : int , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Optional["NotebookTrainingTracker"] = None , __UpperCamelCase : int = 3_0_0 , )->Optional[int]: _UpperCAmelCase = total _UpperCAmelCase = '''''' if prefix is None else prefix _UpperCAmelCase = leave _UpperCAmelCase = parent _UpperCAmelCase = width _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None def lowercase__ ( self : int , __UpperCamelCase : int , __UpperCamelCase : bool = False , __UpperCamelCase : str = None )->Union[str, Any]: _UpperCAmelCase = value if comment is not None: _UpperCAmelCase = comment if self.last_value is None: _UpperCAmelCase = _UpperCAmelCase = time.time() _UpperCAmelCase = _UpperCAmelCase = value _UpperCAmelCase = _UpperCAmelCase = None _UpperCAmelCase = self.warmup _UpperCAmelCase = 1 self.update_bar(__UpperCamelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _UpperCAmelCase = time.time() _UpperCAmelCase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _UpperCAmelCase = self.elapsed_time / (value - self.start_value) else: _UpperCAmelCase = None if value >= self.total: _UpperCAmelCase = self.total _UpperCAmelCase = None if not self.leave: self.close() elif self.average_time_per_item is not None: _UpperCAmelCase = self.average_time_per_item * (self.total - value) self.update_bar(__UpperCamelCase ) _UpperCAmelCase = value _UpperCAmelCase = current_time if self.average_time_per_item is None: _UpperCAmelCase = 1 else: _UpperCAmelCase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def lowercase__ ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any]=None )->int: _UpperCAmelCase = ''' ''' * (len(str(self.total ) ) - len(str(__UpperCamelCase ) )) + str(__UpperCamelCase ) if self.elapsed_time is None: _UpperCAmelCase = F'[{spaced_value}/{self.total} : < :' elif self.predicted_remaining is None: _UpperCAmelCase = F'[{spaced_value}/{self.total} {format_time(self.elapsed_time )}' else: _UpperCAmelCase = ( F'[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <' F' {format_time(self.predicted_remaining )}' ) self.label += F', {1/self.average_time_per_item:.2f} it/s' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F', {self.comment}]' self.display() def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=__UpperCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def lowercase__ ( self : Optional[Any] )->Dict: if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=None )->List[str]: super().__init__(__UpperCamelCase ) _UpperCAmelCase = None if column_names is None else [column_names] _UpperCAmelCase = None def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _UpperCAmelCase = disp.display(disp.HTML(self.html_code ) , display_id=__UpperCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def lowercase__ ( self : int , __UpperCamelCase : Optional[int] )->Dict: if self.inner_table is None: _UpperCAmelCase = [list(values.keys() ), list(values.values() )] else: _UpperCAmelCase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__UpperCamelCase ) _UpperCAmelCase = columns self.inner_table.append([values[c] for c in columns] ) def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Union[str, Any]=3_0_0 )->str: _UpperCAmelCase = NotebookProgressBar(__UpperCamelCase , prefix=__UpperCamelCase , parent=self , width=__UpperCamelCase ) return self.child_bar def lowercase__ ( self : int )->List[Any]: _UpperCAmelCase = None self.display() class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Tuple )->Tuple: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = False def lowercase__ ( self : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , **__UpperCamelCase : Any )->List[str]: _UpperCAmelCase = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) _UpperCAmelCase = NotebookTrainingTracker(state.max_steps , __UpperCamelCase ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , **__UpperCamelCase : Tuple )->str: _UpperCAmelCase = int(state.epoch ) if int(state.epoch ) == state.epoch else F'{state.epoch:.2f}' self.training_tracker.update( state.global_step + 1 , comment=F'Epoch {epoch}/{state.num_train_epochs}' , force_update=self._force_next_update , ) _UpperCAmelCase = False def lowercase__ ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Dict )->int: if not has_length(__UpperCamelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: _UpperCAmelCase = self.training_tracker.add_child(len(__UpperCamelCase ) ) else: _UpperCAmelCase = NotebookProgressBar(len(__UpperCamelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : List[str] , **__UpperCamelCase : str )->Dict: if self.prediction_bar is not None: self.prediction_bar.close() _UpperCAmelCase = None def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : str=None , **__UpperCamelCase : str )->Dict: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _UpperCAmelCase = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy _UpperCAmelCase = state.global_step self.training_tracker.write_line(__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict=None , **__UpperCamelCase : str )->Any: if self.training_tracker is not None: _UpperCAmelCase = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: _UpperCAmelCase = log['''loss'''] break if self.first_column == "Epoch": _UpperCAmelCase = int(state.epoch ) else: _UpperCAmelCase = state.global_step _UpperCAmelCase = '''eval''' for k in metrics: if k.endswith('''_loss''' ): _UpperCAmelCase = re.sub(r'''\_loss$''' , '''''' , __UpperCamelCase ) _UpperCAmelCase = metrics.pop('''total_flos''' , __UpperCamelCase ) _UpperCAmelCase = metrics.pop('''epoch''' , __UpperCamelCase ) _UpperCAmelCase = metrics.pop(F'{metric_key_prefix}_runtime' , __UpperCamelCase ) _UpperCAmelCase = metrics.pop(F'{metric_key_prefix}_samples_per_second' , __UpperCamelCase ) _UpperCAmelCase = metrics.pop(F'{metric_key_prefix}_steps_per_second' , __UpperCamelCase ) _UpperCAmelCase = metrics.pop(F'{metric_key_prefix}_jit_compilation_time' , __UpperCamelCase ) for k, v in metrics.items(): if k == F'{metric_key_prefix}_loss': _UpperCAmelCase = v else: _UpperCAmelCase = k.split('''_''' ) _UpperCAmelCase = ''' '''.join([part.capitalize() for part in splits[1:]] ) _UpperCAmelCase = v self.training_tracker.write_line(__UpperCamelCase ) self.training_tracker.remove_child() _UpperCAmelCase = None # Evaluation takes a long time so we should force the next update. _UpperCAmelCase = True def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , **__UpperCamelCase : str )->Any: self.training_tracker.update( state.global_step , comment=F'Epoch {int(state.epoch )}/{state.num_train_epochs}' , force_update=__UpperCamelCase ) _UpperCAmelCase = None
326
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
1
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) __A : int = logging.getLogger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { '''repo_id''': str(_SCREAMING_SNAKE_CASE ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(_SCREAMING_SNAKE_CASE , '''git_log.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , indent=4 ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if params.n_gpu <= 0: _UpperCAmelCase = 0 _UpperCAmelCase = -1 _UpperCAmelCase = True _UpperCAmelCase = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 _UpperCAmelCase = int(os.environ['''WORLD_SIZE'''] ) _UpperCAmelCase = int(os.environ['''N_GPU_NODE'''] ) _UpperCAmelCase = int(os.environ['''RANK'''] ) # number of nodes / node ID _UpperCAmelCase = params.world_size // params.n_gpu_per_node _UpperCAmelCase = params.global_rank // params.n_gpu_per_node _UpperCAmelCase = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 _UpperCAmelCase = 1 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 _UpperCAmelCase = 1 _UpperCAmelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode _UpperCAmelCase = params.node_id == 0 and params.local_rank == 0 _UpperCAmelCase = params.n_nodes > 1 # summary _UpperCAmelCase = f'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
326
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
1
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase ( _SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for rt in rc.restypes: _UpperCAmelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _UpperCAmelCase = {name: i for i, name in enumerate(_SCREAMING_SNAKE_CASE )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _UpperCAmelCase = torch.tensor( _SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['''aatype'''].device , ) _UpperCAmelCase = torch.tensor( _SCREAMING_SNAKE_CASE , dtype=torch.intaa , device=protein['''aatype'''].device , ) _UpperCAmelCase = torch.tensor( _SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=protein['''aatype'''].device , ) _UpperCAmelCase = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _UpperCAmelCase = restype_atomaa_to_atomaa[protein_aatype] _UpperCAmelCase = restype_atomaa_mask[protein_aatype] _UpperCAmelCase = residx_atomaa_mask _UpperCAmelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _UpperCAmelCase = restype_atomaa_to_atomaa[protein_aatype] _UpperCAmelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask _UpperCAmelCase = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): _UpperCAmelCase = rc.restype_atoa[restype_letter] _UpperCAmelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: _UpperCAmelCase = rc.atom_order[atom_name] _UpperCAmelCase = 1 _UpperCAmelCase = restype_atomaa_mask[protein_aatype] _UpperCAmelCase = residx_atomaa_mask return protein def lowercase ( _SCREAMING_SNAKE_CASE : Dict[str, torch.Tensor] ): '''simple docstring''' _UpperCAmelCase = tree_map(lambda _SCREAMING_SNAKE_CASE : torch.tensor(_SCREAMING_SNAKE_CASE , device=batch['''aatype'''].device ) , _SCREAMING_SNAKE_CASE , np.ndarray ) _UpperCAmelCase = tensor_tree_map(lambda _SCREAMING_SNAKE_CASE : np.array(_SCREAMING_SNAKE_CASE ) , make_atomaa_masks(_SCREAMING_SNAKE_CASE ) ) return out
326
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if index == r: for j in range(_SCREAMING_SNAKE_CASE ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _UpperCAmelCase = arr[i] combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 , _SCREAMING_SNAKE_CASE , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , 0 ) if __name__ == "__main__": # Driver code to check the function above __A : Optional[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
326
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""image_processor""", """tokenizer"""] UpperCamelCase__ = """LayoutLMv3ImageProcessor""" UpperCamelCase__ = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self : List[Any] , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=None , **__UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCamelCase , ) _UpperCAmelCase = kwargs.pop('''feature_extractor''' ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __UpperCamelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __UpperCamelCase : Union[List[List[int]], List[List[List[int]]]] = None , __UpperCamelCase : Optional[Union[List[int], List[List[int]]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Union[bool, str, TruncationStrategy] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : Dict , )->BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor _UpperCAmelCase = self.image_processor(images=__UpperCamelCase , return_tensors=__UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) _UpperCAmelCase = features['''words'''] _UpperCAmelCase = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # add pixel values _UpperCAmelCase = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: _UpperCAmelCase = self.get_overflowing_images(__UpperCamelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) _UpperCAmelCase = images return encoded_inputs def lowercase__ ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] )->List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _UpperCAmelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F' {len(__UpperCamelCase )} and {len(__UpperCamelCase )}' ) return images_with_overflow def lowercase__ ( self : List[Any] , *__UpperCamelCase : Any , **__UpperCamelCase : Any )->List[Any]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : str , *__UpperCamelCase : Any , **__UpperCamelCase : Tuple )->Any: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowercase__ ( self : str )->List[str]: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowercase__ ( self : Tuple )->Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCamelCase , ) return self.image_processor_class @property def lowercase__ ( self : Tuple )->Dict: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCamelCase , ) return self.image_processor
326
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
1
"""simple docstring""" from collections.abc import Sequence def lowercase ( _SCREAMING_SNAKE_CASE : Sequence[int] | None = None ): '''simple docstring''' if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) _UpperCAmelCase = nums[0] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = nums[i] _UpperCAmelCase = max(_SCREAMING_SNAKE_CASE , ans + num , _SCREAMING_SNAKE_CASE ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __A : Any = int(input("Enter number of elements : ").strip()) __A : Optional[Any] = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
326
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
1
"""simple docstring""" import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float = 1E-12 , _SCREAMING_SNAKE_CASE : int = 100 , ): '''simple docstring''' assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_UpperCAmelCase ) == np.iscomplexobj(_UpperCAmelCase ) _UpperCAmelCase = np.iscomplexobj(_UpperCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_UpperCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _UpperCAmelCase = False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. _UpperCAmelCase = np.dot(_UpperCAmelCase , _UpperCAmelCase ) # Normalize the resulting output vector. _UpperCAmelCase = w / np.linalg.norm(_UpperCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _UpperCAmelCase = vector.conj().T if is_complex else vector.T _UpperCAmelCase = np.dot(_UpperCAmelCase , np.dot(_UpperCAmelCase , _UpperCAmelCase ) ) # Check convergence. _UpperCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _UpperCAmelCase = True _UpperCAmelCase = lambda_ if is_complex: _UpperCAmelCase = np.real(lambda_ ) return lambda_, vector def lowercase ( ): '''simple docstring''' _UpperCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _UpperCAmelCase = np.array([41, 4, 20] ) _UpperCAmelCase = real_input_matrix.astype(np.complexaaa ) _UpperCAmelCase = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _UpperCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _UpperCAmelCase = real_input_matrix _UpperCAmelCase = real_vector elif problem_type == "complex": _UpperCAmelCase = complex_input_matrix _UpperCAmelCase = complex_vector # Our implementation. _UpperCAmelCase = power_iteration(_UpperCAmelCase , _UpperCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _UpperCAmelCase = np.linalg.eigh(_UpperCAmelCase ) # Last eigenvalue is the maximum one. _UpperCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _UpperCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_UpperCAmelCase ) - np.abs(_UpperCAmelCase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : int = logging.get_logger(__name__) __A : List[str] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class _a ( A__ , A__): """simple docstring""" UpperCamelCase__ = "focalnet" def __init__( self : str , __UpperCamelCase : List[Any]=2_2_4 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Dict=3 , __UpperCamelCase : str=9_6 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Optional[int]=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , __UpperCamelCase : Dict=[2, 2, 6, 2] , __UpperCamelCase : Tuple=[2, 2, 2, 2] , __UpperCamelCase : Optional[int]=[3, 3, 3, 3] , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Dict=4.0 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Tuple=1e-4 , __UpperCamelCase : int=False , __UpperCamelCase : Tuple=False , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : str=1e-5 , __UpperCamelCase : str=3_2 , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Dict , )->List[Any]: super().__init__(**__A ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = use_conv_embed _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = focal_levels _UpperCAmelCase = focal_windows _UpperCAmelCase = hidden_act _UpperCAmelCase = mlp_ratio _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_layerscale _UpperCAmelCase = layerscale_value _UpperCAmelCase = use_post_layernorm _UpperCAmelCase = use_post_layernorm_in_modulation _UpperCAmelCase = normalize_modulator _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = encoder_stride _UpperCAmelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
351
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
0
"""simple docstring""" import collections import os import re from pathlib import Path __A : str = "src/transformers" # Matches is_xxx_available() __A : Optional[Any] = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} __A : List[str] = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : List[str] = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available __A : Optional[Any] = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") __A : Optional[Any] = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : Tuple = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", __A : int = re.compile(r"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], __A : Optional[Any] = re.compile(r"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo __A : List[Any] = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: __A : Optional[int] = re.compile(r"^\s*try:") # Catches a line with else: __A : List[Any] = re.compile(r"^\s*else:") def lowercase ( _SCREAMING_SNAKE_CASE : Dict ) -> List[str]: '''simple docstring''' if _re_test_backend.search(__UpperCAmelCase ) is None: return None _UpperCAmelCase = [b[0] for b in _re_backend.findall(__UpperCAmelCase )] backends.sort() return "_and_".join(__UpperCAmelCase ) def lowercase ( _SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCAmelCase = f.readlines() _UpperCAmelCase = 0 while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure _UpperCAmelCase = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: _UpperCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCAmelCase ): _UpperCAmelCase = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0] _UpperCAmelCase = re.findall(r'''\[([^\]]+)\]''' , __UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue _UpperCAmelCase = _re_import_struct_key_value.search(__UpperCAmelCase ) if single_line_import_search is not None: _UpperCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 _UpperCAmelCase = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): _UpperCAmelCase = lines[line_index] if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None: _UpperCAmelCase = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_between_brackets.search(__UpperCAmelCase ) is not None: _UpperCAmelCase = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(''', ''' ) _UpperCAmelCase = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_quote_object.search(__UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _UpperCAmelCase = [] while ( line_index < len(__UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 _UpperCAmelCase = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. _UpperCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: _UpperCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 _UpperCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any ) -> Dict: '''simple docstring''' def find_duplicates(_SCREAMING_SNAKE_CASE : str ): return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] _UpperCAmelCase = [] for key in import_dict_objects.keys(): _UpperCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) _UpperCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): _UpperCAmelCase = '''base imports''' if key == '''none''' else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def lowercase ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: _UpperCAmelCase = os.path.join(__UpperCAmelCase , '''__init__.py''' ) _UpperCAmelCase = parse_init(__UpperCAmelCase ) if objects is not None: _UpperCAmelCase = analyze_results(*__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: _UpperCAmelCase = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('''\n'''.join(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: raise ValueError('''\n\n'''.join(__UpperCAmelCase ) ) def lowercase ( ) -> Any: '''simple docstring''' _UpperCAmelCase = [] for path, directories, files in os.walk(__UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCAmelCase ) / folder).glob('''*.py''' ) ) ) == 0: continue _UpperCAmelCase = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) ) _UpperCAmelCase = short_path.replace(os.path.sep , '''.''' ) submodules.append(__UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue _UpperCAmelCase = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) ) _UpperCAmelCase = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__UpperCAmelCase ) return submodules __A : str = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def lowercase ( ) -> List[str]: '''simple docstring''' from transformers.utils import direct_transformers_import _UpperCAmelCase = direct_transformers_import(__UpperCAmelCase ) _UpperCAmelCase = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(__UpperCAmelCase , '''__init__.py''' ) , '''r''' ) as f: _UpperCAmelCase = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , __UpperCAmelCase ) ) ) _UpperCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(__UpperCAmelCase ) > 0: _UpperCAmelCase = '''\n'''.join(f'- {module}' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f'{list_of_modules}\n' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
352
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
0
import pytest __A : int = "__dummy_dataset1__" __A : Optional[Any] = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = dataset_loading_script_name _UpperCAmelCase = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__lowerCAmelCase ) _UpperCAmelCase = script_dir / f'{script_name}.py' with open(__lowerCAmelCase , '''w''' ) as f: f.write(__lowerCAmelCase ) return str(__lowerCAmelCase )
353
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Tuple = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _a ( a__): """simple docstring""" UpperCamelCase__ = """speech_to_text_2""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any]=1_0_0_0_0 , __UpperCamelCase : List[Any]=6 , __UpperCamelCase : int=2_0_4_8 , __UpperCamelCase : Dict=4 , __UpperCamelCase : str=0.0 , __UpperCamelCase : int=True , __UpperCamelCase : int="relu" , __UpperCamelCase : Any=2_5_6 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : int=2 , __UpperCamelCase : List[str]=True , __UpperCamelCase : str=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : Tuple=1_0_2_4 , **__UpperCamelCase : int , )->Dict: _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = activation_function _UpperCAmelCase = init_std _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = decoder_layers _UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase = max_target_positions super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
354
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
0
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowercase ( _SCREAMING_SNAKE_CASE : bool = True , *_SCREAMING_SNAKE_CASE : List[Any] , **_SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) _UpperCAmelCase = False if main_process_only: _UpperCAmelCase = PartialState().local_process_index == 0 return _tqdm(*__a , **__a , disable=__a )
355
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __A : Any = logging.get_logger(__name__) __A : List[str] = """Hello, World!""" __A : Any = """en_XX""" def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool ): '''simple docstring''' _UpperCAmelCase = Path('''data_bin''' ) _UpperCAmelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__snake_case ).parent ) , checkpoint_file=Path(__snake_case ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(__snake_case ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(__snake_case ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(__snake_case ) _UpperCAmelCase = xmod.model.encoder.sentence_encoder _UpperCAmelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: _UpperCAmelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , __snake_case ) _UpperCAmelCase = XmodForSequenceClassification(__snake_case ) if classification_head else XmodForMaskedLM(__snake_case ) model.eval() # Now let's copy all the weights. # Embeddings _UpperCAmelCase = xmod_sent_encoder.embed_tokens.weight _UpperCAmelCase = xmod_sent_encoder.embed_positions.weight _UpperCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. _UpperCAmelCase = xmod_sent_encoder.layernorm_embedding.weight _UpperCAmelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _UpperCAmelCase = model.roberta.encoder.layer[i] _UpperCAmelCase = xmod_sent_encoder.layers[i] # self attention _UpperCAmelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) _UpperCAmelCase = xmod_layer.self_attn.q_proj.weight _UpperCAmelCase = xmod_layer.self_attn.q_proj.bias _UpperCAmelCase = xmod_layer.self_attn.k_proj.weight _UpperCAmelCase = xmod_layer.self_attn.k_proj.bias _UpperCAmelCase = xmod_layer.self_attn.v_proj.weight _UpperCAmelCase = xmod_layer.self_attn.v_proj.bias # self-attention output _UpperCAmelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) _UpperCAmelCase = xmod_layer.self_attn.out_proj.weight _UpperCAmelCase = xmod_layer.self_attn.out_proj.bias _UpperCAmelCase = xmod_layer.self_attn_layer_norm.weight _UpperCAmelCase = xmod_layer.self_attn_layer_norm.bias # intermediate _UpperCAmelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) _UpperCAmelCase = xmod_layer.fca.weight _UpperCAmelCase = xmod_layer.fca.bias # output _UpperCAmelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) _UpperCAmelCase = xmod_layer.fca.weight _UpperCAmelCase = xmod_layer.fca.bias _UpperCAmelCase = xmod_layer.final_layer_norm.weight _UpperCAmelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: _UpperCAmelCase = xmod_layer.adapter_layer_norm.weight _UpperCAmelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): _UpperCAmelCase = bert_output.adapter_modules[lang_code] _UpperCAmelCase = xmod_layer.adapter_modules[lang_code] _UpperCAmelCase = from_adapter.fca.weight _UpperCAmelCase = from_adapter.fca.bias _UpperCAmelCase = from_adapter.fca.weight _UpperCAmelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: _UpperCAmelCase = xmod_sent_encoder.layer_norm.weight _UpperCAmelCase = xmod_sent_encoder.layer_norm.bias if classification_head: _UpperCAmelCase = xmod.model.classification_heads['''mnli'''].dense.weight _UpperCAmelCase = xmod.model.classification_heads['''mnli'''].dense.bias _UpperCAmelCase = xmod.model.classification_heads['''mnli'''].out_proj.weight _UpperCAmelCase = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head _UpperCAmelCase = xmod.model.encoder.lm_head.dense.weight _UpperCAmelCase = xmod.model.encoder.lm_head.dense.bias _UpperCAmelCase = xmod.model.encoder.lm_head.layer_norm.weight _UpperCAmelCase = xmod.model.encoder.lm_head.layer_norm.bias _UpperCAmelCase = xmod.model.encoder.lm_head.weight _UpperCAmelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. _UpperCAmelCase = xmod.encode(__snake_case ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__snake_case ) _UpperCAmelCase = model(__snake_case )[0] if classification_head: _UpperCAmelCase = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__snake_case ) ) else: _UpperCAmelCase = xmod.model(__snake_case , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) _UpperCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 _UpperCAmelCase = torch.allclose(__snake_case , __snake_case , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(__snake_case ).mkdir(parents=__snake_case , exist_ok=__snake_case ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __A : int = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
356
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __A : int = logging.get_logger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = os.path.abspath(__A ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model _UpperCAmelCase = tf.train.list_variables(__A ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _UpperCAmelCase = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' _UpperCAmelCase = name[1:] # figure out how many levels deep the name is _UpperCAmelCase = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__A ) # read data _UpperCAmelCase = tf.train.load_variable(__A , __A ) names.append('''/'''.join(__A ) ) arrays.append(__A ) logger.info(f'Read a total of {len(__A ):,} layers' ) # Sanity check if len(set(__A ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(__A ) )})' ) _UpperCAmelCase = list(set(__A ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__A , __A ): _UpperCAmelCase = full_name.split('''/''' ) _UpperCAmelCase = model _UpperCAmelCase = [] for i, m_name in enumerate(__A ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): _UpperCAmelCase = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) _UpperCAmelCase = getattr(__A , '''embeddings''' ) _UpperCAmelCase = getattr(__A , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) _UpperCAmelCase = getattr(__A , '''encoder''' ) _UpperCAmelCase = getattr(__A , '''layer''' ) _UpperCAmelCase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) _UpperCAmelCase = getattr(__A , '''pooler''' ) _UpperCAmelCase = getattr(__A , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) _UpperCAmelCase = getattr(__A , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) _UpperCAmelCase = getattr(__A , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) _UpperCAmelCase = getattr(__A , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) _UpperCAmelCase = getattr(__A , '''token_type_embeddings''' ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append('''weight''' ) _UpperCAmelCase = getattr(__A , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) _UpperCAmelCase = getattr(__A , '''attention''' ) _UpperCAmelCase = getattr(__A , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) _UpperCAmelCase = getattr(__A , '''attention''' ) _UpperCAmelCase = getattr(__A , '''output''' ) _UpperCAmelCase = getattr(__A , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) _UpperCAmelCase = getattr(__A , '''attention''' ) _UpperCAmelCase = getattr(__A , '''output''' ) _UpperCAmelCase = getattr(__A , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) _UpperCAmelCase = getattr(__A , '''output''' ) _UpperCAmelCase = getattr(__A , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) _UpperCAmelCase = getattr(__A , '''output''' ) _UpperCAmelCase = getattr(__A , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) _UpperCAmelCase = getattr(__A , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) _UpperCAmelCase = getattr(__A , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) _UpperCAmelCase = getattr(__A , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) _UpperCAmelCase = getattr(__A , '''intermediate''' ) _UpperCAmelCase = getattr(__A , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) _UpperCAmelCase = getattr(__A , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) _UpperCAmelCase = getattr(__A , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) _UpperCAmelCase = getattr(__A , '''weight''' ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary _UpperCAmelCase = '''.'''.join(__A ) if re.match(r'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __A ) or re.match( r'''(\S+)\.attention\.output\.dense\.weight''' , __A ): _UpperCAmelCase = array.reshape(pointer.data.shape ) if "kernel" in full_name: _UpperCAmelCase = array.transpose() if pointer.shape == array.shape: _UpperCAmelCase = torch.from_numpy(__A ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' logger.info(f'Loading model based on config from {config_path}...' ) _UpperCAmelCase = BertConfig.from_json_file(__A ) _UpperCAmelCase = BertModel(__A ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(__A , __A , __A ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) __A : Optional[Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
357
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A : List[str] = logging.get_logger("transformers.models.speecht5") __A : Any = { 'speech_encoder_prenet.layer_norm': 'speecht5.encoder.prenet.feature_projection.layer_norm', 'speech_encoder_prenet.post_extract_proj': 'speecht5.encoder.prenet.feature_projection.projection', 'speech_encoder_prenet.pos_conv.0': 'speecht5.encoder.prenet.pos_conv_embed.conv', 'speech_encoder_prenet.mask_emb': 'speecht5.encoder.prenet.masked_spec_embed', } __A : Dict = { 'text_encoder_prenet.encoder_prenet.0': 'speecht5.encoder.prenet.embed_tokens', 'text_encoder_prenet.encoder_prenet.1.alpha': 'speecht5.encoder.prenet.encode_positions.alpha', } __A : int = { 'speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0': 'speecht5.decoder.prenet.layers.0', 'speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0': 'speecht5.decoder.prenet.layers.1', 'speech_decoder_prenet.decoder_prenet.0.1': 'speecht5.decoder.prenet.final_layer', 'speech_decoder_prenet.decoder_prenet.1.alpha': 'speecht5.decoder.prenet.encode_positions.alpha', 'speech_decoder_prenet.spkembs_layer.0': 'speecht5.decoder.prenet.speaker_embeds_layer', } __A : List[str] = { 'speech_decoder_postnet.feat_out': 'speech_decoder_postnet.feat_out', 'speech_decoder_postnet.prob_out': 'speech_decoder_postnet.prob_out', 'speech_decoder_postnet.postnet.postnet.0.0': 'speech_decoder_postnet.layers.0.conv', 'speech_decoder_postnet.postnet.postnet.0.1': 'speech_decoder_postnet.layers.0.batch_norm', 'speech_decoder_postnet.postnet.postnet.1.0': 'speech_decoder_postnet.layers.1.conv', 'speech_decoder_postnet.postnet.postnet.1.1': 'speech_decoder_postnet.layers.1.batch_norm', 'speech_decoder_postnet.postnet.postnet.2.0': 'speech_decoder_postnet.layers.2.conv', 'speech_decoder_postnet.postnet.postnet.2.1': 'speech_decoder_postnet.layers.2.batch_norm', 'speech_decoder_postnet.postnet.postnet.3.0': 'speech_decoder_postnet.layers.3.conv', 'speech_decoder_postnet.postnet.postnet.3.1': 'speech_decoder_postnet.layers.3.batch_norm', 'speech_decoder_postnet.postnet.postnet.4.0': 'speech_decoder_postnet.layers.4.conv', 'speech_decoder_postnet.postnet.postnet.4.1': 'speech_decoder_postnet.layers.4.batch_norm', } __A : List[str] = { 'text_decoder_prenet.embed_tokens': 'speecht5.decoder.prenet.embed_tokens', } __A : Any = { 'text_decoder_postnet.output_projection': 'text_decoder_postnet.lm_head', } __A : Any = { 'encoder.layers.*.self_attn.k_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj', 'encoder.layers.*.self_attn.v_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj', 'encoder.layers.*.self_attn.q_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj', 'encoder.layers.*.self_attn.out_proj': 'speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj', 'encoder.layers.*.self_attn_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.layer_norm', 'encoder.layers.*.fc1': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense', 'encoder.layers.*.fc2': 'speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense', 'encoder.layers.*.final_layer_norm': 'speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'speecht5.encoder.wrapped_encoder.layer_norm', 'encoder.pos_emb.pe_k': 'speecht5.encoder.wrapped_encoder.embed_positions.pe_k', } __A : Any = { 'decoder.layers.*.self_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj', 'decoder.layers.*.self_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj', 'decoder.layers.*.self_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj', 'decoder.layers.*.self_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj', 'decoder.layers.*.self_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm', 'decoder.layers.*.encoder_attn.k_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj', 'decoder.layers.*.encoder_attn.v_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj', 'decoder.layers.*.encoder_attn.q_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj', 'decoder.layers.*.encoder_attn.out_proj': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj', 'decoder.layers.*.encoder_attn_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm', 'decoder.layers.*.fc1': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense', 'decoder.layers.*.fc2': 'speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense', 'decoder.layers.*.final_layer_norm': 'speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm', } __A : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A : Any = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A : Union[str, Any] = [] __A : Union[str, Any] = [ 'encoder.version', 'encoder.layers.*.norm_k.weight', 'encoder.layers.*.norm_k.bias', 'decoder.version', 'decoder.layers.*.norm_k.weight', 'decoder.layers.*.norm_k.bias', 'decoder.pos_emb.pe_k', 'speech_encoder_prenet.embed_positions._float_tensor', 'text_decoder_prenet.embed_positions._float_tensor', ] __A : Any = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'speech_decoder_prenet.*', 'speech_decoder_postnet.*', ] __A : List[Any] = IGNORE_KEYS + [ 'encoder.proj', 'speech_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] __A : str = IGNORE_KEYS + [ 'encoder.proj', 'text_encoder_prenet.*', 'text_decoder_prenet.*', 'text_decoder_postnet.*', ] def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' for attribute in key.split('''.''' ): _UpperCAmelCase = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: _UpperCAmelCase = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value elif weight_type == "running_mean": _UpperCAmelCase = value elif weight_type == "running_var": _UpperCAmelCase = value elif weight_type == "num_batches_tracked": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = [] if task == "s2t": _UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase = MAPPING_S2T _UpperCAmelCase = IGNORE_KEYS_S2T elif task == "t2s": _UpperCAmelCase = None _UpperCAmelCase = MAPPING_T2S _UpperCAmelCase = IGNORE_KEYS_T2S elif task == "s2s": _UpperCAmelCase = hf_model.speechta.encoder.prenet.feature_encoder _UpperCAmelCase = MAPPING_S2S _UpperCAmelCase = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(lowerCamelCase_ , lowerCamelCase_ ): logger.info(f'{name} was ignored' ) continue _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _UpperCAmelCase = key.split('''.*.''' ) if prefix in name and suffix in name: _UpperCAmelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(lowerCamelCase_ )[0].split('''.''' )[-2] _UpperCAmelCase = mapped_key.replace('''*''' , lowerCamelCase_ ) if "weight_g" in name: _UpperCAmelCase = """weight_g""" elif "weight_v" in name: _UpperCAmelCase = """weight_v""" elif "bias" in name: _UpperCAmelCase = """bias""" elif "weight" in name: _UpperCAmelCase = """weight""" elif "running_mean" in name: _UpperCAmelCase = """running_mean""" elif "running_var" in name: _UpperCAmelCase = """running_var""" elif "num_batches_tracked" in name: _UpperCAmelCase = """num_batches_tracked""" else: _UpperCAmelCase = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(f'Unused weights: {unused_weights}' ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] _UpperCAmelCase = name.split('''.''' ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCAmelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase_ ) @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , ): '''simple docstring''' if config_path is not None: _UpperCAmelCase = SpeechTaConfig.from_pretrained(lowerCamelCase_ ) else: _UpperCAmelCase = SpeechTaConfig() if task == "s2t": _UpperCAmelCase = config.max_text_positions _UpperCAmelCase = SpeechTaForSpeechToText(lowerCamelCase_ ) elif task == "t2s": _UpperCAmelCase = 1876 _UpperCAmelCase = 600 _UpperCAmelCase = config.max_speech_positions _UpperCAmelCase = SpeechTaForTextToSpeech(lowerCamelCase_ ) elif task == "s2s": _UpperCAmelCase = 1876 _UpperCAmelCase = config.max_speech_positions _UpperCAmelCase = SpeechTaForSpeechToSpeech(lowerCamelCase_ ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _UpperCAmelCase = SpeechTaTokenizer(lowerCamelCase_ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken('''<mask>''' , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) _UpperCAmelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _UpperCAmelCase = SpeechTaFeatureExtractor() _UpperCAmelCase = SpeechTaProcessor(tokenizer=lowerCamelCase_ , feature_extractor=lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) _UpperCAmelCase = torch.load(lowerCamelCase_ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCamelCase_ , lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCamelCase_ ) model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A : Any = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __A : str = logging.get_logger(__name__) __A : Dict = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class _a ( __A): """simple docstring""" UpperCamelCase__ = 'imagegpt' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Any , __UpperCamelCase : int=5_1_2 + 1 , __UpperCamelCase : Dict=3_2 * 3_2 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Optional[Any]=2_4 , __UpperCamelCase : Tuple=8 , __UpperCamelCase : int=None , __UpperCamelCase : Optional[int]="quick_gelu" , __UpperCamelCase : str=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Dict=1e-5 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : str=False , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : List[Any]=False , **__UpperCamelCase : Union[str, Any] , )->List[str]: _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = n_inner _UpperCAmelCase = activation_function _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = scale_attn_weights _UpperCAmelCase = use_cache _UpperCAmelCase = scale_attn_by_inverse_layer_idx _UpperCAmelCase = reorder_and_upcast_attn _UpperCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=__lowercase , **__lowercase ) class _a ( __A): """simple docstring""" @property def lowercase__ ( self : Union[str, Any] )->List[Any]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] = 1 , __UpperCamelCase : Dict = -1 , __UpperCamelCase : int = False , __UpperCamelCase : List[Any] = None , __UpperCamelCase : List[Any] = 3 , __UpperCamelCase : List[str] = 3_2 , __UpperCamelCase : Any = 3_2 , )->Any: _UpperCAmelCase = self._generate_dummy_images(__lowercase , __lowercase , __lowercase , __lowercase ) _UpperCAmelCase = dict(preprocessor(images=__lowercase , return_tensors=__lowercase ) ) return inputs
359
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
0
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any]=7_0000 ): '''simple docstring''' _UpperCAmelCase = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): _UpperCAmelCase = np.dot(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = sigmoid_function(__lowerCamelCase ) _UpperCAmelCase = np.dot(x.T , h - y ) / y.size _UpperCAmelCase = theta - alpha * gradient # updating the weights _UpperCAmelCase = np.dot(__lowerCamelCase , __lowerCamelCase ) _UpperCAmelCase = sigmoid_function(__lowerCamelCase ) _UpperCAmelCase = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 100 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __A : Any = datasets.load_iris() __A : List[Any] = iris.data[:, :2] __A : Tuple = (iris.target != 0) * 1 __A : Optional[int] = 0.1 __A : Optional[Any] = logistic_reg(alpha, x, y, max_iterations=70000) print("theta: ", theta) # printing the theta i.e our weights vector def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((__A) , (__A)) : Optional[int] = (x[:, 0].min(), x[:, 0].max()) ((__A) , (__A)) : List[str] = (x[:, 1].min(), x[:, 1].max()) ((__A) , (__A)) : str = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __A : List[Any] = np.c_[xxa.ravel(), xxa.ravel()] __A : Any = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
360
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A : Dict = logging.get_logger(__name__) class _a ( __SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : List[Any] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[Any] )->List[str]: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from collections import namedtuple __A : Any = namedtuple("from_to", "from_ to") __A : Tuple = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0454, 264.172), "cubicyard": from_to(0.7_6455, 1.3_0795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.0_0023_6588, 4226.75), } def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ''', '''.join(lowercase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ''', '''.join(lowercase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
0
from collections.abc import Callable class _a : """simple docstring""" def __init__( self : List[Any] , __UpperCamelCase : Callable | None = None )->None: _UpperCAmelCase = [] # Stores indexes of each item for supporting updates and deletion. _UpperCAmelCase = {} # Stores current size of heap. _UpperCAmelCase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _UpperCAmelCase = key or (lambda __UpperCamelCase : x) def lowercase__ ( self : Any , __UpperCamelCase : int )->int | None: return int((i - 1) / 2 ) if i > 0 else None def lowercase__ ( self : Optional[int] , __UpperCamelCase : int )->int | None: _UpperCAmelCase = int(2 * i + 1 ) return left if 0 < left < self.size else None def lowercase__ ( self : Tuple , __UpperCamelCase : int )->int | None: _UpperCAmelCase = int(2 * i + 2 ) return right if 0 < right < self.size else None def lowercase__ ( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : int )->None: _UpperCAmelCase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _UpperCAmelCase = self.arr[j], self.arr[i] def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int )->bool: return self.arr[i][1] < self.arr[j][1] def lowercase__ ( self : Dict , __UpperCamelCase : int )->int: _UpperCAmelCase = self._left(__UpperCamelCase ) _UpperCAmelCase = self._right(__UpperCamelCase ) _UpperCAmelCase = i if left is not None and not self._cmp(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = left if right is not None and not self._cmp(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = right return valid_parent def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->None: _UpperCAmelCase = self._parent(__UpperCamelCase ) while parent is not None and not self._cmp(__UpperCamelCase , __UpperCamelCase ): self._swap(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = parent, self._parent(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : int )->None: _UpperCAmelCase = self._get_valid_parent(__UpperCamelCase ) while valid_parent != index: self._swap(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = valid_parent, self._get_valid_parent(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : int )->None: if item not in self.pos_map: return _UpperCAmelCase = self.pos_map[item] _UpperCAmelCase = [item, self.key(__UpperCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__UpperCamelCase ) self._heapify_down(__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : int )->None: if item not in self.pos_map: return _UpperCAmelCase = self.pos_map[item] del self.pos_map[item] _UpperCAmelCase = self.arr[self.size - 1] _UpperCAmelCase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__UpperCamelCase ) self._heapify_down(__UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : int , __UpperCamelCase : int )->None: _UpperCAmelCase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__UpperCamelCase )] ) else: _UpperCAmelCase = [item, self.key(__UpperCamelCase )] _UpperCAmelCase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def lowercase__ ( self : str )->tuple | None: return self.arr[0] if self.size else None def lowercase__ ( self : Optional[Any] )->tuple | None: _UpperCAmelCase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowercase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = args.log_outputs _UpperCAmelCase = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric _UpperCAmelCase = load_metric('''wer''' ) _UpperCAmelCase = load_metric('''cer''' ) # compute metrics _UpperCAmelCase = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) _UpperCAmelCase = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results _UpperCAmelCase = f'WER: {wer_result}\nCER: {cer_result}' print(a_ ) with open(f'{dataset_id}_eval_results.txt' , '''w''' ) as f: f.write(a_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _UpperCAmelCase = f'log_{dataset_id}_predictions.txt' _UpperCAmelCase = f'log_{dataset_id}_targets.txt' with open(a_ , '''w''' ) as p, open(a_ , '''w''' ) as t: # mapping function to write output def write_to_file(_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): p.write(f'{i}' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f'{i}' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(a_ , with_indices=a_ ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _UpperCAmelCase = re.sub(a_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _UpperCAmelCase = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: _UpperCAmelCase = ''' '''.join(text.split(a_ ) ) return text def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=a_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(args.model_id ) _UpperCAmelCase = feature_extractor.sampling_rate # resample audio _UpperCAmelCase = dataset.cast_column('''audio''' , Audio(sampling_rate=a_ ) ) # load eval pipeline if args.device is None: _UpperCAmelCase = 0 if torch.cuda.is_available() else -1 _UpperCAmelCase = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_SCREAMING_SNAKE_CASE : Optional[int] ): _UpperCAmelCase = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _UpperCAmelCase = prediction['''text'''] _UpperCAmelCase = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples _UpperCAmelCase = dataset.map(a_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(a_ , a_ ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) __A : List[Any] = parser.parse_args() main(args)
364
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __A : Union[str, Any] = argparse.ArgumentParser("Stable Diffusion script with intel optimization", add_help=False) parser.add_argument("--dpm", action="store_true", help="Enable DPMSolver or not") parser.add_argument("--steps", default=None, type=int, help="Num inference steps") __A : List[Any] = parser.parse_args() __A : List[str] = "cpu" __A : Dict = "a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings" __A : int = "path-to-your-trained-model" __A : List[Any] = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __A : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __A : List[str] = pipe.to(device) # to channels last __A : List[Any] = pipe.unet.to(memory_format=torch.channels_last) __A : Dict = pipe.vae.to(memory_format=torch.channels_last) __A : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __A : str = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __A : Union[str, Any] = torch.randn(2, 4, 64, 64) __A : List[Any] = torch.rand(1) * 999 __A : str = torch.randn(2, 77, 768) __A : str = (sample, timestep, encoder_hidden_status) try: __A : Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __A : Optional[Any] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __A : Any = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __A : List[Any] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __A : Dict = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __A : Dict = 666 __A : Tuple = torch.Generator(device).manual_seed(seed) __A : List[str] = {"generator": generator} if args.steps is not None: __A : Union[str, Any] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __A : Dict = pipe(prompt, **generate_kwargs).images[0] # save image image.save("generated.png")
365
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) __A : Dict = logging.getLogger(__name__) if __name__ == "__main__": __A : str = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30522, type=int) __A : Dict = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: __A : List[str] = pickle.load(fp) logger.info("Counting occurrences for MLM.") __A : Dict = Counter() for tk_ids in data: counter.update(tk_ids) __A : Any = [0] * args.vocab_size for k, v in counter.items(): __A : Optional[Any] = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any]=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[str]=9_9 , __UpperCamelCase : int=3_2 , __UpperCamelCase : str=5 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Any=3_7 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : str=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : int=2 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : List[str]=None , )->Union[str, Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : int )->str: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowercase__ ( self : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict )->str: _UpperCAmelCase = DistilBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] )->Dict: _UpperCAmelCase = DistilBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Optional[Any]: _UpperCAmelCase = DistilBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : str )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = DistilBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->List[str]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = DistilBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : List[str] )->Optional[int]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = DistilBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = self.prepare_config_and_inputs() (_UpperCAmelCase) = config_and_inputs _UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase__ = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def lowercase__ ( self : Tuple )->List[str]: _UpperCAmelCase = DistilBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def lowercase__ ( self : Union[str, Any] )->Any: self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def lowercase__ ( self : Tuple )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def lowercase__ ( self : Dict )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def lowercase__ ( self : Tuple )->List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) @slow def lowercase__ ( self : Optional[Any] )->str: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = DistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def lowercase__ ( self : Optional[int] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCAmelCase = True _UpperCAmelCase = model_class(config=lowerCAmelCase__ ) _UpperCAmelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , '''traced_model.pt''' ) ) _UpperCAmelCase = torch.jit.load(os.path.join(lowerCAmelCase__ , '''traced_model.pt''' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['''input_ids'''].to(lowerCAmelCase__ ) , inputs_dict['''attention_mask'''].to(lowerCAmelCase__ ) ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Optional[Any]: _UpperCAmelCase = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _UpperCAmelCase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCAmelCase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
367
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from __future__ import annotations __A : Optional[int] = list[tuple[int, int]] __A : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : Tuple = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _a : """simple docstring""" def __init__( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , )->List[str]: _UpperCAmelCase = pos_x _UpperCAmelCase = pos_y _UpperCAmelCase = (pos_y, pos_x) _UpperCAmelCase = goal_x _UpperCAmelCase = goal_y _UpperCAmelCase = g_cost _UpperCAmelCase = parent _UpperCAmelCase = self.calculate_heuristic() def lowercase__ ( self : int )->float: _UpperCAmelCase = abs(self.pos_x - self.goal_x ) _UpperCAmelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : List[Any] , __UpperCamelCase : str )->bool: return self.f_cost < other.f_cost class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] )->List[str]: _UpperCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [self.start] _UpperCAmelCase = [] _UpperCAmelCase = False def lowercase__ ( self : Any )->Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _UpperCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _UpperCAmelCase = True return self.retrace_path(_SCREAMING_SNAKE_CASE ) self.closed_nodes.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.get_successors(_SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: # retrieve the best current path _UpperCAmelCase = self.open_nodes.pop(self.open_nodes.index(_SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Any )->list[Node]: _UpperCAmelCase = [] for action in delta: _UpperCAmelCase = parent.pos_x + action[1] _UpperCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _SCREAMING_SNAKE_CASE , ) ) return successors def lowercase__ ( self : List[Any] , __UpperCamelCase : str )->Path: _UpperCAmelCase = node _UpperCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCAmelCase = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Tuple = (0, 0) __A : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') __A : Optional[Any] = GreedyBestFirst(init, goal) __A : str = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Optional[Any] = 2 for elem in grid: print(elem)
368
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _a ( a__): """simple docstring""" UpperCamelCase__ = 'philschmid/bart-large-cnn-samsum' UpperCamelCase__ = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) UpperCamelCase__ = 'summarizer' UpperCamelCase__ = AutoTokenizer UpperCamelCase__ = AutoModelForSeqaSeqLM UpperCamelCase__ = ['text'] UpperCamelCase__ = ['text'] def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] )->Tuple: return self.pre_processor(_lowerCamelCase , return_tensors='''pt''' , truncation=_lowerCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : str )->List[Any]: return self.model.generate(**_lowerCamelCase )[0] def lowercase__ ( self : str , __UpperCamelCase : str )->Tuple: return self.pre_processor.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )
369
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : List[str] = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class _a ( __UpperCamelCase): """simple docstring""" UpperCamelCase__ = "xlm" UpperCamelCase__ = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : List[Any] , __UpperCamelCase : Optional[Any]=3_0_1_4_5 , __UpperCamelCase : Optional[Any]=2_0_4_8 , __UpperCamelCase : Dict=1_2 , __UpperCamelCase : int=1_6 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : str=True , __UpperCamelCase : List[str]=False , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False , __UpperCamelCase : Dict=1 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : List[Any]=2_0_4_8**-0.5 , __UpperCamelCase : List[str]=1e-12 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : Dict=2 , __UpperCamelCase : List[str]=3 , __UpperCamelCase : Tuple=5 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Tuple="first" , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Dict=None , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Tuple=5 , __UpperCamelCase : List[str]=5 , __UpperCamelCase : Optional[Any]=0 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : Tuple , )->Optional[Any]: _UpperCAmelCase = vocab_size _UpperCAmelCase = emb_dim _UpperCAmelCase = n_layers _UpperCAmelCase = n_heads _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = gelu_activation _UpperCAmelCase = sinusoidal_embeddings _UpperCAmelCase = causal _UpperCAmelCase = asm _UpperCAmelCase = n_langs _UpperCAmelCase = use_lang_emb _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = bos_index _UpperCAmelCase = eos_index _UpperCAmelCase = pad_index _UpperCAmelCase = unk_index _UpperCAmelCase = mask_index _UpperCAmelCase = is_encoder _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = embed_init_std _UpperCAmelCase = init_std _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_proj_to_labels _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = start_n_top _UpperCAmelCase = end_n_top _UpperCAmelCase = mask_token_id _UpperCAmelCase = lang_id if "n_words" in kwargs: _UpperCAmelCase = kwargs["""n_words"""] super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) class _a ( __UpperCamelCase): """simple docstring""" @property def lowercase__ ( self : Dict )->Optional[int]: if self.task == "multiple-choice": _UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
370
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( __lowercase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = DDIMPipeline UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase__ = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } UpperCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ = False def lowercase__ ( self : Any )->List[Any]: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {'''unet''': unet, '''scheduler''': scheduler} return components def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int=0 )->List[Any]: if str(_a ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(_a ) else: _UpperCAmelCase = torch.Generator(device=_a ).manual_seed(_a ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = '''cpu''' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _UpperCAmelCase = self.get_dummy_inputs(_a ) _UpperCAmelCase = pipe(**_a ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3) ) _UpperCAmelCase = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def lowercase__ ( self : Any )->Tuple: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def lowercase__ ( self : Optional[Any] )->Union[str, Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def lowercase__ ( self : Any )->Dict: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def lowercase__ ( self : int )->Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int )->Optional[int]: _UpperCAmelCase = '''google/ddpm-cifar10-32''' _UpperCAmelCase = UNetaDModel.from_pretrained(_a ) _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = DDIMPipeline(unet=_a , scheduler=_a ) ddim.to(_a ) ddim.set_progress_bar_config(disable=_a ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ddim(generator=_a , eta=0.0 , output_type='''numpy''' ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[int] )->Optional[Any]: _UpperCAmelCase = '''google/ddpm-ema-bedroom-256''' _UpperCAmelCase = UNetaDModel.from_pretrained(_a ) _UpperCAmelCase = DDIMScheduler.from_pretrained(_a ) _UpperCAmelCase = DDIMPipeline(unet=_a , scheduler=_a ) ddpm.to(_a ) ddpm.set_progress_bar_config(disable=_a ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ddpm(generator=_a , output_type='''numpy''' ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) _UpperCAmelCase = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __A : Optional[int] = logging.get_logger(__name__) class _a ( lowercase__): """simple docstring""" def __init__( self : List[str] , *__UpperCamelCase : Dict , **__UpperCamelCase : Any )->int: warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
351
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : List[str] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_snake_case ) != count_coins(_snake_case ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_snake_case ) + abs(_snake_case ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_snake_case , _snake_case ) return get_distrib(_snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __A : List[Any] = 50000 __A : Dict = 5000 __A : Optional[Any] = os.path.split(__file__) __A : Dict = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' for i in range(_A ): _UpperCAmelCase = dataset[i] @get_duration def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' for i in range(0 , len(_A ) , _A ): _UpperCAmelCase = dataset[i : i + batch_size] @get_duration def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' with dataset.formatted_as(type=_A ): for i in range(_A ): _UpperCAmelCase = dataset[i] @get_duration def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' with dataset.formatted_as(type=_A ): for i in range(0 , _A , _A ): _UpperCAmelCase = dataset[i : i + batch_size] def lowercase ( ): '''simple docstring''' _UpperCAmelCase = {'num examples': SPEED_TEST_N_EXAMPLES} _UpperCAmelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] _UpperCAmelCase = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) _UpperCAmelCase = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) _UpperCAmelCase = generate_example_dataset( os.path.join(_A , '''dataset.arrow''' ) , _A , num_examples=_A , seq_shapes={'''list''': (100,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(_A ) ) _UpperCAmelCase = func(_A , **_A ) print('''shuffling dataset''' ) _UpperCAmelCase = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(_A ) ) _UpperCAmelCase = func( _A , **_A ) with open(_A , '''wb''' ) as f: f.write(json.dumps(_A ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
353
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True}) UpperCamelCase__ = Features({"""audio""": Audio()}) UpperCamelCase__ = Features({"""transcription""": Value("""string""")}) UpperCamelCase__ = """audio""" UpperCamelCase__ = """transcription""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Dict )->Optional[int]: if self.audio_column not in features: raise ValueError(F'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , __UpperCAmelCase ): raise ValueError(F'Column {self.audio_column} is not an Audio type.' ) _UpperCAmelCase = copy.deepcopy(self ) _UpperCAmelCase = self.input_schema.copy() _UpperCAmelCase = features[self.audio_column] _UpperCAmelCase = input_schema return task_template @property def lowercase__ ( self : Optional[Any] )->Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
354
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _a ( _UpperCAmelCase): """simple docstring""" def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def lowercase__ ( self : List[Any] )->Any: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def lowercase__ ( self : str )->List[Any]: with self.assertRaises(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''bool''' ) , type=Value('''int64''' ) ) ) def lowercase__ ( self : Dict )->Optional[Any]: _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowercase__ ( self : Union[str, Any] )->List[str]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _UpperCAmelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , type=Value('''int64''' ) ) ) def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) def lowercase__ ( self : Union[str, Any] )->Optional[int]: _UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def lowercase__ ( self : Optional[int] )->Optional[Any]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _UpperCAmelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , type=ArrayaD((1, 3) , '''int64''' ) ) ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def lowercase__ ( self : List[Any] )->Any: _UpperCAmelCase = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def lowercase__ ( self : Optional[int] )->List[str]: import PIL.Image _UpperCAmelCase = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''' , side_effect=SCREAMING_SNAKE_CASE_ ) as mock_cast_to_python_objects: _UpperCAmelCase = pa.array(TypedSequence([{'''path''': None, '''bytes''': B'''image_bytes'''}, pil_image] , type=Image() ) ) _UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' , SCREAMING_SNAKE_CASE_ ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = pa.BufferReader(snake_case_ ) if isinstance(snake_case_ , pa.Buffer ) else pa.memory_map(snake_case_ ) _UpperCAmelCase = pa.ipc.open_stream(snake_case_ ) _UpperCAmelCase = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) _UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=snake_case_ , features=snake_case_ ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) _UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pa.ipc.open_stream(snake_case_ ) _UpperCAmelCase = f.read_all() _UpperCAmelCase = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(snake_case_ ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ , writer_batch_size=snake_case_ , hash_salt='''split_name''' , check_duplicates=snake_case_ , ) as writer: with pytest.raises(snake_case_ ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2] ) _UpperCAmelCase = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ , writer_batch_size=snake_case_ , hash_salt='''split_name''' , check_duplicates=snake_case_ , ) as writer: with pytest.raises(snake_case_ ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=10 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=10 ) _UpperCAmelCase = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=snake_case_ , writer_batch_size=snake_case_ , hash_salt='''split_name''' , check_duplicates=snake_case_ , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2 ) _UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) _UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) _UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(snake_case_ ) if fields else None with ArrowWriter(stream=snake_case_ , schema=snake_case_ , writer_batch_size=snake_case_ ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) _UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowercase ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} _UpperCAmelCase = os.path.join(snake_case_ , '''test.arrow''' ) with ArrowWriter(path=snake_case_ , schema=pa.schema(snake_case_ ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) _UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(snake_case_ , metadata=writer._schema.metadata ) _check_output(snake_case_ , 1 ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if pa.types.is_list(snake_case_ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if isinstance(lst[0] , snake_case_ ): change_first_primitive_element_in_list(lst[0] , snake_case_ ) else: _UpperCAmelCase = value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence(snake_case_ , optimized_int_type=snake_case_ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = pa.array(OptimizedTypedSequence(snake_case_ , col=snake_case_ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _UpperCAmelCase = copy.deepcopy(snake_case_ ) _UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(snake_case_ , snake_case_ ) _UpperCAmelCase = pa.array(OptimizedTypedSequence(snake_case_ , col=snake_case_ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=snake_case_ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = """mock://dataset-train.arrow""" with ArrowWriter(path=snake_case_ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(snake_case_ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) _UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(snake_case_ ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter(stream=snake_case_ ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) _UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pq.read_table(snake_case_ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True] ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' import PIL.Image _UpperCAmelCase = str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(snake_case_ , format='''png''' ) _UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter( stream=snake_case_ , features=Features({'''image''': Image()} ) , embed_local_files=snake_case_ ) as writer: writer.write({'''image''': image_path} ) writer.finalize() _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pq.read_table(snake_case_ ) _UpperCAmelCase = pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , snake_case_ ) with open(snake_case_ , '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowercase ( ): '''simple docstring''' _UpperCAmelCase = pa.schema([pa.field('''col_1''' , pa.string() , nullable=snake_case_ )] ) _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter(stream=snake_case_ ) as writer: writer._build_writer(inferred_schema=snake_case_ ) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string() )] )
355
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __A : Dict = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) __A : Any = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) __A : str = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) __A : Optional[int] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) __A : Optional[Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) __A : Optional[int] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) __A : Tuple = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) _UpperCAmelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] _UpperCAmelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase ( _SCREAMING_SNAKE_CASE : int = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize('''hand, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , lowercase__ ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [PokerHand(lowercase__ ) for hand in SORTED_HANDS] _UpperCAmelCase = poker_hands.copy() shuffle(lowercase__ ) _UpperCAmelCase = chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase ( ): '''simple docstring''' _UpperCAmelCase = PokerHand('''2C 4S AS 3D 5C''' ) _UpperCAmelCase = True _UpperCAmelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase ( ): '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = os.path.abspath(os.path.dirname(lowercase__ ) ) _UpperCAmelCase = os.path.join(lowercase__ , '''poker_hands.txt''' ) with open(lowercase__ ) as file_hand: for line in file_hand: _UpperCAmelCase = line[:14].strip() _UpperCAmelCase = line[15:].strip() _UpperCAmelCase = PokerHand(lowercase__ ), PokerHand(lowercase__ ) _UpperCAmelCase = player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 376
356
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return abs(A__ ) if a == 0 else greatest_common_divisor(b % a , A__ ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. _UpperCAmelCase , _UpperCAmelCase = y, x % y return abs(A__ ) def lowercase ( ): '''simple docstring''' try: _UpperCAmelCase = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) _UpperCAmelCase = int(nums[0] ) _UpperCAmelCase = int(nums[1] ) print( f'greatest_common_divisor({num_a}, {num_a}) = ' f'{greatest_common_divisor(A__ , A__ )}' ) print(f'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(A__ , A__ )}' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
357
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
0
"""simple docstring""" import argparse import json import subprocess def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) _UpperCAmelCase = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) _UpperCAmelCase = output.stdout.decode('''utf-8''' ) _UpperCAmelCase = json.loads(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return values.split(''',''' ) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--target_runners", default=None, type=list_str, required=True, help="Comma-separated list of runners to check status.", ) parser.add_argument( "--token", default=None, type=str, required=True, help="A token that has actions:read permission." ) __A : int = parser.parse_args() get_runner_status(args.target_runners, args.token)
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_UpperCamelCase ) for _ in range(_UpperCamelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _UpperCAmelCase , _UpperCAmelCase = arr[i + 1], arr[i] return arr if __name__ == "__main__": __A : List[str] = list(range(10, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
359
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ['image_processor', 'tokenizer'] UpperCamelCase__ = 'CLIPImageProcessor' UpperCamelCase__ = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Dict , __UpperCamelCase : Dict=None , __UpperCamelCase : Any=None , **__UpperCamelCase : Tuple )->Union[str, Any]: _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) _UpperCAmelCase = kwargs.pop('''feature_extractor''' ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) def __call__( self : Tuple , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Optional[Any] )->Union[str, Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCAmelCase = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if images is not None: _UpperCAmelCase = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def lowercase__ ( self : List[Any] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[int] )->List[Any]: return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def lowercase__ ( self : List[Any] , *__UpperCamelCase : Any , **__UpperCamelCase : Optional[int] )->Optional[int]: return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def lowercase__ ( self : Any )->Dict: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : Any )->List[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class @property def lowercase__ ( self : Optional[Any] )->List[Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __lowerCAmelCase , ) return self.image_processor
360
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[int] = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from PIL import Image def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_SCREAMING_SNAKE_CASE : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(lowercase_ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 __A : Tuple = change_contrast(img, 170) cont_img.save("image_data/lena_high_contrast.png", format="png")
362
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
0
from collections.abc import Sequence def lowercase ( _SCREAMING_SNAKE_CASE : Sequence[int] | None = None ): '''simple docstring''' if nums is None or not nums: raise ValueError('''Input sequence should not be empty''' ) _UpperCAmelCase = nums[0] for i in range(1 , len(UpperCamelCase__ ) ): _UpperCAmelCase = nums[i] _UpperCAmelCase = max(UpperCamelCase__ , ans + num , UpperCamelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __A : Optional[Any] = int(input("Enter number of elements : ").strip()) __A : Optional[int] = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : """simple docstring""" def __init__( self : int , __UpperCamelCase : Optional[Any] = "cpu" , __UpperCamelCase : str = "openai/clip-vit-large-patch14" )->None: _UpperCAmelCase = device _UpperCAmelCase = CLIPTokenizerFast.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] _UpperCAmelCase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] _UpperCAmelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _UpperCAmelCase = torchvision.transforms.Resize(2_2_4 ) _UpperCAmelCase = torchvision.transforms.CenterCrop(2_2_4 ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.resize(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.center_crop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.normalize(_SCREAMING_SNAKE_CASE ) return images def __call__( self : Union[str, Any] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Union[str, Any]=None , **__UpperCamelCase : Optional[Any] )->int: _UpperCAmelCase = self.tokenizer(text=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.preprocess_img(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : Optional[int]=1_0 , __UpperCamelCase : Any=0.0_1 , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : str=False , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[int]="image" , __UpperCamelCase : str=True , __UpperCamelCase : int=False , __UpperCamelCase : str=False , __UpperCamelCase : List[str]=False , )->None: super().__init__() _UpperCAmelCase = None _UpperCAmelCase = device if device else get_device() if vqgan: _UpperCAmelCase = vqgan else: _UpperCAmelCase = load_vqgan(self.device , conf_path=_SCREAMING_SNAKE_CASE , ckpt_path=_SCREAMING_SNAKE_CASE ) self.vqgan.eval() if clip: _UpperCAmelCase = clip else: _UpperCAmelCase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) _UpperCAmelCase = ProcessorGradientFlow(device=self.device ) _UpperCAmelCase = iterations _UpperCAmelCase = lr _UpperCAmelCase = log _UpperCAmelCase = make_grid _UpperCAmelCase = return_val _UpperCAmelCase = quantize _UpperCAmelCase = self.vqgan.decoder.z_shape def lowercase__ ( self : int , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=5 , __UpperCamelCase : Optional[int]=True )->List[str]: _UpperCAmelCase = [] if output_path is None: _UpperCAmelCase = "./animation.gif" if input_path is None: _UpperCAmelCase = self.save_path _UpperCAmelCase = sorted(glob(input_path + '''/*''' ) ) if not len(_SCREAMING_SNAKE_CASE ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(_SCREAMING_SNAKE_CASE ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) _UpperCAmelCase = total_duration / len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [frame_duration] * len(_SCREAMING_SNAKE_CASE ) if extend_frames: _UpperCAmelCase = 1.5 _UpperCAmelCase = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(_SCREAMING_SNAKE_CASE ) ) imageio.mimsave(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , duration=_SCREAMING_SNAKE_CASE ) print(F'gif saved to {output_path}' ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Any=None )->Any: if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError _UpperCAmelCase = preprocess(Image.open(_SCREAMING_SNAKE_CASE ) , target_image_size=2_5_6 ).to(self.device ) _UpperCAmelCase = preprocess_vqgan(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.vqgan.encode(_SCREAMING_SNAKE_CASE ) return z def lowercase__ ( self : Tuple , __UpperCamelCase : str )->Tuple: _UpperCAmelCase = self.latent.detach().requires_grad_() _UpperCAmelCase = base_latent + transform_vector if self.quantize: _UpperCAmelCase = self.vqgan.quantize(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = trans_latent return self.vqgan.decode(_SCREAMING_SNAKE_CASE ) def lowercase__ ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple=None )->Any: _UpperCAmelCase = self.clip_preprocessor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.clip(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = clip_outputs.logits_per_image if weights is not None: _UpperCAmelCase = similarity_logits * weights return similarity_logits.sum() def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] )->Optional[Any]: _UpperCAmelCase = self._get_clip_similarity(pos_prompts['''prompts'''] , _SCREAMING_SNAKE_CASE , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: _UpperCAmelCase = self._get_clip_similarity(neg_prompts['''prompts'''] , _SCREAMING_SNAKE_CASE , weights=neg_prompts['''weights'''] ) else: _UpperCAmelCase = torch.tensor([1] , device=self.device ) _UpperCAmelCase = -torch.log(_SCREAMING_SNAKE_CASE ) + torch.log(_SCREAMING_SNAKE_CASE ) return loss def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : int )->str: _UpperCAmelCase = torch.randn_like(self.latent , requires_grad=_SCREAMING_SNAKE_CASE , device=self.device ) _UpperCAmelCase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _UpperCAmelCase = self._add_vector(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = loop_post_process(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._get_CLIP_loss(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print('''CLIP loss''' , _SCREAMING_SNAKE_CASE ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int )->Tuple: wandb.init(reinit=_SCREAMING_SNAKE_CASE , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: _UpperCAmelCase = Image.open(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = image.resize((2_5_6, 2_5_6) ) wandb.log('''Original Image''' , wandb.Image(_SCREAMING_SNAKE_CASE ) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : str )->Optional[int]: if not prompts: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(_SCREAMING_SNAKE_CASE , (tuple, list) ): _UpperCAmelCase = prompt[0] _UpperCAmelCase = float(prompt[1] ) elif ":" in prompt: _UpperCAmelCase = prompt.split(''':''' ) _UpperCAmelCase = float(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = prompt _UpperCAmelCase = 1.0 processed_prompts.append(_SCREAMING_SNAKE_CASE ) weights.append(_SCREAMING_SNAKE_CASE ) return { "prompts": processed_prompts, "weights": torch.tensor(_SCREAMING_SNAKE_CASE , device=self.device ), } def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : str=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Any=False , __UpperCamelCase : Tuple=True , __UpperCamelCase : str=True , __UpperCamelCase : Optional[int]=None , )->Optional[Any]: if image_path: _UpperCAmelCase = self._get_latent(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert pos_prompts, "You must provide at least one positive prompt." _UpperCAmelCase = self.process_prompts(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.process_prompts(_SCREAMING_SNAKE_CASE ) if save_final and save_path is None: _UpperCAmelCase = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = save_path + "_" + get_timestamp() os.makedirs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = save_path _UpperCAmelCase = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = loop_post_process(_SCREAMING_SNAKE_CASE ) for iter, transformed_img in enumerate(self._optimize_CLIP(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): if show_intermediate: show_pil(_SCREAMING_SNAKE_CASE ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}.png' ) ) if self.log: wandb.log({'''Image''': wandb.Image(_SCREAMING_SNAKE_CASE )} ) if show_final: show_pil(_SCREAMING_SNAKE_CASE ) if save_final: transformed_img.save(os.path.join(self.save_path , F'iter_{iter:03d}_final.png' ) )
364
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __A : Optional[int] = logging.get_logger(__name__) @dataclass class _a ( snake_case__): """simple docstring""" UpperCamelCase__ = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : List[Any] , **__UpperCamelCase : Dict )->str: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _UpperCAmelCase = deprecated_arg[3:] setattr(self , UpperCAmelCase_ , not kwargs.pop(UpperCAmelCase_ ) ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) _UpperCAmelCase = kwargs.pop('''torchscript''' , self.torchscript ) _UpperCAmelCase = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) _UpperCAmelCase = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**UpperCAmelCase_ ) UpperCamelCase__ = field(default=snake_case__ , metadata={"""help""": """Trace the models using torchscript"""}) UpperCamelCase__ = field(default=snake_case__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""}) UpperCamelCase__ = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def lowercase__ ( self : List[Any] )->Tuple: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: _UpperCAmelCase = torch.device('''cpu''' ) _UpperCAmelCase = 0 elif is_torch_tpu_available(): _UpperCAmelCase = xm.xla_device() _UpperCAmelCase = 0 else: _UpperCAmelCase = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) _UpperCAmelCase = torch.cuda.device_count() return device, n_gpu @property def lowercase__ ( self : Optional[Any] )->int: return is_torch_tpu_available() and self.tpu @property def lowercase__ ( self : Optional[Any] )->Dict: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowercase__ ( self : str )->Optional[int]: requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def lowercase__ ( self : Optional[int] )->List[Any]: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def lowercase__ ( self : Dict )->Any: return self.n_gpu > 0
365
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _a ( lowerCamelCase_): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] = None , __UpperCamelCase : Tuple = None , __UpperCamelCase : Dict = False , __UpperCamelCase : Any = False , __UpperCamelCase : Tuple = None , __UpperCamelCase : Dict = None , **__UpperCamelCase : int , )->Optional[int]: super().__init__( features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase = Generator( cache_dir=lowerCAmelCase__ , features=lowerCAmelCase__ , generator=lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) def lowercase__ ( self : Tuple )->Any: # Build iterable dataset if self.streaming: _UpperCAmelCase = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) _UpperCAmelCase = self.builder.as_dataset( split='''train''' , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _a ( UpperCamelCase__): """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[Any] = False , __UpperCamelCase : Optional[int] = False , __UpperCamelCase : Optional[Any] = None , **__UpperCamelCase : List[Any] , )->Dict: _UpperCAmelCase = path_or_paths _UpperCAmelCase = split if split or isinstance(__lowerCamelCase , __lowerCamelCase ) else '''train''' _UpperCAmelCase = features _UpperCAmelCase = cache_dir _UpperCAmelCase = keep_in_memory _UpperCAmelCase = streaming _UpperCAmelCase = num_proc _UpperCAmelCase = kwargs @abstractmethod def lowercase__ ( self : Union[str, Any] )->List[str]: pass class _a ( UpperCamelCase__): """simple docstring""" def __init__( self : int , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : List[Any] = None , __UpperCamelCase : Optional[int] = False , __UpperCamelCase : Optional[int] = False , __UpperCamelCase : Dict = None , **__UpperCamelCase : int , )->List[str]: _UpperCAmelCase = features _UpperCAmelCase = cache_dir _UpperCAmelCase = keep_in_memory _UpperCAmelCase = streaming _UpperCAmelCase = num_proc _UpperCAmelCase = kwargs @abstractmethod def lowercase__ ( self : str )->Optional[int]: pass
367
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if not is_accelerate_available(): return method _UpperCAmelCase = version.parse(accelerate.__version__ ).base_version if version.parse(__lowerCamelCase ) < version.parse('''0.17.0''' ): return method def wrapper(self : int , *_SCREAMING_SNAKE_CASE : int , **_SCREAMING_SNAKE_CASE : str ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *__lowerCamelCase , **__lowerCamelCase ) return wrapper
368
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
0
"""simple docstring""" __A : Tuple = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} __A : List[Any] = ["a", "b", "c", "d", "e"] def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = start # add current to visited visited.append(_snake_case ) _UpperCAmelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _UpperCAmelCase = topological_sort(_snake_case , _snake_case , _snake_case ) # if all neighbors visited add current to sort sort.append(_snake_case ) # if all vertices haven't been visited select a new one to visit if len(_snake_case ) != len(_snake_case ): for vertice in vertices: if vertice not in visited: _UpperCAmelCase = topological_sort(_snake_case , _snake_case , _snake_case ) # return sort return sort if __name__ == "__main__": __A : str = topological_sort("a", [], []) print(sort)
369
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
0
"""simple docstring""" import re def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if len(re.findall('''[ATCG]''' , _SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
0
"""simple docstring""" from math import factorial __A : Union[str, Any] = {str(digit): factorial(digit) for digit in range(10)} def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCAmelCase ) ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple = 60 , _SCREAMING_SNAKE_CASE : Dict = 100_0000 ): '''simple docstring''' if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length _UpperCAmelCase = 0 # the cached sizes of the previous chains _UpperCAmelCase = {} for start_chain_element in range(1 , _lowerCAmelCase ): # The temporary set will contain the elements of the chain _UpperCAmelCase = set() _UpperCAmelCase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _UpperCAmelCase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCAmelCase ) chain_set_length += 1 _UpperCAmelCase = digit_factorial_sum(_lowerCAmelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _UpperCAmelCase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( __lowerCamelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = DanceDiffusionPipeline UpperCamelCase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS UpperCamelCase__ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } UpperCamelCase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Optional[int] )->Optional[Any]: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__lowercase , use_timestep_embedding=__lowercase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) _UpperCAmelCase = IPNDMScheduler() _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def lowercase__ ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple=0 )->int: if str(__lowercase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(__lowercase ) else: _UpperCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) _UpperCAmelCase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = DanceDiffusionPipeline(**__lowercase ) _UpperCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) _UpperCAmelCase = self.get_dummy_inputs(__lowercase ) _UpperCAmelCase = pipe(**__lowercase ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCAmelCase = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase__ ( self : List[Any] )->Tuple: return super().test_save_load_local() @skip_mps def lowercase__ ( self : List[Any] )->Union[str, Any]: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowercase__ ( self : Union[str, Any] )->Union[str, Any]: return super().test_save_load_optional_components() @skip_mps def lowercase__ ( self : Optional[int] )->Optional[Any]: return super().test_attention_slicing_forward_pass() def lowercase__ ( self : Union[str, Any] )->Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Optional[int] )->str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str )->Union[str, Any]: _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) _UpperCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=__lowercase , num_inference_steps=1_0_0 , audio_length_in_s=4.0_9_6 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[int] )->Optional[int]: _UpperCAmelCase = torch_device _UpperCAmelCase = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(generator=__lowercase , num_inference_steps=1_0_0 , audio_length_in_s=4.0_9_6 ) _UpperCAmelCase = output.audios _UpperCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCAmelCase = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowercase ( ): '''simple docstring''' _UpperCAmelCase = ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _UpperCAmelCase = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(_UpperCAmelCase ) DownloadCommand.register_subcommand(_UpperCAmelCase ) EnvironmentCommand.register_subcommand(_UpperCAmelCase ) RunCommand.register_subcommand(_UpperCAmelCase ) ServeCommand.register_subcommand(_UpperCAmelCase ) UserCommands.register_subcommand(_UpperCAmelCase ) AddNewModelCommand.register_subcommand(_UpperCAmelCase ) AddNewModelLikeCommand.register_subcommand(_UpperCAmelCase ) LfsCommands.register_subcommand(_UpperCAmelCase ) PTtoTFCommand.register_subcommand(_UpperCAmelCase ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(_UpperCAmelCase , '''func''' ): parser.print_help() exit(1 ) # Run _UpperCAmelCase = args.func(_UpperCAmelCase ) service.run() if __name__ == "__main__": main()
351
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def lowercase__ ( *__UpperCamelCase : Tuple , **__UpperCamelCase : Tuple )->Optional[Any]: pass @is_pipeline_test @require_vision class _a ( unittest.TestCase): """simple docstring""" @require_torch def lowercase__ ( self : Union[str, Any] )->Optional[int]: _UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], ] , ) @require_tf def lowercase__ ( self : List[Any] )->List[Any]: _UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, {'''score''': 0.3_3_3, '''label''': ANY(__SCREAMING_SNAKE_CASE )}, ], ] , ) @slow @require_torch def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCAmelCase = image_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
352
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class _a ( snake_case_): """simple docstring""" def __init__( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[Any] = None , __UpperCamelCase : int = True , __UpperCamelCase : Dict = None , __UpperCamelCase : Any = False , __UpperCamelCase : Dict = None , __UpperCamelCase : List[str] = True , __UpperCamelCase : int = "arrow" , **__UpperCamelCase : str , )->Optional[Any]: super().__init__( split=__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase , streaming=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = load_from_cache_file _UpperCAmelCase = file_format _UpperCAmelCase = Spark( df=__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase , working_dir=__UpperCamelCase , **__UpperCamelCase , ) def lowercase__ ( self : int )->Dict: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
353
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' while a != 0: _UpperCAmelCase , _UpperCAmelCase = b % a, a return b def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if gcd(_lowerCAmelCase , _lowerCAmelCase ) != 1: _UpperCAmelCase = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1, 0, a _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0, 1, m while va != 0: _UpperCAmelCase = ua // va _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
354
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
0