code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __A : List[Any] = logging.get_logger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : List[Any]=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_A ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) UpperCamelCase__ = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""}) UpperCamelCase__ = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) UpperCamelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) UpperCamelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) UpperCamelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""}) UpperCamelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Use FP16 to accelerate inference."""}) UpperCamelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Benchmark training of model"""}) UpperCamelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Verbose memory tracing"""}) UpperCamelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) UpperCamelCase__ = field( default=lowerCAmelCase__ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) UpperCamelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Trace memory line by line"""}) UpperCamelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Save result to a CSV file"""}) UpperCamelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Save all print statements in a log file"""}) UpperCamelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Whether to print environment information"""}) UpperCamelCase__ = field( default=lowerCAmelCase__ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) UpperCamelCase__ = field( default=F"inference_time_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) UpperCamelCase__ = field( default=F"inference_memory_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) UpperCamelCase__ = field( default=F"train_time_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) UpperCamelCase__ = field( default=F"train_memory_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) UpperCamelCase__ = field( default=F"env_info_{round(time())}.csv" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) UpperCamelCase__ = field( default=F"log_{round(time())}.csv" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) UpperCamelCase__ = field(default=3 , metadata={"""help""": """Times an experiment will be run."""}) UpperCamelCase__ = field( default=lowerCAmelCase__ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def lowercase__ ( self : Union[str, Any] )->Union[str, Any]: warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _SCREAMING_SNAKE_CASE , ) def lowercase__ ( self : List[Any] )->int: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowercase__ ( self : Union[str, Any] )->List[str]: if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def lowercase__ ( self : Optional[Any] )->Union[str, Any]: if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
355
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
0
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _a ( snake_case_): """simple docstring""" UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def lowercase__ ( self : List[str] )->Any: _UpperCAmelCase = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) _UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
356
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __A : Any = logging.get_logger(__name__) __A : Dict[Optional[str], Type[Formatter]] = {} __A : Dict[Optional[str], str] = {} __A : Dict[Optional[str], Exception] = {} def lowercase ( _SCREAMING_SNAKE_CASE : type , _SCREAMING_SNAKE_CASE : Optional[str] , _SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ): '''simple docstring''' _UpperCAmelCase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) _UpperCAmelCase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) _UpperCAmelCase = format_type def lowercase ( _SCREAMING_SNAKE_CASE : Exception , _SCREAMING_SNAKE_CASE : Optional[str] , _SCREAMING_SNAKE_CASE : Optional[List[str]] = None ): '''simple docstring''' _UpperCAmelCase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): _UpperCAmelCase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["python"]) _register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"]) _register_formatter(NumpyFormatter, "numpy", aliases=["np"]) _register_formatter(PandasFormatter, "pandas", aliases=["pd"]) _register_formatter(CustomFormatter, "custom") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"]) else: __A : List[str] = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.") _register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, "tensorflow", aliases=["tf"]) else: __A : List[Any] = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.") _register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, "jax", aliases=[]) else: __A : List[str] = ValueError("JAX needs to be installed to be able to return JAX arrays.") _register_unavailable_formatter(_jax_error, "jax", aliases=[]) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[str] ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowercase ( _SCREAMING_SNAKE_CASE : Optional[str] , **_SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = get_format_type_from_alias(_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
357
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
0
"""simple docstring""" from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __A : Tuple = logging.get_logger(__name__) __A : Tuple = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class _a ( lowerCamelCase__): """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : int=None , __UpperCamelCase : Any=None , *__UpperCamelCase : Dict , **__UpperCamelCase : List[Any] )->str: super().__init__(*lowercase__ , **lowercase__ ) if config is None: assert isinstance(self.model , lowercase__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) _UpperCAmelCase = self.model.config else: _UpperCAmelCase = config _UpperCAmelCase = data_args _UpperCAmelCase = self.config.tgt_vocab_size if isinstance(self.config , lowercase__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ''' padding..''' ) if self.args.label_smoothing == 0: _UpperCAmelCase = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss _UpperCAmelCase = label_smoothed_nll_loss def lowercase__ ( self : int , __UpperCamelCase : int )->List[Any]: if self.optimizer is None: _UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] _UpperCAmelCase = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] _UpperCAmelCase = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: _UpperCAmelCase = Adafactor _UpperCAmelCase = {'''scale_parameter''': False, '''relative_step''': False} else: _UpperCAmelCase = AdamW _UpperCAmelCase = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } _UpperCAmelCase = self.args.learning_rate if self.sharded_ddp: _UpperCAmelCase = OSS( params=lowercase__ , optim=lowercase__ , **lowercase__ , ) else: _UpperCAmelCase = optimizer_cls(lowercase__ , **lowercase__ ) if self.lr_scheduler is None: _UpperCAmelCase = self._get_lr_scheduler(lowercase__ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowercase__ ( self : Tuple , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": _UpperCAmelCase = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": _UpperCAmelCase = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: _UpperCAmelCase = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowercase__ ) return scheduler def lowercase__ ( self : List[Any] )->Dict: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[str] )->List[Any]: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token _UpperCAmelCase = model(**lowercase__ , use_cache=lowercase__ )[0] _UpperCAmelCase = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models _UpperCAmelCase , _UpperCAmelCase = model(**lowercase__ , labels=lowercase__ , use_cache=lowercase__ )[:2] else: # compute label smoothed loss _UpperCAmelCase = model(**lowercase__ , use_cache=lowercase__ )[0] _UpperCAmelCase = torch.nn.functional.log_softmax(lowercase__ , dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = self.loss_fn(lowercase__ , lowercase__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = inputs.pop('''labels''' ) _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) return loss def lowercase__ ( self : int , __UpperCamelCase : nn.Module , __UpperCamelCase : Dict[str, Union[torch.Tensor, Any]] , __UpperCamelCase : bool , __UpperCamelCase : Optional[List[str]] = None , )->Union[str, Any]: _UpperCAmelCase = self._prepare_inputs(lowercase__ ) _UpperCAmelCase = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: _UpperCAmelCase = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **lowercase__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs['''max_length'''] ) _UpperCAmelCase = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data _UpperCAmelCase , _UpperCAmelCase = self._compute_loss(lowercase__ , lowercase__ , lowercase__ ) _UpperCAmelCase = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) _UpperCAmelCase = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: _UpperCAmelCase = self._pad_tensors_to_max_len(lowercase__ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] )->Tuple: # If PAD token is not defined at least EOS token has to be defined _UpperCAmelCase = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F' padded to `max_length`={max_length}' ) _UpperCAmelCase = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) _UpperCAmelCase = tensor return padded_tensor
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __A : Any = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE__): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : int = 8 , **__UpperCamelCase : Optional[int] , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_pad _UpperCAmelCase = pad_size def lowercase__ ( self : List[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : int , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None )->List[Any]: _UpperCAmelCase = get_image_size(__UpperCamelCase ) _UpperCAmelCase = (old_height // size + 1) * size - old_height _UpperCAmelCase = (old_width // size + 1) * size - old_width return pad(__UpperCamelCase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : Any , )->List[Any]: _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_pad if do_pad is not None else self.do_pad _UpperCAmelCase = pad_size if pad_size is not None else self.pad_size _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_pad: _UpperCAmelCase = [self.pad(__UpperCamelCase , size=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
359
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : str = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ["ConvNextFeatureExtractor"] __A : Union[str, Any] = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __A : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
360
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : int = logging.get_logger(__name__) __A : Any = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class _a ( __lowercase): """simple docstring""" UpperCamelCase__ = '''fnet''' def __init__( self : Any , __UpperCamelCase : Dict=3_2_0_0_0 , __UpperCamelCase : Dict=7_6_8 , __UpperCamelCase : List[Any]=1_2 , __UpperCamelCase : Tuple=3_0_7_2 , __UpperCamelCase : Union[str, Any]="gelu_new" , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=5_1_2 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Union[str, Any]=1e-12 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[str]=5_1_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : Dict=2 , **__UpperCamelCase : int , )->Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = type_vocab_size _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = use_tpu_fourier_optimizations _UpperCAmelCase = tpu_short_seq_length
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from __future__ import annotations import time import numpy as np __A : Optional[Any] = [8, 5, 9, 7] __A : int = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __A : str = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _a : """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , )->None: _UpperCAmelCase = claim_vector _UpperCAmelCase = allocated_resources_table _UpperCAmelCase = maximum_claim_table def lowercase__ ( self : List[str] )->list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowercase__ ( self : Any )->list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowercase__ ( self : Optional[Any] )->list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowercase__ ( self : int )->dict[int, list[int]]: return {self.__need().index(_a ): i for i in self.__need()} def lowercase__ ( self : Dict , **__UpperCamelCase : Tuple )->None: _UpperCAmelCase = self.__need() _UpperCAmelCase = self.__allocated_resources_table _UpperCAmelCase = self.__available_resources() _UpperCAmelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 5_0 + '''\n''' ) while need_list: _UpperCAmelCase = False for each_need in need_list: _UpperCAmelCase = True for index, need in enumerate(_a ): if need > available_resources[index]: _UpperCAmelCase = False break if execution: _UpperCAmelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _UpperCAmelCase = original_need_index print(F'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(_a ) # update available/freed resources stack _UpperCAmelCase = np.array(_a ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(_a ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def lowercase__ ( self : Dict )->Dict: print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F'P{self.__allocated_resources_table.index(_a ) + 1}' + ''' '''.join(F'{it:>8}' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F'P{self.__maximum_claim_table.index(_a ) + 1}' + ''' '''.join(F'{it:>8}' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(_a ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(_a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __A : int = logging.get_logger(__name__) class _a ( _A): """simple docstring""" def __init__( self : Union[str, Any] , *__UpperCamelCase : Any , **__UpperCamelCase : str )->Optional[Any]: warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _a ( __SCREAMING_SNAKE_CASE): """simple docstring""" UpperCamelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
364
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = 10 _UpperCAmelCase = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) _UpperCAmelCase = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(_a ) ), } , features=_a , ) return dataset @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=_a ) return filename # FILE_CONTENT + files __A : int = "\\n Text data.\n Second line of data." @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """file.txt""" _UpperCAmelCase = FILE_CONTENT with open(_a , '''w''' ) as f: f.write(_a ) return filename @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' import bza _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """file.txt.bz2""" _UpperCAmelCase = bytes(_a , '''utf-8''' ) with bza.open(_a , '''wb''' ) as f: f.write(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' import gzip _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) _UpperCAmelCase = bytes(_a , '''utf-8''' ) with gzip.open(_a , '''wb''' ) as f: f.write(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """file.txt.lz4""" _UpperCAmelCase = bytes(_a , '''utf-8''' ) with lza.frame.open(_a , '''wb''' ) as f: f.write(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """file.txt.7z""" with pyazr.SevenZipFile(_a , '''w''' ) as archive: archive.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' import tarfile _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """file.txt.tar""" with tarfile.TarFile(_a , '''w''' ) as f: f.add(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' import lzma _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """file.txt.xz""" _UpperCAmelCase = bytes(_a , '''utf-8''' ) with lzma.open(_a , '''wb''' ) as f: f.write(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' import zipfile _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """file.txt.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """file.txt.zst""" _UpperCAmelCase = bytes(_a , '''utf-8''' ) with zstd.open(_a , '''wb''' ) as f: f.write(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """file.xml""" _UpperCAmelCase = textwrap.dedent( '''\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(_a , '''w''' ) as f: f.write(_a ) return filename __A : List[str] = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] __A : str = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] __A : Union[str, Any] = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } __A : str = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] __A : List[str] = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='''session''' ) def lowercase ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = datasets.Dataset.from_dict(_a ) _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(_a ) ) as con: _UpperCAmelCase = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(_a , '''w''' , newline='''''' ) as f: _UpperCAmelCase = csv.DictWriter(_a , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(_a , '''w''' , newline='''''' ) as f: _UpperCAmelCase = csv.DictWriter(_a , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' import bza _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset.csv.bz2""" with open(_a , '''rb''' ) as f: _UpperCAmelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(_a , '''wb''' ) as f: f.write(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset.csv.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.basename(_a ) ) f.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset.csv.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(_a , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.join('''main_dir''' , os.path.basename(_a ) ) ) f.write(_a , arcname=os.path.join('''main_dir''' , os.path.basename(_a ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) _UpperCAmelCase = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(_a , '''wb''' ) as f: _UpperCAmelCase = pq.ParquetWriter(_a , schema=_a ) _UpperCAmelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_a ) )] for k in DATA[0]} , schema=_a ) writer.write_table(_a ) writer.close() return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) _UpperCAmelCase = {"""data""": DATA} with open(_a , '''w''' ) as f: json.dump(_a , _a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) _UpperCAmelCase = {"""data""": DATA_DICT_OF_LISTS} with open(_a , '''w''' ) as f: json.dump(_a , _a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(_a , '''w''' ) as f: for item in DATA: f.write(json.dumps(_a ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(_a , '''w''' ) as f: for item in DATA: f.write(json.dumps(_a ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(_a , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(_a ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(_a , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(_a ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' import gzip _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(_a , '''rb''' ) as orig_file: with gzip.open(_a , '''wb''' ) as zipped_file: zipped_file.writelines(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' import gzip _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(_a , '''rb''' ) as orig_file: with gzip.open(_a , '''wb''' ) as zipped_file: zipped_file.writelines(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset.jsonl.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.basename(_a ) ) f.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.join('''nested''' , os.path.basename(_a ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.join('''main_dir''' , os.path.basename(_a ) ) ) f.write(_a , arcname=os.path.join('''main_dir''' , os.path.basename(_a ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset.jsonl.tar""" with tarfile.TarFile(_a , '''w''' ) as f: f.add(_a , arcname=os.path.basename(_a ) ) f.add(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(_a , '''w''' ) as f: f.add(_a , arcname=os.path.join('''nested''' , os.path.basename(_a ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = ["""0""", """1""", """2""", """3"""] _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(_a , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = ["""0""", """1""", """2""", """3"""] _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(_a , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = ["""0""", """1""", """2""", """3"""] _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset.abc""" with open(_a , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset.text.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.basename(_a ) ) f.write(_a , arcname=os.path.basename(_a ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.join('''main_dir''' , os.path.basename(_a ) ) ) f.write(_a , arcname=os.path.join('''main_dir''' , os.path.basename(_a ) ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset.ext.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(_a , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = """\n""".join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) _UpperCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(_a ) return path @pytest.fixture(scope='''session''' ) def lowercase ( ): '''simple docstring''' return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def lowercase ( ): '''simple docstring''' return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / """dataset.img.zip""" with zipfile.ZipFile(_a , '''w''' ) as f: f.write(_a , arcname=os.path.basename(_a ) ) f.write(_a , arcname=os.path.basename(_a ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
365
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = 1 while len(SCREAMING_SNAKE_CASE_ ) < 1E6: constant.append(str(SCREAMING_SNAKE_CASE_ ) ) i += 1 _UpperCAmelCase = ''''''.join(SCREAMING_SNAKE_CASE_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
"""simple docstring""" from collections import namedtuple __A : Optional[int] = namedtuple("from_to", "from_ to") __A : int = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0454, 264.172), "cubicyard": from_to(0.7_6455, 1.3_0795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.0_0023_6588, 4226.75), } def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ''', '''.join(SCREAMING_SNAKE_CASE__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ''', '''.join(SCREAMING_SNAKE_CASE__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __A : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class _a ( _a): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : List[str] , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : bool = True , **__UpperCamelCase : Optional[int] , )->str: super().__init__(**__lowerCamelCase ) _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 2_2_4} _UpperCAmelCase = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} _UpperCAmelCase = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCAmelCase = do_convert_rgb def lowercase__ ( self : int , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] , )->str: _UpperCAmelCase = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Dict , )->Tuple: _UpperCAmelCase = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] , )->str: return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->Any: return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : int = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : int , )->List[str]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__lowerCamelCase , param_name='''size''' , default_to_square=__lowerCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__lowerCamelCase , param_name='''crop_size''' , default_to_square=__lowerCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] _UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
368
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
0
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = FlaxAutoencoderKL @property def lowercase__ ( self : Optional[int] )->str: _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = (3_2, 3_2) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = jax.random.uniform(lowercase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowercase__ ( self : Union[str, Any] )->List[Any]: _UpperCAmelCase = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict
369
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __A : Tuple = { "configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"], "tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
0
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : List[str] = logging.get_logger(__name__) class _a ( enum.Enum): """simple docstring""" UpperCamelCase__ = 0 UpperCamelCase__ = 1 @add_end_docstrings(lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """generated""" def __init__( self : Dict , *__UpperCamelCase : Any , **__UpperCamelCase : Union[str, Any] )->Any: super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowercase__ ( self : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Any=None , __UpperCamelCase : Tuple=None , **__UpperCamelCase : List[str] , )->Union[str, Any]: _UpperCAmelCase = {} if truncation is not None: _UpperCAmelCase = truncation _UpperCAmelCase = generate_kwargs _UpperCAmelCase = {} if return_tensors is not None and return_type is None: _UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: _UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: _UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCAmelCase = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Dict )->Any: return True def lowercase__ ( self : Union[str, Any] , *__UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] )->str: _UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _SCREAMING_SNAKE_CASE ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) _UpperCAmelCase = ([prefix + arg for arg in args[0]],) _UpperCAmelCase = True elif isinstance(args[0] , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = (prefix + args[0],) _UpperCAmelCase = False else: raise ValueError( F' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' ) _UpperCAmelCase = self.tokenizer(*_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Tuple , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Optional[Any] )->Dict: _UpperCAmelCase = super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if ( isinstance(args[0] , _SCREAMING_SNAKE_CASE ) and all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for el in args[0] ) and all(len(_SCREAMING_SNAKE_CASE ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCamelCase : Tuple )->List[Any]: _UpperCAmelCase = self._parse_and_tokenize(_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return inputs def lowercase__ ( self : int , __UpperCamelCase : Tuple , **__UpperCamelCase : Union[str, Any] )->str: if self.framework == "pt": _UpperCAmelCase = model_inputs['''input_ids'''].shape elif self.framework == "tf": _UpperCAmelCase = tf.shape(model_inputs['''input_ids'''] ).numpy() _UpperCAmelCase = generate_kwargs.get('''min_length''' , self.model.config.min_length ) _UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_SCREAMING_SNAKE_CASE , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) _UpperCAmelCase = self.model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": _UpperCAmelCase = output_ids.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": _UpperCAmelCase = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int=ReturnType.TEXT , __UpperCamelCase : Tuple=False )->Union[str, Any]: _UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: _UpperCAmelCase = {F'{self.return_name}_token_ids': output_ids} elif return_type == ReturnType.TEXT: _UpperCAmelCase = { F'{self.return_name}_text': self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) } records.append(_SCREAMING_SNAKE_CASE ) return records @add_end_docstrings(lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """summary""" def __call__( self : Any , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : str )->Optional[int]: return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase__ ( self : int , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : int )->bool: if max_length < min_length: logger.warning(F'Your min_length={min_length} must be inferior than your max_length={max_length}.' ) if input_length < max_length: logger.warning( F'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ' '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' ) @add_end_docstrings(lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """translation""" def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] )->Union[str, Any]: if input_length > 0.9 * max_length: logger.warning( F'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ' '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def lowercase__ ( self : Optional[int] , *__UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=None )->Tuple: if getattr(self.tokenizer , '''_build_translation_inputs''' , _SCREAMING_SNAKE_CASE ): return self.tokenizer._build_translation_inputs( *_SCREAMING_SNAKE_CASE , return_tensors=self.framework , truncation=_SCREAMING_SNAKE_CASE , src_lang=_SCREAMING_SNAKE_CASE , tgt_lang=_SCREAMING_SNAKE_CASE ) else: return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) def lowercase__ ( self : str , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : Tuple )->List[Any]: _UpperCAmelCase = super()._sanitize_parameters(**_SCREAMING_SNAKE_CASE ) if src_lang is not None: _UpperCAmelCase = src_lang if tgt_lang is not None: _UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. _UpperCAmelCase = kwargs.get('''task''' , self.task ) _UpperCAmelCase = task.split('''_''' ) if task and len(_SCREAMING_SNAKE_CASE ) == 4: # translation, XX, to YY _UpperCAmelCase = items[1] _UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[Any] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[str] )->Any: return super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A : Union[str, Any] = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not head: return True # split the list to two parts _UpperCAmelCase = head.next, head while fast and fast.next: _UpperCAmelCase = fast.next.next _UpperCAmelCase = slow.next _UpperCAmelCase = slow.next _UpperCAmelCase = None # Don't forget here! But forget still works! # reverse the second part _UpperCAmelCase = None while second: _UpperCAmelCase = second.next _UpperCAmelCase = node _UpperCAmelCase = second _UpperCAmelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _UpperCAmelCase = node.next _UpperCAmelCase = head.next return True def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) _UpperCAmelCase = head while fast and fast.next: _UpperCAmelCase = fast.next.next, slow.next # 2. Push the second half into the stack _UpperCAmelCase = [slow.val] while slow.next: _UpperCAmelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _UpperCAmelCase = cur.next return True def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if not head or not head.next: return True _UpperCAmelCase = {} _UpperCAmelCase = 0 while head: if head.val in d: d[head.val].append(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = [pos] _UpperCAmelCase = head.next pos += 1 _UpperCAmelCase = pos - 1 _UpperCAmelCase = 0 for v in d.values(): if len(_SCREAMING_SNAKE_CASE ) % 2 != 0: middle += 1 else: _UpperCAmelCase = 0 for i in range(0 , len(_SCREAMING_SNAKE_CASE ) ): if v[i] + v[len(_SCREAMING_SNAKE_CASE ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
351
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _a ( lowerCAmelCase): """simple docstring""" def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = 8 # DPR tok _UpperCAmelCase = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _UpperCAmelCase = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) _UpperCAmelCase = os.path.join(__UpperCamelCase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) _UpperCAmelCase = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : Any )->DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def lowercase__ ( self : List[Any] )->BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def lowercase__ ( self : Dict )->List[Any]: shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowercase__ ( self : Optional[int] )->str: _UpperCAmelCase = os.path.join(self.tmpdirname , '''rag_tokenizer''' ) _UpperCAmelCase = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _UpperCAmelCase = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__UpperCamelCase ) rag_tokenizer.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = RagTokenizer.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __UpperCamelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __UpperCamelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowercase__ ( self : List[Any] )->Dict: _UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' ) _UpperCAmelCase = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _UpperCAmelCase = tokenizer(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: _UpperCAmelCase = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' ) _UpperCAmelCase = [ '''who got the first nobel prize in physics''', '''when is the next deadpool movie being released''', '''which mode is used for short wave broadcast service''', '''who is the owner of reading football club''', '''when is the next scandal episode coming out''', '''when is the last time the philadelphia won the superbowl''', '''what is the most current adobe flash player version''', '''how many episodes are there in dragon ball z''', '''what is the first step in the evolution of the eye''', '''where is gall bladder situated in human body''', '''what is the main mineral in lithium batteries''', '''who is the president of usa right now''', '''where do the greasers live in the outsiders''', '''panda is a national animal of which country''', '''what is the name of manchester united stadium''', ] _UpperCAmelCase = tokenizer(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase )
352
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
0
from __future__ import annotations import time import numpy as np __A : Union[str, Any] = [8, 5, 9, 7] __A : int = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __A : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _a : """simple docstring""" def __init__( self : str , __UpperCamelCase : list[int] , __UpperCamelCase : list[list[int]] , __UpperCamelCase : list[list[int]] , )->List[Any]: _UpperCAmelCase = claim_vector _UpperCAmelCase = allocated_resources_table _UpperCAmelCase = maximum_claim_table def lowercase__ ( self : Any )->Any: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowercase__ ( self : Optional[Any] )->Union[str, Any]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowercase__ ( self : Tuple )->Union[str, Any]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowercase__ ( self : str )->str: return {self.__need().index(__UpperCamelCase ): i for i in self.__need()} def lowercase__ ( self : List[Any] , **__UpperCamelCase : Optional[int] )->Any: _UpperCAmelCase = self.__need() _UpperCAmelCase = self.__allocated_resources_table _UpperCAmelCase = self.__available_resources() _UpperCAmelCase = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 5_0 + '''\n''' ) while need_list: _UpperCAmelCase = False for each_need in need_list: _UpperCAmelCase = True for index, need in enumerate(__UpperCamelCase ): if need > available_resources[index]: _UpperCAmelCase = False break if execution: _UpperCAmelCase = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _UpperCAmelCase = original_need_index print(F'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__UpperCamelCase ) # update available/freed resources stack _UpperCAmelCase = np.array(__UpperCamelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(__UpperCamelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def lowercase__ ( self : int )->Dict: print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F'P{self.__allocated_resources_table.index(__UpperCamelCase ) + 1}' + ''' '''.join(F'{it:>8}' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F'P{self.__maximum_claim_table.index(__UpperCamelCase ) + 1}' + ''' '''.join(F'{it:>8}' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(__UpperCamelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(__UpperCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : str = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
0
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def lowercase ( _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) return quad(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , args=(_SCREAMING_SNAKE_CASE) )[0] def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return math.pow(_SCREAMING_SNAKE_CASE , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
355
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
0
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return [ord(__UpperCAmelCase ) - 96 for elem in plain] def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __UpperCAmelCase ) print('''Decoded:''' , decode(__UpperCAmelCase ) ) if __name__ == "__main__": main()
356
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __A : Optional[int] = logging.get_logger(__name__) class _a ( A__): """simple docstring""" UpperCamelCase__ = 'vision-encoder-decoder' UpperCamelCase__ = True def __init__( self : Union[str, Any] , **__UpperCamelCase : Optional[Any] )->Dict: super().__init__(**lowerCamelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) _UpperCAmelCase = kwargs.pop('''encoder''' ) _UpperCAmelCase = encoder_config.pop('''model_type''' ) _UpperCAmelCase = kwargs.pop('''decoder''' ) _UpperCAmelCase = decoder_config.pop('''model_type''' ) _UpperCAmelCase = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase = AutoConfig.for_model(lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase = True @classmethod def lowercase__ ( cls : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , **__UpperCamelCase : List[str] )->Optional[int]: logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase__ ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class _a ( A__): """simple docstring""" UpperCamelCase__ = version.parse("""1.11""") @property def lowercase__ ( self : int )->Any: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Union[str, Any] )->Tuple: return 1e-4 @property def lowercase__ ( self : Any )->int: return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class _a ( A__): """simple docstring""" @property def lowercase__ ( self : Dict )->int: _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCAmelCase = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] = -1 , __UpperCamelCase : Tuple = -1 , __UpperCamelCase : Any = False , __UpperCamelCase : str = None , )->Union[str, Any]: import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) _UpperCAmelCase , _UpperCAmelCase = dummy_input['''input_ids'''].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop('''input_ids''' ) _UpperCAmelCase = dummy_input.pop('''attention_mask''' ) _UpperCAmelCase = torch.zeros(lowerCamelCase__ ) return common_inputs class _a ( A__): """simple docstring""" @property def lowercase__ ( self : Tuple )->List[str]: pass def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str )->List[Any]: return VisionEncoderDecoderEncoderOnnxConfig(lowerCamelCase__ ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str = "default" )->Tuple: _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCamelCase__ , lowerCamelCase__ )
357
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
0
"""simple docstring""" import math import random def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __A : Dict = 0.02 def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(A_ ): # Forward propagation _UpperCAmelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _UpperCAmelCase = (expected / 100) - layer_a # Error delta _UpperCAmelCase = layer_1_error * sigmoid_function(A_ , A_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[Any] = int(input("Expected value: ")) __A : Optional[Any] = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowercase ( *_SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' with open(_lowercase , '''r''' ) as fh: fcntl.flock(_lowercase , fcntl.LOCK_EX ) try: print(*_lowercase ) finally: fcntl.flock(_lowercase , fcntl.LOCK_UN ) __A : str = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(local_rank) __A : int = torch.device("cuda", local_rank) __A : List[str] = socket.gethostname() __A : str = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group("nccl") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __A : Any = dist.get_rank() __A : int = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
359
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _a ( UpperCAmelCase__): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 def __init__( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] )->Optional[int]: super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : List[Any] , __UpperCamelCase : List[Any] = 1 , __UpperCamelCase : Tuple = 5_0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = "pil" , __UpperCamelCase : Optional[Any] = True , **__UpperCamelCase : Dict , )->Union[Tuple, ImagePipelineOutput]: _UpperCAmelCase = self.unet.config.sample_size _UpperCAmelCase = (batch_size, 3, img_size, img_size) _UpperCAmelCase = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _UpperCAmelCase = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _UpperCAmelCase = self.scheduler.schedule[t] _UpperCAmelCase = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _UpperCAmelCase = self.scheduler.add_noise_to_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _UpperCAmelCase = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _UpperCAmelCase = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _UpperCAmelCase = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _UpperCAmelCase = self.scheduler.step_correct( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step_output.prev_sample , step_output['''derivative'''] , ) _UpperCAmelCase = step_output.prev_sample _UpperCAmelCase = (sample / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
360
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __A : Any = logging.get_logger(__name__) __A : str = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] __A : int = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = torch.load(_a , map_location='''cpu''' ) return sd def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple=rename_keys_prefix ): '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _UpperCAmelCase = key for name_pair in rename_keys_prefix: _UpperCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) _UpperCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _UpperCAmelCase = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _UpperCAmelCase = '''pretraining''' if "vcr" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048} elif "vqa" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048} elif "nlvr" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 1024} else: raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 512} _UpperCAmelCase = '''multichoice''' elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048} _UpperCAmelCase = '''vqa_advanced''' elif "vqa" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048, '''num_labels''': 3129} _UpperCAmelCase = '''vqa''' elif "nlvr" in checkpoint_path: _UpperCAmelCase = { '''visual_embedding_dim''': 1024, '''num_labels''': 2, } _UpperCAmelCase = '''nlvr''' _UpperCAmelCase = VisualBertConfig(**_a ) # Load State Dict _UpperCAmelCase = load_state_dict(_a ) _UpperCAmelCase = get_new_dict(_a , _a ) if model_type == "pretraining": _UpperCAmelCase = VisualBertForPreTraining(_a ) elif model_type == "vqa": _UpperCAmelCase = VisualBertForQuestionAnswering(_a ) elif model_type == "nlvr": _UpperCAmelCase = VisualBertForVisualReasoning(_a ) elif model_type == "multichoice": _UpperCAmelCase = VisualBertForMultipleChoice(_a ) model.load_state_dict(_a ) # Save Checkpoints Path(_a ).mkdir(exist_ok=_a ) model.save_pretrained(_a ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") __A : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 ): '''simple docstring''' _UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__lowerCAmelCase , axis=1 ) , a_min=__lowerCAmelCase ) ).T _UpperCAmelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__lowerCAmelCase , axis=1 ) , a_min=__lowerCAmelCase ) ).T return jnp.matmul(__lowerCAmelCase , norm_emb_a.T ) class _a ( nn.Module): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = jnp.floataa def lowercase__ ( self : Optional[Any] )->Dict: _UpperCAmelCase = FlaxCLIPVisionModule(self.config.vision_config ) _UpperCAmelCase = nn.Dense(self.config.projection_dim , use_bias=snake_case__ , dtype=self.dtype ) _UpperCAmelCase = self.param('''concept_embeds''' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) _UpperCAmelCase = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _UpperCAmelCase = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (1_7,) ) _UpperCAmelCase = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Union[str, Any] , __UpperCamelCase : Optional[Any] )->Dict: _UpperCAmelCase = self.vision_model(snake_case__ )[1] _UpperCAmelCase = self.visual_projection(snake_case__ ) _UpperCAmelCase = jax_cosine_distance(snake_case__ , self.special_care_embeds ) _UpperCAmelCase = jax_cosine_distance(snake_case__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _UpperCAmelCase = 0.0 _UpperCAmelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _UpperCAmelCase = jnp.round(snake_case__ , 3 ) _UpperCAmelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=snake_case__ ) # Use a lower threshold if an image has any special care concept _UpperCAmelCase = is_special_care * 0.0_1 _UpperCAmelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _UpperCAmelCase = jnp.round(snake_case__ , 3 ) _UpperCAmelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _a ( lowerCamelCase__): """simple docstring""" UpperCamelCase__ = CLIPConfig UpperCamelCase__ = """clip_input""" UpperCamelCase__ = FlaxStableDiffusionSafetyCheckerModule def __init__( self : int , __UpperCamelCase : Any , __UpperCamelCase : Any = None , __UpperCamelCase : str = 0 , __UpperCamelCase : List[Any] = jnp.floataa , __UpperCamelCase : List[str] = True , **__UpperCamelCase : Tuple , )->List[Any]: if input_shape is None: _UpperCAmelCase = (1, 2_2_4, 2_2_4, 3) _UpperCAmelCase = self.module_class(config=snake_case__ , dtype=snake_case__ , **snake_case__ ) super().__init__(snake_case__ , snake_case__ , input_shape=snake_case__ , seed=snake_case__ , dtype=snake_case__ , _do_init=_do_init ) def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] = None )->FrozenDict: _UpperCAmelCase = jax.random.normal(snake_case__ , snake_case__ ) _UpperCAmelCase = jax.random.split(snake_case__ ) _UpperCAmelCase = {'''params''': params_rng, '''dropout''': dropout_rng} _UpperCAmelCase = self.module.init(snake_case__ , snake_case__ )['''params'''] return random_params def __call__( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : int = None , )->int: _UpperCAmelCase = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(snake_case__ , dtype=jnp.floataa ) , rngs={} , )
362
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A : Optional[int] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class _a ( a__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = DebertaVaTokenizer UpperCamelCase__ = DebertaVaTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True def lowercase__ ( self : Optional[Any] )->Any: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = DebertaVaTokenizer(lowerCAmelCase__ , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] , __UpperCamelCase : str )->Tuple: _UpperCAmelCase = "this is a test" _UpperCAmelCase = "this is a test" return input_text, output_text def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = "<pad>" _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def lowercase__ ( self : Optional[int] )->List[Any]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(lowerCAmelCase__ ) , 3_0_0_0_1 ) def lowercase__ ( self : Optional[Any] )->List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def lowercase__ ( self : Any )->str: # fmt: off _UpperCAmelCase = " \tHeLLo!how \n Are yoU? " _UpperCAmelCase = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def lowercase__ ( self : List[Any] )->Dict: pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def lowercase__ ( self : List[str] )->Tuple: pass def lowercase__ ( self : str )->str: # fmt: off _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( self : int )->Dict: # fmt: off _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( self : Optional[int] )->Dict: # fmt: off _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( self : Optional[int] )->List[str]: # fmt: off _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( self : Any )->int: # fmt: off _UpperCAmelCase = " \tHeLLo!how \n Are yoU? " _UpperCAmelCase = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on _UpperCAmelCase = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( self : Optional[Any] )->Optional[int]: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase = "This is a test" _UpperCAmelCase = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] _UpperCAmelCase = ["▁", "T", "his", "▁is", "▁a", "▁test"] _UpperCAmelCase = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] _UpperCAmelCase = DebertaVaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase = DebertaVaTokenizerFast(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # fmt: off _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] _UpperCAmelCase = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] _UpperCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on _UpperCAmelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = DebertaVaTokenizer(lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.encode('''sequence builders''' ) _UpperCAmelCase = tokenizer.encode('''multi-sequence build''' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCAmelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCAmelCase__ , ) @slow def lowercase__ ( self : Any )->Any: # fmt: off _UpperCAmelCase = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __A : Optional[Any] = logging.get_logger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = [] def parse_line(_SCREAMING_SNAKE_CASE : Tuple ): for line in fp: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(_SCREAMING_SNAKE_CASE ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(_SCREAMING_SNAKE_CASE ) buffer.clear() continue else: _UpperCAmelCase = line.strip() buffer.append(_SCREAMING_SNAKE_CASE ) if from_gh: for filename in os.listdir(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with open(_SCREAMING_SNAKE_CASE ) as fp: parse_line(_SCREAMING_SNAKE_CASE ) else: try: with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with z.open(_SCREAMING_SNAKE_CASE ) as fp: parse_line(_SCREAMING_SNAKE_CASE ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for p in os.listdir(_SCREAMING_SNAKE_CASE ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return selected_warnings if __name__ == "__main__": def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return values.split(''',''' ) __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) __A : Dict = parser.parse_args() __A : Optional[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __A : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __A : Any = extract_warnings(args.output_dir, args.targets) __A : Union[str, Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
364
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
0
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any]=[] ): '''simple docstring''' _UpperCAmelCase = size[0] - overlap_pixels * 2 _UpperCAmelCase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _UpperCAmelCase = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _UpperCAmelCase = np.pad(snake_case__ , mode='''linear_ramp''' , pad_width=snake_case__ , end_values=0 ) if "l" in remove_borders: _UpperCAmelCase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _UpperCAmelCase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _UpperCAmelCase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _UpperCAmelCase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return max(snake_case__ , min(snake_case__ , snake_case__ ) ) def lowercase ( _SCREAMING_SNAKE_CASE : [int] , _SCREAMING_SNAKE_CASE : [int] , _SCREAMING_SNAKE_CASE : [int] ): '''simple docstring''' return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowercase ( _SCREAMING_SNAKE_CASE : [int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : [int] ): '''simple docstring''' _UpperCAmelCase = list(snake_case__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _UpperCAmelCase = clamp_rect(snake_case__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(snake_case__ , (original_slice, 0) ) return result def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _UpperCAmelCase = tile.crop(snake_case__ ) return tile def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = n % d return n - divisor class _a ( __lowerCAmelCase): """simple docstring""" def __init__( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] = 3_5_0 , )->int: super().__init__( vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , low_res_scheduler=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , max_noise_level=lowerCAmelCase_ , ) def lowercase__ ( self : int , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[Any] , **__UpperCamelCase : Tuple )->List[Any]: torch.manual_seed(0 ) _UpperCAmelCase = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _UpperCAmelCase = add_overlap_rect(lowerCAmelCase_ , lowerCAmelCase_ , image.size ) _UpperCAmelCase = image.crop(lowerCAmelCase_ ) _UpperCAmelCase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _UpperCAmelCase = translated_slice_x - (original_image_slice / 2) _UpperCAmelCase = max(0 , lowerCAmelCase_ ) _UpperCAmelCase = squeeze_tile(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase = to_input.size _UpperCAmelCase = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _UpperCAmelCase = super(lowerCAmelCase_ , self ).__call__(image=lowerCAmelCase_ , **lowerCAmelCase_ ).images[0] _UpperCAmelCase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase = unsqueeze_tile(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _UpperCAmelCase = [] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) _UpperCAmelCase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowerCAmelCase_ ) , mode='''L''' , ) final_image.paste( lowerCAmelCase_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowerCAmelCase_ ) @torch.no_grad() def __call__( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] = 7_5 , __UpperCamelCase : Dict = 9.0 , __UpperCamelCase : int = 5_0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : Any = 0.0 , __UpperCamelCase : Optional[Any] = None , __UpperCamelCase : List[str] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Tuple = 1 , __UpperCamelCase : List[Any] = 1_2_8 , __UpperCamelCase : Optional[int] = 3_2 , __UpperCamelCase : str = 3_2 , )->Union[str, Any]: _UpperCAmelCase = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) _UpperCAmelCase = math.ceil(image.size[0] / tile_size ) _UpperCAmelCase = math.ceil(image.size[1] / tile_size ) _UpperCAmelCase = tcx * tcy _UpperCAmelCase = 0 for y in range(lowerCAmelCase_ ): for x in range(lowerCAmelCase_ ): self._process_tile( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prompt=lowerCAmelCase_ , num_inference_steps=lowerCAmelCase_ , guidance_scale=lowerCAmelCase_ , noise_level=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ , eta=lowerCAmelCase_ , generator=lowerCAmelCase_ , latents=lowerCAmelCase_ , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def lowercase ( ): '''simple docstring''' _UpperCAmelCase = '''stabilityai/stable-diffusion-x4-upscaler''' _UpperCAmelCase = StableDiffusionTiledUpscalePipeline.from_pretrained(snake_case__ , revision='''fp16''' , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to('''cuda''' ) _UpperCAmelCase = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(_SCREAMING_SNAKE_CASE : Dict ): print(f'progress: {obj["progress"]:.4f}' ) obj["image"].save('''diffusers_library_progress.jpg''' ) _UpperCAmelCase = pipe(image=snake_case__ , prompt='''Black font, white background, vector''' , noise_level=40 , callback=snake_case__ ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
365
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : Tuple = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class _a ( _lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """timesformer""" def __init__( self : List[Any] , __UpperCamelCase : int=2_2_4 , __UpperCamelCase : Union[str, Any]=1_6 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : Dict=8 , __UpperCamelCase : Tuple=7_6_8 , __UpperCamelCase : Any=1_2 , __UpperCamelCase : Optional[int]=1_2 , __UpperCamelCase : Union[str, Any]=3_0_7_2 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : Tuple=1e-6 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Tuple="divided_space_time" , __UpperCamelCase : int=0 , **__UpperCamelCase : Optional[int] , )->Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_frames _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = qkv_bias _UpperCAmelCase = attention_type _UpperCAmelCase = drop_path_rate
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __SCREAMING_SNAKE_CASE): """simple docstring""" UpperCamelCase__ = ["""image_processor""", """tokenizer"""] UpperCamelCase__ = """ViTImageProcessor""" UpperCamelCase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : str=None , **__UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) _UpperCAmelCase = kwargs.pop('''feature_extractor''' ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : str , __UpperCamelCase : Dict=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Tuple )->Optional[Any]: if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: _UpperCAmelCase = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if visual_prompt is not None: _UpperCAmelCase = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: _UpperCAmelCase = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if visual_prompt is not None and images is not None: _UpperCAmelCase = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCAmelCase = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def lowercase__ ( self : Optional[Any] , *__UpperCamelCase : Tuple , **__UpperCamelCase : Any )->List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowercase__ ( self : Tuple , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Any )->List[str]: return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowercase__ ( self : str )->Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase__ , ) return self.image_processor_class @property def lowercase__ ( self : Any )->Dict: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCamelCase__ , ) return self.image_processor
367
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = set() # edges = list of graph's edges _UpperCAmelCase = get_edges(lowerCamelCase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCAmelCase = edges.pop() chosen_vertices.add(lowerCamelCase_ ) chosen_vertices.add(lowerCamelCase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowerCamelCase_ ) return chosen_vertices def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
368
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _a ( unittest.TestCase): """simple docstring""" @property def lowercase__ ( self : List[str] )->str: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowercase__ ( self : Dict )->Union[str, Any]: _UpperCAmelCase = self.dummy_uncond_unet _UpperCAmelCase = KarrasVeScheduler() _UpperCAmelCase = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''numpy''' ).images _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''numpy''' , return_dict=UpperCamelCase__ )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = '''google/ncsnpp-celebahq-256''' _UpperCAmelCase = UNetaDModel.from_pretrained(UpperCamelCase__ ) _UpperCAmelCase = KarrasVeScheduler() _UpperCAmelCase = KarrasVePipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(num_inference_steps=2_0 , generator=UpperCamelCase__ , output_type='''numpy''' ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) _UpperCAmelCase = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
369
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
0
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __A : Optional[int] = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase , r"""\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n """ , ) class _a ( _lowerCAmelCase): """simple docstring""" def lowercase__ ( self : List[Any] , __UpperCamelCase : GenericTensor )->Optional[Any]: if self.framework == "tf": _UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ) else: raise ValueError('''Unsupported framework''' ) return masked_index def lowercase__ ( self : List[str] , __UpperCamelCase : GenericTensor )->Union[str, Any]: _UpperCAmelCase = self.get_masked_index(_lowercase ) _UpperCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : GenericTensor )->Any: if isinstance(_lowercase , _lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowercase ) def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=None , **__UpperCamelCase : Tuple )->Tuple: if return_tensors is None: _UpperCAmelCase = self.framework _UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase ) self.ensure_exactly_one_mask_token(_lowercase ) return model_inputs def lowercase__ ( self : Optional[int] , __UpperCamelCase : Tuple )->Tuple: _UpperCAmelCase = self.model(**_lowercase ) _UpperCAmelCase = model_inputs['''input_ids'''] return model_outputs def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any]=5 , __UpperCamelCase : Dict=None )->List[Any]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: _UpperCAmelCase = target_ids.shape[0] _UpperCAmelCase = model_outputs['''input_ids'''][0] _UpperCAmelCase = model_outputs['''logits'''] if self.framework == "tf": _UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _UpperCAmelCase = outputs.numpy() _UpperCAmelCase = outputs[0, masked_index, :] _UpperCAmelCase = stable_softmax(_lowercase , axis=-1 ) if target_ids is not None: _UpperCAmelCase = tf.gather_nd(tf.squeeze(_lowercase , 0 ) , target_ids.reshape(-1 , 1 ) ) _UpperCAmelCase = tf.expand_dims(_lowercase , 0 ) _UpperCAmelCase = tf.math.top_k(_lowercase , k=_lowercase ) _UpperCAmelCase , _UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: _UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _UpperCAmelCase = outputs[0, masked_index, :] _UpperCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: _UpperCAmelCase = probs[..., target_ids] _UpperCAmelCase , _UpperCAmelCase = probs.topk(_lowercase ) _UpperCAmelCase = [] _UpperCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _UpperCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _UpperCAmelCase = input_ids.numpy().copy() if target_ids is not None: _UpperCAmelCase = target_ids[p].tolist() _UpperCAmelCase = p # Filter padding out: _UpperCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) _UpperCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_lowercase ) result.append(_lowercase ) if single_mask: return result[0] return result def lowercase__ ( self : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any]=None )->List[str]: if isinstance(_lowercase , _lowercase ): _UpperCAmelCase = [targets] try: _UpperCAmelCase = self.tokenizer.get_vocab() except Exception: _UpperCAmelCase = {} _UpperCAmelCase = [] for target in targets: _UpperCAmelCase = vocab.get(_lowercase , _lowercase ) if id_ is None: _UpperCAmelCase = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , max_length=1 , truncation=_lowercase , )['''input_ids'''] if len(_lowercase ) == 0: logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' '''We cannot replace it with anything meaningful, ignoring it''' ) continue _UpperCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' F'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) _UpperCAmelCase = list(set(_lowercase ) ) if len(_lowercase ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) _UpperCAmelCase = np.array(_lowercase ) return target_ids def lowercase__ ( self : int , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[Any]=None )->str: _UpperCAmelCase = {} if targets is not None: _UpperCAmelCase = self.get_target_ids(_lowercase , _lowercase ) _UpperCAmelCase = target_ids if top_k is not None: _UpperCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self : Union[str, Any] , __UpperCamelCase : Optional[Any] , *__UpperCamelCase : Union[str, Any] , **__UpperCamelCase : int )->Optional[Any]: _UpperCAmelCase = super().__call__(_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs
370
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A : Tuple = { "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCAmelCase = cst_fwd.get(__a , np.inf ) _UpperCAmelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCAmelCase = new_cost_f _UpperCAmelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCAmelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = -1 _UpperCAmelCase = set() _UpperCAmelCase = set() _UpperCAmelCase = {source: 0} _UpperCAmelCase = {destination: 0} _UpperCAmelCase = {source: None} _UpperCAmelCase = {destination: None} _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = PriorityQueue() _UpperCAmelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCAmelCase = queue_forward.get() visited_forward.add(__a ) _UpperCAmelCase = queue_backward.get() visited_backward.add(__a ) _UpperCAmelCase = pass_and_relaxation( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) _UpperCAmelCase = pass_and_relaxation( __a , __a , __a , __a , __a , __a , __a , __a , __a , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCAmelCase = shortest_distance return shortest_path_distance __A : List[Any] = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __A : Dict = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert isinstance(A__ , A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A__ , keep_in_memory=A__ ).read() _check_sql_dataset(A__ , A__ ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=A__ , cache_dir=A__ ).read() _check_sql_dataset(A__ , A__ ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' with contextlib.closing(sqlitea.connect(A__ ) ) as con: _UpperCAmelCase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = os.path.join(A__ , '''tmp.sql''' ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A__ ).read() SqlDatasetWriter(A__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() _UpperCAmelCase = iter_sql_file(A__ ) _UpperCAmelCase = iter_sql_file(A__ ) for rowa, rowa in zip(A__ , A__ ): assert rowa == rowa @require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = os.path.join(A__ , '''tmp.sql''' ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A__ ).read() SqlDatasetWriter(A__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() _UpperCAmelCase = iter_sql_file(A__ ) _UpperCAmelCase = iter_sql_file(A__ ) for rowa, rowa in zip(A__ , A__ ): assert rowa == rowa @require_sqlalchemy def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = os.path.join(A__ , '''tmp.sql''' ) _UpperCAmelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A__ ).read() with pytest.raises(A__ ): SqlDatasetWriter(A__ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
351
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class _a : """simple docstring""" def __init__( self : Dict )->int: _UpperCAmelCase = {} def lowercase__ ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict=1 )->str: if self.graph.get(snake_case_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase = [[w, v]] if not self.graph.get(snake_case_ ): _UpperCAmelCase = [] def lowercase__ ( self : Union[str, Any] )->str: return list(self.graph ) def lowercase__ ( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple )->Tuple: if self.graph.get(snake_case_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(snake_case_ ) def lowercase__ ( self : Any , __UpperCamelCase : List[Any]=-2 , __UpperCamelCase : Union[str, Any]=-1 )->int: if s == d: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) _UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(snake_case_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(snake_case_ ) != 0: _UpperCAmelCase = stack[len(snake_case_ ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return visited def lowercase__ ( self : str , __UpperCamelCase : List[Any]=-1 )->List[str]: if c == -1: _UpperCAmelCase = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(snake_case_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(snake_case_ , snake_case_ , 1 ) def lowercase__ ( self : str , __UpperCamelCase : Any=-2 )->Any: _UpperCAmelCase = deque() _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] d.append(snake_case_ ) visited.append(snake_case_ ) while d: _UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase__ ( self : str , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowercase__ ( self : List[Any] , __UpperCamelCase : Union[str, Any] )->str: return len(self.graph[u] ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : int=-2 )->Any: _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) _UpperCAmelCase = s _UpperCAmelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(snake_case_ ) != 0: _UpperCAmelCase = stack[len(snake_case_ ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return sorted_nodes def lowercase__ ( self : int )->str: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(snake_case_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(snake_case_ ) != 0: _UpperCAmelCase = stack[len(snake_case_ ) - 1] else: _UpperCAmelCase = False indirect_parents.append(snake_case_ ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return list(snake_case_ ) def lowercase__ ( self : Union[str, Any] )->Optional[int]: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(snake_case_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(snake_case_ ) != 0: _UpperCAmelCase = stack[len(snake_case_ ) - 1] else: _UpperCAmelCase = False indirect_parents.append(snake_case_ ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return False def lowercase__ ( self : str , __UpperCamelCase : List[str]=-2 , __UpperCamelCase : Optional[Any]=-1 )->List[str]: _UpperCAmelCase = time() self.dfs(snake_case_ , snake_case_ ) _UpperCAmelCase = time() return end - begin def lowercase__ ( self : str , __UpperCamelCase : Union[str, Any]=-2 )->List[str]: _UpperCAmelCase = time() self.bfs(snake_case_ ) _UpperCAmelCase = time() return end - begin class _a : """simple docstring""" def __init__( self : Dict )->Optional[Any]: _UpperCAmelCase = {} def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[int]=1 )->List[Any]: # check if the u exists if self.graph.get(snake_case_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase = [[w, v]] # add the other way if self.graph.get(snake_case_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase = [[w, u]] def lowercase__ ( self : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] )->int: if self.graph.get(snake_case_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(snake_case_ ) # the other way round if self.graph.get(snake_case_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(snake_case_ ) def lowercase__ ( self : str , __UpperCamelCase : int=-2 , __UpperCamelCase : List[str]=-1 )->int: if s == d: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) _UpperCAmelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(snake_case_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(snake_case_ ) != 0: _UpperCAmelCase = stack[len(snake_case_ ) - 1] else: _UpperCAmelCase = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return visited def lowercase__ ( self : List[str] , __UpperCamelCase : List[Any]=-1 )->Tuple: if c == -1: _UpperCAmelCase = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(snake_case_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase = floor(random() * c ) + 1 if n != i: self.add_pair(snake_case_ , snake_case_ , 1 ) def lowercase__ ( self : int , __UpperCamelCase : Optional[int]=-2 )->int: _UpperCAmelCase = deque() _UpperCAmelCase = [] if s == -2: _UpperCAmelCase = list(self.graph )[0] d.append(snake_case_ ) visited.append(snake_case_ ) while d: _UpperCAmelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowercase__ ( self : List[Any] , __UpperCamelCase : Optional[Any] )->Optional[Any]: return len(self.graph[u] ) def lowercase__ ( self : List[str] )->Dict: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(snake_case_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(snake_case_ ) != 0: _UpperCAmelCase = stack[len(snake_case_ ) - 1] else: _UpperCAmelCase = False indirect_parents.append(snake_case_ ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return list(snake_case_ ) def lowercase__ ( self : Optional[int] )->Optional[int]: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = list(self.graph )[0] stack.append(snake_case_ ) visited.append(snake_case_ ) _UpperCAmelCase = -2 _UpperCAmelCase = [] _UpperCAmelCase = s _UpperCAmelCase = False _UpperCAmelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase = len(snake_case_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase = True if len(snake_case_ ) != 0: _UpperCAmelCase = stack[len(snake_case_ ) - 1] else: _UpperCAmelCase = False indirect_parents.append(snake_case_ ) _UpperCAmelCase = s _UpperCAmelCase = ss # check if se have reached the starting point if len(snake_case_ ) == 0: return False def lowercase__ ( self : List[Any] )->Dict: return list(self.graph ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any]=-2 , __UpperCamelCase : Dict=-1 )->Any: _UpperCAmelCase = time() self.dfs(snake_case_ , snake_case_ ) _UpperCAmelCase = time() return end - begin def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=-2 )->Tuple: _UpperCAmelCase = time() self.bfs(snake_case_ ) _UpperCAmelCase = time() return end - begin
352
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
0
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = (IPNDMScheduler,) UpperCamelCase__ = (("num_inference_steps", 50),) def lowercase__ ( self : Any , **__UpperCamelCase : Tuple )->Optional[Any]: _UpperCAmelCase = {'''num_train_timesteps''': 1_0_0_0} config.update(**__UpperCamelCase ) return config def lowercase__ ( self : List[Any] , __UpperCamelCase : int=0 , **__UpperCamelCase : Tuple )->Dict: _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[:] if time_step is None: _UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[:] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : Optional[Any] )->Optional[int]: pass def lowercase__ ( self : List[Any] , __UpperCamelCase : Dict=0 , **__UpperCamelCase : Any )->str: _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[:] if time_step is None: _UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[:] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self : List[str] , **__UpperCamelCase : Union[str, Any] )->Dict: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 1_0 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def lowercase__ ( self : Union[str, Any] )->int: _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop('''num_inference_steps''' , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , '''set_timesteps''' ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , '''set_timesteps''' ): _UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _UpperCAmelCase = dummy_past_residuals[:] _UpperCAmelCase = scheduler.timesteps[5] _UpperCAmelCase = scheduler.timesteps[6] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self : Any )->Tuple: for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCamelCase , time_step=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[int]: for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Any: _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 2_5_4_0_5_2_9 ) < 1_0
353
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' _UpperCAmelCase = set() # Replace all the whitespace in our sentence _UpperCAmelCase = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_SCREAMING_SNAKE_CASE ) == 26 def lowercase ( _SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' _UpperCAmelCase = [False] * 26 for char in input_str: if char.islower(): _UpperCAmelCase = True elif char.isupper(): _UpperCAmelCase = True return all(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ): '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowercase ( ): '''simple docstring''' from timeit import timeit _UpperCAmelCase = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=_SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_faster()''' , setup=_SCREAMING_SNAKE_CASE ) ) print(timeit('''is_pangram_fastest()''' , setup=_SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
354
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : int = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __A : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__) class _a ( lowerCamelCase__): """simple docstring""" def __init__( self : Any , **__UpperCamelCase : str )->str: super().__init__(**__lowerCamelCase ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , '''vision''' ) self.check_model_type(__lowerCamelCase ) def __call__( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] = None , **__UpperCamelCase : Dict , )->Tuple: if "text_queries" in kwargs: _UpperCAmelCase = kwargs.pop('''text_queries''' ) if isinstance(__lowerCamelCase , (str, Image.Image) ): _UpperCAmelCase = {'''image''': image, '''candidate_labels''': candidate_labels} else: _UpperCAmelCase = image _UpperCAmelCase = super().__call__(__lowerCamelCase , **__lowerCamelCase ) return results def lowercase__ ( self : str , **__UpperCamelCase : Tuple )->Union[str, Any]: _UpperCAmelCase = {} if "threshold" in kwargs: _UpperCAmelCase = kwargs['''threshold'''] if "top_k" in kwargs: _UpperCAmelCase = kwargs['''top_k'''] return {}, {}, postprocess_params def lowercase__ ( self : Tuple , __UpperCamelCase : List[str] )->Tuple: _UpperCAmelCase = load_image(inputs['''image'''] ) _UpperCAmelCase = inputs['''candidate_labels'''] if isinstance(__lowerCamelCase , __lowerCamelCase ): _UpperCAmelCase = candidate_labels.split(''',''' ) _UpperCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__lowerCamelCase ): _UpperCAmelCase = self.tokenizer(__lowerCamelCase , return_tensors=self.framework ) _UpperCAmelCase = self.image_processor(__lowerCamelCase , return_tensors=self.framework ) yield { "is_last": i == len(__lowerCamelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] )->Tuple: _UpperCAmelCase = model_inputs.pop('''target_size''' ) _UpperCAmelCase = model_inputs.pop('''candidate_label''' ) _UpperCAmelCase = model_inputs.pop('''is_last''' ) _UpperCAmelCase = self.model(**__lowerCamelCase ) _UpperCAmelCase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def lowercase__ ( self : str , __UpperCamelCase : List[str] , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Optional[int]=None )->List[Any]: _UpperCAmelCase = [] for model_output in model_outputs: _UpperCAmelCase = model_output['''candidate_label'''] _UpperCAmelCase = BaseModelOutput(__lowerCamelCase ) _UpperCAmelCase = self.image_processor.post_process_object_detection( outputs=__lowerCamelCase , threshold=__lowerCamelCase , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): _UpperCAmelCase = outputs['''scores'''][index].item() _UpperCAmelCase = self._get_bounding_box(outputs['''boxes'''][index][0] ) _UpperCAmelCase = {'''score''': score, '''label''': label, '''box''': box} results.append(__lowerCamelCase ) _UpperCAmelCase = sorted(__lowerCamelCase , key=lambda __UpperCamelCase : x["score"] , reverse=__lowerCamelCase ) if top_k: _UpperCAmelCase = results[:top_k] return results def lowercase__ ( self : Dict , __UpperCamelCase : Tuple )->Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) _UpperCAmelCase = box.int().tolist() _UpperCAmelCase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
356
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __A : Optional[Any] = random.Random() def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str=1.0 , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _a ( unittest.TestCase): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : str , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Optional[Any]=4_0_0 , __UpperCamelCase : int=2_0_0_0 , __UpperCamelCase : Optional[int]=2_4 , __UpperCamelCase : int=2_4 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : List[Any]=1_6_0_0_0 , __UpperCamelCase : str=True , __UpperCamelCase : Tuple=True , )->Optional[Any]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = feature_size _UpperCAmelCase = num_mel_bins _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize def lowercase__ ( self : Dict )->Union[str, Any]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int=False , __UpperCamelCase : Union[str, Any]=False )->str: def _flatten(__UpperCamelCase : int ): return list(itertools.chain(*_A ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase__ ( self : str )->Any: _UpperCAmelCase = SpeechaTextFeatureExtractionTester(self ) def lowercase__ ( self : Any , __UpperCamelCase : List[str] )->Any: self.assertTrue(np.all(np.mean(_A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_A , axis=0 ) - 1 ) < 1e-3 ) ) def lowercase__ ( self : Tuple )->Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = [np.asarray(_A ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(_A , padding=_A , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_features _UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _UpperCAmelCase = np.asarray(_A ) _UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_features _UpperCAmelCase = feature_extractor(_A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) def lowercase__ ( self : Tuple )->Union[str, Any]: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = ['longest', 'max_length', 'do_not_pad'] _UpperCAmelCase = [None, 1_6, None] for max_length, padding in zip(_A , _A ): _UpperCAmelCase = feature_extractor( _A , padding=_A , max_length=_A , return_attention_mask=_A ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = [np.sum(_A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = ['longest', 'max_length', 'do_not_pad'] _UpperCAmelCase = [None, 1_6, None] for max_length, padding in zip(_A , _A ): _UpperCAmelCase = feature_extractor( _A , max_length=_A , padding=_A , return_tensors='''np''' , return_attention_mask=_A ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = [np.sum(_A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = feature_extractor( _A , padding='''max_length''' , max_length=4 , truncation=_A , return_tensors='''np''' , return_attention_mask=_A , ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase__ ( self : int )->Tuple: _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = feature_extractor( _A , padding='''longest''' , max_length=4 , truncation=_A , return_tensors='''np''' , return_attention_mask=_A , ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _UpperCAmelCase = feature_extractor( _A , padding='''longest''' , max_length=1_6 , truncation=_A , return_tensors='''np''' , return_attention_mask=_A , ) _UpperCAmelCase = inputs.input_features _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def lowercase__ ( self : int )->Dict: import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any] )->Union[str, Any]: from datasets import load_dataset _UpperCAmelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowercase__ ( self : Union[str, Any] )->List[Any]: # fmt: off _UpperCAmelCase = np.array([ -1.5_7_4_5, -1.7_7_1_3, -1.7_0_2_0, -1.6_0_6_9, -1.2_2_5_0, -1.1_1_0_5, -0.9_0_7_2, -0.8_2_4_1, -1.2_3_1_0, -0.8_0_9_8, -0.3_3_2_0, -0.4_1_0_1, -0.7_9_8_5, -0.4_9_9_6, -0.8_2_1_3, -0.9_1_2_8, -1.0_4_2_0, -1.1_2_8_6, -1.0_4_4_0, -0.7_9_9_9, -0.8_4_0_5, -1.2_2_7_5, -1.5_4_4_3, -1.4_6_2_5, ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = feature_extractor(_A , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , _A , atol=1e-4 ) )
357
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = (boundary[1] - boundary[0]) / steps _UpperCAmelCase = boundary[0] _UpperCAmelCase = boundary[1] _UpperCAmelCase = make_points(_A , _A , _A ) _UpperCAmelCase = 0.0 y += (h / 2.0) * f(_A ) for i in x_i: # print(i) y += h * f(_A ) y += (h / 2.0) * f(_A ) return y def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = a + h while x < (b - h): yield x _UpperCAmelCase = x + h def lowercase ( _SCREAMING_SNAKE_CASE : int ): # enter your function here '''simple docstring''' _UpperCAmelCase = (x - 0) * (x - 0) return y def lowercase ( ): '''simple docstring''' _UpperCAmelCase = 0.0 # Lower bound of integration _UpperCAmelCase = 1.0 # Upper bound of integration _UpperCAmelCase = 10.0 # define number of steps or resolution _UpperCAmelCase = [a, b] # define boundary of integration _UpperCAmelCase = method_a(_A , _A ) print(f'y = {y}' ) if __name__ == "__main__": main()
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class _a ( SCREAMING_SNAKE_CASE__): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[Any] = None , __UpperCamelCase : Optional[Any] = False , __UpperCamelCase : Union[str, Any] = False , __UpperCamelCase : Dict = None , __UpperCamelCase : int = None , **__UpperCamelCase : List[Any] , )->Union[str, Any]: super().__init__( features=A__ , cache_dir=A__ , keep_in_memory=A__ , streaming=A__ , num_proc=A__ , **A__ , ) _UpperCAmelCase = Generator( cache_dir=A__ , features=A__ , generator=A__ , gen_kwargs=A__ , **A__ , ) def lowercase__ ( self : Optional[Any] )->Optional[Any]: # Build iterable dataset if self.streaming: _UpperCAmelCase = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None self.builder.download_and_prepare( download_config=A__ , download_mode=A__ , verification_mode=A__ , base_path=A__ , num_proc=self.num_proc , ) _UpperCAmelCase = self.builder.as_dataset( split='''train''' , verification_mode=A__ , in_memory=self.keep_in_memory ) return dataset
359
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
0
"""simple docstring""" import requests __A : List[Any] = "YOUR API KEY" def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] = giphy_api_key ): '''simple docstring''' _UpperCAmelCase = '''+'''.join(query.split() ) _UpperCAmelCase = f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' _UpperCAmelCase = requests.get(_SCREAMING_SNAKE_CASE ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
360
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) _UpperCAmelCase = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids _UpperCAmelCase = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids _UpperCAmelCase = shift_tokens_right(__A , model.config.pad_token_id , model.config.decoder_start_token_id ) _UpperCAmelCase = model(__A , decoder_input_ids=__A ).logits _UpperCAmelCase = optax.softmax_cross_entropy(__A , onehot(__A , logits.shape[-1] ) ).mean() _UpperCAmelCase = -(labels.shape[-1] * loss.item()) _UpperCAmelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) __A : List[Any] = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: _UpperCAmelCase = TOKENIZER_CLASSES else: _UpperCAmelCase = {tokenizer_name: getattr(__snake_case , tokenizer_name + '''Fast''' )} logger.info(f'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: _UpperCAmelCase = TOKENIZER_CLASSES[tokenizer_name] _UpperCAmelCase = True if checkpoint_name is None: _UpperCAmelCase = list(tokenizer_class.max_model_input_sizes.keys() ) else: _UpperCAmelCase = [checkpoint_name] logger.info(f'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(f'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer _UpperCAmelCase = tokenizer_class.from_pretrained(__snake_case , force_download=__snake_case ) # Save fast tokenizer logger.info(f'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: _UpperCAmelCase , _UpperCAmelCase = checkpoint.split('''/''' ) _UpperCAmelCase = os.path.join(__snake_case , __snake_case ) elif add_prefix: _UpperCAmelCase = checkpoint _UpperCAmelCase = dump_path else: _UpperCAmelCase = None _UpperCAmelCase = dump_path logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _UpperCAmelCase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _UpperCAmelCase = file_path.split(__snake_case )[-1][0] if next_char == "/": _UpperCAmelCase = os.path.join(__snake_case , __snake_case ) _UpperCAmelCase = None logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) _UpperCAmelCase = tokenizer.save_pretrained( __snake_case , legacy_format=__snake_case , filename_prefix=__snake_case ) logger.info(f'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(__snake_case ) logger.info(f'=> removing {file_name}' ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) __A : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
362
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _a : """simple docstring""" def __init__( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str=2 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : str=4 , __UpperCamelCase : str=2 , __UpperCamelCase : int=7 , __UpperCamelCase : int=True , __UpperCamelCase : str=True , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : int=9_9 , __UpperCamelCase : str=3_6 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Tuple=3_7 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Tuple=5_1_2 , __UpperCamelCase : Optional[int]=1_6 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : Dict=6 , __UpperCamelCase : Optional[int]=6 , __UpperCamelCase : str=3 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : str=None , __UpperCamelCase : Optional[int]=1_0_0_0 , )->Optional[int]: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = text_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = coordinate_size _UpperCAmelCase = shape_size _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _UpperCAmelCase = text_seq_length _UpperCAmelCase = (image_size // patch_size) ** 2 + 1 _UpperCAmelCase = self.text_seq_length + self.image_seq_length def lowercase__ ( self : List[Any] )->Any: _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase = bbox[i, j, 3] _UpperCAmelCase = bbox[i, j, 1] _UpperCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase = bbox[i, j, 2] _UpperCAmelCase = bbox[i, j, 0] _UpperCAmelCase = t _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _UpperCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->str: _UpperCAmelCase = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image _UpperCAmelCase = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) _UpperCAmelCase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) _UpperCAmelCase = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) _UpperCAmelCase = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _UpperCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _UpperCAmelCase = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Dict )->Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] )->str: _UpperCAmelCase = self.num_labels _UpperCAmelCase = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] )->int: _UpperCAmelCase = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _a ( _snake_case , _snake_case , unittest.TestCase): """simple docstring""" UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase__ = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] )->Dict: return True def lowercase__ ( self : List[str] )->str: _UpperCAmelCase = LayoutLMvaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7 ) def lowercase__ ( self : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any]=False )->Union[str, Any]: _UpperCAmelCase = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): _UpperCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): _UpperCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def lowercase__ ( self : Any )->Optional[Any]: self.config_tester.run_common_tests() def lowercase__ ( self : List[str] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowercase__ ( self : int )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def lowercase__ ( self : str )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def lowercase__ ( self : List[str] )->Union[str, Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class _a ( unittest.TestCase): """simple docstring""" @cached_property def lowercase__ ( self : List[str] )->List[Any]: return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(UpperCamelCase__ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).pixel_values.to(UpperCamelCase__ ) _UpperCAmelCase = torch.tensor([[1, 2]] ) _UpperCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _UpperCAmelCase = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits _UpperCAmelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) _UpperCAmelCase = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A : int = logging.getLogger(__name__) __A : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __A : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field( default=snake_case__ , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(snake_case__)} , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : """simple docstring""" UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """The input training data file (a text file)."""}) UpperCamelCase__ = field( default=snake_case__ , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""}) UpperCamelCase__ = field(default=snake_case__ , metadata={"""help""": """Whether ot not to use whole word mask."""}) UpperCamelCase__ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""}) UpperCamelCase__ = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) UpperCamelCase__ = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""}) UpperCamelCase__ = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) UpperCamelCase__ = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""}) def lowercase ( _SCREAMING_SNAKE_CASE : DataTrainingArguments , _SCREAMING_SNAKE_CASE : PreTrainedTokenizer , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Optional[str] = None , ): '''simple docstring''' def _dataset(_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=SCREAMING_SNAKE_CASE_ , file_path=SCREAMING_SNAKE_CASE_ , block_size=args.block_size , ref_path=SCREAMING_SNAKE_CASE_ , ) return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE_ , file_path=SCREAMING_SNAKE_CASE_ , block_size=args.block_size ) else: return TextDataset( tokenizer=SCREAMING_SNAKE_CASE_ , file_path=SCREAMING_SNAKE_CASE_ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=SCREAMING_SNAKE_CASE_ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , SCREAMING_SNAKE_CASE_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _UpperCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: _UpperCAmelCase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) _UpperCAmelCase = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE_ ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: _UpperCAmelCase = tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCAmelCase = min(data_args.block_size , tokenizer.max_len ) # Get datasets _UpperCAmelCase = ( get_dataset(SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCAmelCase = ( get_dataset(SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , evaluate=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCAmelCase = DataCollatorForPermutationLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE_ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _UpperCAmelCase = DataCollatorForWholeWordMask( tokenizer=SCREAMING_SNAKE_CASE_ , mlm_probability=data_args.mlm_probability ) else: _UpperCAmelCase = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE_ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCAmelCase = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , prediction_loss_only=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: _UpperCAmelCase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=SCREAMING_SNAKE_CASE_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCAmelCase = trainer.evaluate() _UpperCAmelCase = math.exp(eval_output['''eval_loss'''] ) _UpperCAmelCase = {'''perplexity''': perplexity} _UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(SCREAMING_SNAKE_CASE_ ) return results def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
364
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
0
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __A : int = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None ): '''simple docstring''' require_version(deps[pkg] , snake_case__ )
365
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( _SCREAMING_SNAKE_CASE , unittest.TestCase): """simple docstring""" UpperCamelCase__ = RobertaTokenizer UpperCamelCase__ = RobertaTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = {"""cls_token""": """<s>"""} def lowercase__ ( self : List[str] )->List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : Union[str, Any] , **__UpperCamelCase : Tuple )->List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : str , **__UpperCamelCase : List[str] )->Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : Any )->Optional[Any]: _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = '''lower newer''' return input_text, output_text def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : List[Any] )->List[str]: _UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__UpperCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__UpperCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase = self.tokenizer_class.from_pretrained('''roberta-base''' ) _UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : int )->Dict: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = '''Encode this sequence.''' _UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) # Testing spaces after special tokens _UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase )} ) # mask token has a left space _UpperCAmelCase = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) _UpperCAmelCase = '''Encode <mask> sequence''' _UpperCAmelCase = '''Encode <mask>sequence''' _UpperCAmelCase = tokenizer.encode(__UpperCamelCase ) _UpperCAmelCase = encoded.index(__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase ) _UpperCAmelCase = encoded.index(__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : List[Any] )->str: pass def lowercase__ ( self : int )->Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' _UpperCAmelCase = tokenizer_r.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) _UpperCAmelCase = tokenizer_p.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __UpperCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __UpperCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowercase__ ( self : Dict )->Dict: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __UpperCamelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __UpperCamelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase = F'{text_of_1_token} {text_of_1_token}' _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ) + 1, 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , )
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
"""simple docstring""" import torch def lowercase ( ): '''simple docstring''' if torch.cuda.is_available(): _UpperCAmelCase = torch.cuda.device_count() else: _UpperCAmelCase = 0 print(f'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
367
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __A : Union[str, Any] = 'sshleifer/bart-tiny-random' __A : List[str] = 'patrickvonplaten/t5-tiny-random' @require_torch class _a ( unittest.TestCase): """simple docstring""" @cached_property def lowercase__ ( self : Dict )->Dict: return AutoConfig.from_pretrained(__a ) def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__a , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowercase__ ( self : Union[str, Any] )->List[Any]: _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__a , tempfile.mkdtemp() , e=1 , d=__a ) def lowercase__ ( self : str )->Optional[Any]: _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__a , tempfile.mkdtemp() , e=1 , d=__a ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowercase__ ( self : List[str] )->int: _UpperCAmelCase , *_UpperCAmelCase = create_student_by_copying_alternating_layers(__a , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowercase__ ( self : Tuple )->List[Any]: with self.assertRaises(__a ): create_student_by_copying_alternating_layers(__a , tempfile.mkdtemp() , e=__a , d=__a )
368
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
0
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __A : Union[str, Any] = HfArgumentParser(InitializationArguments) __A : Any = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __A : Any = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __A : Dict = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) __A : Union[str, Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __A : str = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
369
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if "img_encoder.pos_embed" in name: _UpperCAmelCase = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: _UpperCAmelCase = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: _UpperCAmelCase = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: _UpperCAmelCase = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: _UpperCAmelCase = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: _UpperCAmelCase = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: _UpperCAmelCase = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: _UpperCAmelCase = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: _UpperCAmelCase = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: _UpperCAmelCase = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: _UpperCAmelCase = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: _UpperCAmelCase = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: _UpperCAmelCase = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: _UpperCAmelCase = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: _UpperCAmelCase = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: _UpperCAmelCase = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: _UpperCAmelCase = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: _UpperCAmelCase = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: _UpperCAmelCase = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: _UpperCAmelCase = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: _UpperCAmelCase = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: _UpperCAmelCase = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: _UpperCAmelCase = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: _UpperCAmelCase = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(__SCREAMING_SNAKE_CASE ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _UpperCAmelCase = key.split('''.''' ) _UpperCAmelCase = int(key_split[2] ), int(key_split[4] ) _UpperCAmelCase = config.vision_config.hidden_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[dim : dim * 2, :] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[:dim] _UpperCAmelCase = val[dim : dim * 2] _UpperCAmelCase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors _UpperCAmelCase = key.split('''.''' ) _UpperCAmelCase = int(key_split[3] ) _UpperCAmelCase = config.text_config.hidden_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[ dim : dim * 2, : ] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[:dim] _UpperCAmelCase = val[dim : dim * 2] _UpperCAmelCase = val[-dim:] else: _UpperCAmelCase = rename_key(__SCREAMING_SNAKE_CASE ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): _UpperCAmelCase = val.squeeze_() else: _UpperCAmelCase = val return orig_state_dict def lowercase ( ): '''simple docstring''' _UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any="groupvit-gcc-yfcc" , _SCREAMING_SNAKE_CASE : str=False ): '''simple docstring''' _UpperCAmelCase = GroupViTConfig() _UpperCAmelCase = GroupViTModel(__SCREAMING_SNAKE_CASE ).eval() _UpperCAmelCase = torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' )["model"] _UpperCAmelCase = convert_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__SCREAMING_SNAKE_CASE ) == 0) # verify result _UpperCAmelCase = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) with torch.no_grad(): _UpperCAmelCase = model(**__SCREAMING_SNAKE_CASE ) if model_name == "groupvit-gcc-yfcc": _UpperCAmelCase = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": _UpperCAmelCase = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , __SCREAMING_SNAKE_CASE , atol=1E-3 ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print('''Successfully saved processor and model to''' , __SCREAMING_SNAKE_CASE ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(__SCREAMING_SNAKE_CASE , organization='''nielsr''' ) model.push_to_hub(__SCREAMING_SNAKE_CASE , organization='''nielsr''' ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) __A : str = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
370
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __A : Dict = logging.get_logger(__name__) __A : List[str] = {'''vocab_file''': '''vocab.txt'''} __A : Optional[int] = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } __A : List[str] = { '''facebook/esm2_t6_8M_UR50D''': 1024, '''facebook/esm2_t12_35M_UR50D''': 1024, } def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' with open(__lowerCAmelCase , '''r''' ) as f: _UpperCAmelCase = f.read().splitlines() return [l.strip() for l in lines] class _a ( lowerCamelCase_): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : int="<unk>" , __UpperCamelCase : Any="<cls>" , __UpperCamelCase : Optional[Any]="<pad>" , __UpperCamelCase : List[str]="<mask>" , __UpperCamelCase : Union[str, Any]="<eos>" , **__UpperCamelCase : List[Any] , )->Dict: super().__init__(**__snake_case ) _UpperCAmelCase = load_vocab_file(__snake_case ) _UpperCAmelCase = dict(enumerate(self.all_tokens ) ) _UpperCAmelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} _UpperCAmelCase = unk_token _UpperCAmelCase = cls_token _UpperCAmelCase = pad_token _UpperCAmelCase = mask_token _UpperCAmelCase = eos_token _UpperCAmelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowercase__ ( self : Dict , __UpperCamelCase : int )->str: return self._id_to_token.get(__snake_case , self.unk_token ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str )->int: return self._token_to_id.get(__snake_case , self._token_to_id.get(self.unk_token ) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[Any] , **__UpperCamelCase : int )->Any: return text.split() def lowercase__ ( self : List[Any] , __UpperCamelCase : Any=False )->str: return len(self._id_to_token ) def lowercase__ ( self : Union[str, Any] )->Optional[Any]: return {token: i for i, token in enumerate(self.all_tokens )} def lowercase__ ( self : Any , __UpperCamelCase : str )->int: return self._token_to_id.get(__snake_case , self._token_to_id.get(self.unk_token ) ) def lowercase__ ( self : Tuple , __UpperCamelCase : int )->str: return self._id_to_token.get(__snake_case , self.unk_token ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowercase__ ( self : Tuple , __UpperCamelCase : List , __UpperCamelCase : Optional[List] = None , __UpperCamelCase : bool = False )->List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _UpperCAmelCase = [1] + ([0] * len(__snake_case )) + [1] if token_ids_a is not None: mask += [0] * len(__snake_case ) + [1] return mask def lowercase__ ( self : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] )->Optional[Any]: _UpperCAmelCase = os.path.join(__snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(__snake_case , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def lowercase__ ( self : Tuple )->int: return self.get_vocab_size(with_added_tokens=__snake_case ) def lowercase__ ( self : Tuple , __UpperCamelCase : Union[List[str], List[AddedToken]] , __UpperCamelCase : bool = False )->int: return super()._add_tokens(__snake_case , special_tokens=__snake_case )
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } __A : Tuple = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } __A : Any = { "ctrl": 256, } __A : Optional[Any] = { "Pregnancy": 168629, "Christianity": 7675, "Explain": 106423, "Fitness": 63440, "Saving": 63163, "Ask": 27171, "Ass": 95985, "Joke": 163509, "Questions": 45622, "Thoughts": 49605, "Retail": 52342, "Feminism": 164338, "Writing": 11992, "Atheism": 192263, "Netflix": 48616, "Computing": 39639, "Opinion": 43213, "Alone": 44967, "Funny": 58917, "Gaming": 40358, "Human": 4088, "India": 1331, "Joker": 77138, "Diet": 36206, "Legal": 11859, "Norman": 4939, "Tip": 72689, "Weight": 52343, "Movies": 46273, "Running": 23425, "Science": 2090, "Horror": 37793, "Confession": 60572, "Finance": 12250, "Politics": 16360, "Scary": 191985, "Support": 12654, "Technologies": 32516, "Teenage": 66160, "Event": 32769, "Learned": 67460, "Notion": 182770, "Wikipedia": 37583, "Books": 6665, "Extract": 76050, "Confessions": 102701, "Conspiracy": 75932, "Links": 63674, "Narcissus": 150425, "Relationship": 54766, "Relationships": 134796, "Reviews": 41671, "News": 4256, "Translation": 26820, "multilingual": 128406, } def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) return pairs class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = CONTROL_CODES def __init__( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple="<unk>" , **__UpperCamelCase : str )->Tuple: super().__init__(unk_token=__UpperCamelCase , **__UpperCamelCase ) with open(__UpperCamelCase , encoding='''utf-8''' ) as vocab_handle: _UpperCAmelCase = json.load(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(__UpperCamelCase , encoding='''utf-8''' ) as merges_handle: _UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in merges] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = {} @property def lowercase__ ( self : Union[str, Any] )->int: return len(self.encoder ) def lowercase__ ( self : Optional[int] )->Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Union[str, Any] )->Optional[int]: if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(__UpperCamelCase ) _UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _UpperCAmelCase = get_pairs(__UpperCamelCase ) if not pairs: return token while True: _UpperCAmelCase = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(__UpperCamelCase ): try: _UpperCAmelCase = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(__UpperCamelCase ) _UpperCAmelCase = new_word if len(__UpperCamelCase ) == 1: break else: _UpperCAmelCase = get_pairs(__UpperCamelCase ) _UpperCAmelCase = '''@@ '''.join(__UpperCamelCase ) _UpperCAmelCase = word[:-4] _UpperCAmelCase = word return word def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] )->int: _UpperCAmelCase = [] _UpperCAmelCase = re.findall(r'''\S+\n?''' , __UpperCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any )->Optional[int]: return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] )->str: return self.decoder.get(__UpperCamelCase , self.unk_token ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Tuple )->Optional[int]: _UpperCAmelCase = ''' '''.join(__UpperCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + '''\n''' ) _UpperCAmelCase = 0 with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) _UpperCAmelCase = token_index writer.write(''' '''.join(__UpperCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A : Dict = logging.get_logger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Dict , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : List[Any] , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[int] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[Any] , )->int: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Dict , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , )->np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = to_numpy_array(__UpperCamelCase ) if do_resize: _UpperCAmelCase = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: _UpperCAmelCase = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: _UpperCAmelCase = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) if do_normalize: _UpperCAmelCase = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) _UpperCAmelCase = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase : Any , )->PIL.Image.Image: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) _UpperCAmelCase = make_batched(__UpperCamelCase ) _UpperCAmelCase = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] _UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
351
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : bytes ) -> Any: '''simple docstring''' return "".join([hex(_SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(_SCREAMING_SNAKE_CASE )] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ) -> Tuple: '''simple docstring''' if (len(_SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_SCREAMING_SNAKE_CASE ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __A : Any = logging.get_logger(__name__) __A : Any = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] __A : Dict = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) return sd def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple=rename_keys_prefix ): '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _UpperCAmelCase = key for name_pair in rename_keys_prefix: _UpperCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) _UpperCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _UpperCAmelCase = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: _UpperCAmelCase = '''pretraining''' if "vcr" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048} elif "vqa" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048} elif "nlvr" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 1024} else: raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 512} _UpperCAmelCase = '''multichoice''' elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048} _UpperCAmelCase = '''vqa_advanced''' elif "vqa" in checkpoint_path: _UpperCAmelCase = {'''visual_embedding_dim''': 2048, '''num_labels''': 3129} _UpperCAmelCase = '''vqa''' elif "nlvr" in checkpoint_path: _UpperCAmelCase = { '''visual_embedding_dim''': 1024, '''num_labels''': 2, } _UpperCAmelCase = '''nlvr''' _UpperCAmelCase = VisualBertConfig(**_SCREAMING_SNAKE_CASE ) # Load State Dict _UpperCAmelCase = load_state_dict(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = get_new_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if model_type == "pretraining": _UpperCAmelCase = VisualBertForPreTraining(_SCREAMING_SNAKE_CASE ) elif model_type == "vqa": _UpperCAmelCase = VisualBertForQuestionAnswering(_SCREAMING_SNAKE_CASE ) elif model_type == "nlvr": _UpperCAmelCase = VisualBertForVisualReasoning(_SCREAMING_SNAKE_CASE ) elif model_type == "multichoice": _UpperCAmelCase = VisualBertForMultipleChoice(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Save Checkpoints Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") __A : Optional[int] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
353
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
0
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class _a : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : list[tuple[float, float]] )->str: _UpperCAmelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _UpperCAmelCase = len(__UpperCamelCase ) - 1 def lowercase__ ( self : str , __UpperCamelCase : float )->list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCAmelCase = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __UpperCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__UpperCamelCase ) , 5 ) == 1 return output_values def lowercase__ ( self : List[str] , __UpperCamelCase : float )->tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." _UpperCAmelCase = self.basis_function(__UpperCamelCase ) _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowercase__ ( self : int , __UpperCamelCase : float = 0.0_1 )->Any: from matplotlib import pyplot as plt # type: ignore _UpperCAmelCase = [] # x coordinates of points to plot _UpperCAmelCase = [] # y coordinates of points to plot _UpperCAmelCase = 0.0 while t <= 1: _UpperCAmelCase = self.bezier_curve_function(__UpperCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _UpperCAmelCase = [i[0] for i in self.list_of_points] _UpperCAmelCase = [i[1] for i in self.list_of_points] plt.plot( __UpperCamelCase , __UpperCamelCase , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(__UpperCamelCase , __UpperCamelCase , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
354
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
0
"""simple docstring""" import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = VideoToVideoSDPipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""}) - {"""image""", """width""", """height"""} UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""}) - {"""image"""} UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} UpperCamelCase__ = False # No `output_type`. UpperCamelCase__ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ]) def lowercase__ ( self : Optional[Any] )->Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=3_2 , attention_head_dim=4 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) _UpperCAmelCase = CLIPTextModel(__UpperCamelCase ) _UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase__ ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : int=0 )->List[str]: # 3 frames _UpperCAmelCase = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('''mps''' ): _UpperCAmelCase = torch.manual_seed(__UpperCamelCase ) else: _UpperCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) _UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''video''': video, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = VideoToVideoSDPipeline(**__UpperCamelCase ) _UpperCAmelCase = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = self.get_dummy_inputs(__UpperCamelCase ) _UpperCAmelCase = '''np''' _UpperCAmelCase = sd_pipe(**__UpperCamelCase ).frames _UpperCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) _UpperCAmelCase = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase__ ( self : Optional[Any] )->int: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCamelCase , expected_max_diff=5e-3 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase__ ( self : Optional[int] )->Optional[Any]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase__ ( self : Union[str, Any] )->List[str]: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def lowercase__ ( self : List[str] )->Optional[int]: pass def lowercase__ ( self : int )->List[Any]: return super().test_progress_bar() @slow @skip_mps class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Any )->int: _UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames _UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCAmelCase = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=__UpperCamelCase ) _UpperCAmelCase = video.to('''cuda''' ) _UpperCAmelCase = '''Spiderman is surfing''' _UpperCAmelCase = pipe(__UpperCamelCase , video=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=3 , output_type='''pt''' ).frames _UpperCAmelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
355
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
0
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , **__UpperCamelCase : List[str] )->List[str]: super().__init__(**__UpperCamelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(__UpperCamelCase ) def lowercase__ ( self : Tuple , **__UpperCamelCase : Optional[int] )->List[Any]: _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} # preprocess args if "points_per_batch" in kwargs: _UpperCAmelCase = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: _UpperCAmelCase = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: _UpperCAmelCase = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: _UpperCAmelCase = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: _UpperCAmelCase = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: _UpperCAmelCase = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: _UpperCAmelCase = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: _UpperCAmelCase = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: _UpperCAmelCase = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: _UpperCAmelCase = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: _UpperCAmelCase = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: _UpperCAmelCase = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Any , __UpperCamelCase : Union[str, Any] , *__UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Union[str, Any]=None , **__UpperCamelCase : Optional[Any] )->Dict: return super().__call__(__UpperCamelCase , *__UpperCamelCase , num_workers=__UpperCamelCase , batch_size=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Dict=6_4 , __UpperCamelCase : int = 0 , __UpperCamelCase : float = 5_1_2 / 1_5_0_0 , __UpperCamelCase : Optional[int] = 3_2 , __UpperCamelCase : Optional[int] = 1 , )->str: _UpperCAmelCase = load_image(__UpperCamelCase ) _UpperCAmelCase = self.image_processor.size['''longest_edge'''] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.image_processor.generate_crop_boxes( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": _UpperCAmelCase = self.get_inference_context() with inference_context(): _UpperCAmelCase = self._ensure_tensor_on_device(__UpperCamelCase , device=self.device ) _UpperCAmelCase = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) _UpperCAmelCase = image_embeddings _UpperCAmelCase = grid_points.shape[1] _UpperCAmelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , __UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = grid_points[:, i : i + points_per_batch, :, :] _UpperCAmelCase = input_labels[:, i : i + points_per_batch] _UpperCAmelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase__ ( self : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any]=0.8_8 , __UpperCamelCase : str=0.9_5 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : Union[str, Any]=1 , )->Optional[Any]: _UpperCAmelCase = model_inputs.pop('''input_boxes''' ) _UpperCAmelCase = model_inputs.pop('''is_last''' ) _UpperCAmelCase = model_inputs.pop('''original_sizes''' ).tolist() _UpperCAmelCase = model_inputs.pop('''reshaped_input_sizes''' ).tolist() _UpperCAmelCase = self.model(**__UpperCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _UpperCAmelCase = model_outputs['''pred_masks'''] _UpperCAmelCase = self.image_processor.post_process_masks( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , binarize=__UpperCamelCase ) _UpperCAmelCase = model_outputs['''iou_scores'''] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase__ ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any=False , __UpperCamelCase : Dict=False , __UpperCamelCase : str=0.7 , )->Any: _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) _UpperCAmelCase = torch.cat(__UpperCamelCase ) _UpperCAmelCase = torch.cat(__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.image_processor.post_process_for_mask_generation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = defaultdict(__UpperCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__UpperCamelCase ) _UpperCAmelCase = {} if output_rle_mask: _UpperCAmelCase = rle_mask if output_bboxes_mask: _UpperCAmelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
356
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
"""simple docstring""" import string import numpy def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , _SCREAMING_SNAKE_CASE ) class _a : """simple docstring""" UpperCamelCase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCamelCase__ = numpy.vectorize(lambda lowerCAmelCase: x % 36) UpperCamelCase__ = numpy.vectorize(lowerCAmelCase) def __init__( self : List[Any] , __UpperCamelCase : numpy.ndarray )->None: _UpperCAmelCase = self.modulus(__UpperCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key _UpperCAmelCase = encrypt_key.shape[0] def lowercase__ ( self : Optional[Any] , __UpperCamelCase : str )->int: return self.key_string.index(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int )->str: return self.key_string[round(__UpperCamelCase )] def lowercase__ ( self : Dict )->None: _UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _UpperCAmelCase = det % len(self.key_string ) _UpperCAmelCase = len(self.key_string ) if greatest_common_divisor(__UpperCamelCase , len(self.key_string ) ) != 1: _UpperCAmelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : str )->str: _UpperCAmelCase = [char for char in text.upper() if char in self.key_string] _UpperCAmelCase = chars[-1] while len(__UpperCamelCase ) % self.break_key != 0: chars.append(__UpperCamelCase ) return "".join(__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : str )->str: _UpperCAmelCase = self.process_text(text.upper() ) _UpperCAmelCase = '''''' for i in range(0 , len(__UpperCamelCase ) - self.break_key + 1 , self.break_key ): _UpperCAmelCase = text[i : i + self.break_key] _UpperCAmelCase = [self.replace_letters(__UpperCamelCase ) for char in batch] _UpperCAmelCase = numpy.array([vec] ).T _UpperCAmelCase = self.modulus(self.encrypt_key.dot(__UpperCamelCase ) ).T.tolist()[ 0 ] _UpperCAmelCase = ''''''.join( self.replace_digits(__UpperCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowercase__ ( self : Any )->numpy.ndarray: _UpperCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: _UpperCAmelCase = det % len(self.key_string ) _UpperCAmelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: _UpperCAmelCase = i break _UpperCAmelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__UpperCamelCase ) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str )->str: _UpperCAmelCase = self.make_decrypt_key() _UpperCAmelCase = self.process_text(text.upper() ) _UpperCAmelCase = '''''' for i in range(0 , len(__UpperCamelCase ) - self.break_key + 1 , self.break_key ): _UpperCAmelCase = text[i : i + self.break_key] _UpperCAmelCase = [self.replace_letters(__UpperCamelCase ) for char in batch] _UpperCAmelCase = numpy.array([vec] ).T _UpperCAmelCase = self.modulus(decrypt_key.dot(__UpperCamelCase ) ).T.tolist()[0] _UpperCAmelCase = ''''''.join( self.replace_digits(__UpperCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowercase ( ): '''simple docstring''' _UpperCAmelCase = int(input('''Enter the order of the encryption key: ''' ) ) _UpperCAmelCase = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = [int(_SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = HillCipher(numpy.array(_SCREAMING_SNAKE_CASE ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) _UpperCAmelCase = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": _UpperCAmelCase = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(_SCREAMING_SNAKE_CASE ) ) elif option == "2": _UpperCAmelCase = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
357
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int = 100_0000 ): '''simple docstring''' _UpperCAmelCase = limit + 1 _UpperCAmelCase = [0] * limit for first_term in range(1 , _SCREAMING_SNAKE_CASE ): for n in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _UpperCAmelCase = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'''{solution() = }''')
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
359
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __A : Dict = "src/diffusers" # Matches is_xxx_available() __A : Union[str, Any] = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla __A : List[str] = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") __A : Optional[Any] = "\n{0} = None\n" __A : Optional[Any] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" __A : Union[str, Any] = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = _re_backend.findall(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None return "_and_".join(_SCREAMING_SNAKE_CASE ) def lowercase ( ): '''simple docstring''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCAmelCase = f.readlines() # Get to the point we do the actual imports for type checking _UpperCAmelCase = 0 _UpperCAmelCase = {} # Go through the end of the file while line_index < len(_SCREAMING_SNAKE_CASE ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _UpperCAmelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 _UpperCAmelCase = [] # Until we unindent, add backend objects to the list while line_index < len(_SCREAMING_SNAKE_CASE ) and len(lines[line_index] ) > 1: _UpperCAmelCase = lines[line_index] _UpperCAmelCase = _re_single_line_import.search(_SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = objects else: line_index += 1 return backend_specific_objects def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(_SCREAMING_SNAKE_CASE ) elif name.islower(): return DUMMY_FUNCTION.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: return DUMMY_CLASS.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' if backend_specific_objects is None: _UpperCAmelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename _UpperCAmelCase = {} for backend, objects in backend_specific_objects.items(): _UpperCAmelCase = '''[''' + ''', '''.join(f'"{b}"' for b in backend.split('''_and_''' ) ) + ''']''' _UpperCAmelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for o in objects] ) _UpperCAmelCase = dummy_file return dummy_files def lowercase ( _SCREAMING_SNAKE_CASE : Tuple=False ): '''simple docstring''' _UpperCAmelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _UpperCAmelCase = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , '''utils''' ) _UpperCAmelCase = { backend: os.path.join(_SCREAMING_SNAKE_CASE , f'dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py' ) for backend in dummy_files.keys() } _UpperCAmelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _UpperCAmelCase = f.read() else: _UpperCAmelCase = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'Updating diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py as the main ' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f'diffusers.utils.dummy_{short_names.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}_objects.py. Run `make fix-copies` ' '''to fix this.''' ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __A : Optional[Any] = parser.parse_args() check_dummies(args.fix_and_overwrite)
360
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from __future__ import annotations def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) == 9 and set(_SCREAMING_SNAKE_CASE ) == set('''123456789''' ) def lowercase ( ): '''simple docstring''' for base_num in range(9999 , 4999 , -1 ): _UpperCAmelCase = 10_0002 * base_num if is_9_pandigital(_SCREAMING_SNAKE_CASE ): return candidate for base_num in range(333 , 99 , -1 ): _UpperCAmelCase = 100_2003 * base_num if is_9_pandigital(_SCREAMING_SNAKE_CASE ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" __A : str = "Alexander Joslin" import operator as op from .stack import Stack def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} _UpperCAmelCase = Stack() _UpperCAmelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_SCREAMING_SNAKE_CASE ) ) elif i in operators: # RULE 2 operator_stack.push(_SCREAMING_SNAKE_CASE ) elif i == ")": # RULE 4 _UpperCAmelCase = operator_stack.peek() operator_stack.pop() _UpperCAmelCase = operand_stack.peek() operand_stack.pop() _UpperCAmelCase = operand_stack.peek() operand_stack.pop() _UpperCAmelCase = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) operand_stack.push(_SCREAMING_SNAKE_CASE ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __A : List[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
362
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
0
def lowercase ( _SCREAMING_SNAKE_CASE : int = 100 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 0 _UpperCAmelCase = n + 1 # maximum limit for a in range(2 , _SCREAMING_SNAKE_CASE ): for b in range(2 , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = a**b # calculates the current power collect_powers.add(_SCREAMING_SNAKE_CASE ) # adds the result to the set return len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
0
"""simple docstring""" from math import pi, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(_SCREAMING_SNAKE_CASE ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(_SCREAMING_SNAKE_CASE ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase ( ): '''simple docstring''' assert gamma(0.5 ) == sqrt(_SCREAMING_SNAKE_CASE ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __A : Optional[Any] = 1.0 while num: __A : Union[str, Any] = float(input("Gamma of: ")) print(f'''gamma({num}) = {gamma(num)}''') print("\nEnter 0 to exit...")
365
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if index == r: for j in range(_SCREAMING_SNAKE_CASE ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _UpperCAmelCase = arr[i] combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 , _SCREAMING_SNAKE_CASE , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , 0 ) if __name__ == "__main__": # Driver code to check the function above __A : Optional[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[str] = logging.get_logger(__name__) __A : int = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """xlm-prophetnet""" UpperCamelCase__ = ["""past_key_values"""] UpperCamelCase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : Optional[int] , __UpperCamelCase : Optional[float] = 0.1 , __UpperCamelCase : Optional[Union[str, Callable]] = "gelu" , __UpperCamelCase : Optional[int] = 3_0_5_2_2 , __UpperCamelCase : Optional[int] = 1_0_2_4 , __UpperCamelCase : Optional[int] = 4_0_9_6 , __UpperCamelCase : Optional[int] = 1_2 , __UpperCamelCase : Optional[int] = 1_6 , __UpperCamelCase : Optional[int] = 4_0_9_6 , __UpperCamelCase : Optional[int] = 1_2 , __UpperCamelCase : Optional[int] = 1_6 , __UpperCamelCase : Optional[float] = 0.1 , __UpperCamelCase : Optional[float] = 0.1 , __UpperCamelCase : Optional[int] = 5_1_2 , __UpperCamelCase : Optional[float] = 0.0_2 , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[int] = 0 , __UpperCamelCase : Optional[int] = 2 , __UpperCamelCase : Optional[int] = 3_2 , __UpperCamelCase : Optional[int] = 1_2_8 , __UpperCamelCase : Optional[bool] = False , __UpperCamelCase : Optional[float] = 0.0 , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[int] = 0 , __UpperCamelCase : Optional[int] = 1 , __UpperCamelCase : Optional[int] = 2 , **__UpperCamelCase : Optional[Any] , )->List[Any]: _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = encoder_ffn_dim _UpperCAmelCase = num_encoder_layers _UpperCAmelCase = num_encoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = num_decoder_layers _UpperCAmelCase = num_decoder_attention_heads _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = init_std # Normal(0, this parameter) _UpperCAmelCase = activation_function # parameters for xlmprophetnet _UpperCAmelCase = ngram _UpperCAmelCase = num_buckets _UpperCAmelCase = relative_max_distance _UpperCAmelCase = disable_ngram_loss _UpperCAmelCase = eps # 3 Types of Dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = dropout _UpperCAmelCase = use_cache super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , add_cross_attention=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , **__UpperCamelCase , ) @property def lowercase__ ( self : List[str] )->int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowercase__ ( self : Any , __UpperCamelCase : List[str] )->Union[str, Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
367
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if rows != columns: _UpperCAmelCase = ( '''\'table\' has to be of square shaped array but got a ''' f'{rows}x{columns} array:\n{table}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros((rows, columns) ) _UpperCAmelCase = np.zeros((rows, columns) ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) _UpperCAmelCase = (table[i][j] - total) / upper[j][j] _UpperCAmelCase = 1 for j in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = sum(lower[i][k] * upper[k][j] for k in range(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __A : Any = logging.get_logger(__name__) class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None @staticmethod def lowercase__ ( )->List[str]: raise NotImplementedError def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : Any )->str: raise NotImplementedError def lowercase__ ( self : Any , __UpperCamelCase : List[str] )->List[str]: raise NotImplementedError def lowercase__ ( self : List[Any] )->int: if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def lowercase__ ( cls : Optional[Any] )->Optional[Any]: return F'`pip install {cls.pip_package or cls.name}`' class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """optuna""" @staticmethod def lowercase__ ( )->int: return is_optuna_available() def lowercase__ ( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : int )->Optional[Any]: return run_hp_search_optuna(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[str] )->List[Any]: return default_hp_space_optuna(__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """ray""" UpperCamelCase__ = """'ray[tune]'""" @staticmethod def lowercase__ ( )->Optional[Any]: return is_ray_available() def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : str )->Union[str, Any]: return run_hp_search_ray(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : List[str] )->Optional[int]: return default_hp_space_ray(__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """sigopt""" @staticmethod def lowercase__ ( )->Optional[Any]: return is_sigopt_available() def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : List[str] )->List[Any]: return run_hp_search_sigopt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Any )->Any: return default_hp_space_sigopt(__UpperCamelCase ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """wandb""" @staticmethod def lowercase__ ( )->int: return is_wandb_available() def lowercase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : str , **__UpperCamelCase : int )->Optional[Any]: return run_hp_search_wandb(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any] )->Tuple: return default_hp_space_wandb(__UpperCamelCase ) __A : List[Any] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = available_backends[0].name if len(_SCREAMING_SNAKE_CASE ) > 1: logger.info( f'{len(_SCREAMING_SNAKE_CASE )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
368
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
0
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) __A : str = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCAmelCase = k.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if k.startswith('''encoder''' ): _UpperCAmelCase = k.replace('''.attn''' , '''.self_attn''' ) _UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) _UpperCAmelCase = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): _UpperCAmelCase = k.replace('''norm1''' , '''self_attn_layer_norm''' ) _UpperCAmelCase = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) _UpperCAmelCase = k.replace('''norm3''' , '''final_layer_norm''' ) return k def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: _UpperCAmelCase = sd.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd _UpperCAmelCase = v __A : Dict = ["START"] @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCAmelCase = model['''model'''] _UpperCAmelCase = BlenderbotConfig.from_json_file(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = BlenderbotForConditionalGeneration(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = m.model.state_dict().keys() _UpperCAmelCase = [] _UpperCAmelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCAmelCase = rename_state_dict_key(_SCREAMING_SNAKE_CASE ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCAmelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_SCREAMING_SNAKE_CASE ) m.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) m.half() m.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __A : List[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
369
"""simple docstring""" import logging import os from .state import PartialState class _a ( logging.LoggerAdapter): """simple docstring""" @staticmethod def lowercase__ ( __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] )->int: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) _UpperCAmelCase = kwargs.pop('''main_process_only''' , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop('''in_order''' , __UpperCamelCase ) if self.isEnabledFor(__UpperCamelCase ): if self._should_log(__UpperCamelCase ): _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) elif in_order: _UpperCAmelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: _UpperCAmelCase , _UpperCAmelCase = self.process(__UpperCamelCase , __UpperCamelCase ) self.logger.log(__UpperCamelCase , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) state.wait_for_everyone() def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str = None ): '''simple docstring''' if log_level is None: _UpperCAmelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = logging.getLogger(_SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_SCREAMING_SNAKE_CASE , {} )
326
0
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : int , __UpperCamelCase : Dict , __UpperCamelCase : str=1_3 , __UpperCamelCase : Union[str, Any]=7 , __UpperCamelCase : str=True , __UpperCamelCase : int=True , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Optional[int]=9_9 , __UpperCamelCase : Dict=3_2 , __UpperCamelCase : int=5 , __UpperCamelCase : int=4 , __UpperCamelCase : List[Any]=3_7 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Tuple=5_1_2 , __UpperCamelCase : List[Any]=1_6 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : Dict=None , )->str: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase__ ( self : int )->str: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Optional[Any] )->List[str]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = BioGptModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , )->Dict: _UpperCAmelCase = BioGptForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , *__UpperCamelCase : str )->List[str]: _UpperCAmelCase = BioGptModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # create attention mask _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCamelCase ) _UpperCAmelCase = self.seq_length // 2 _UpperCAmelCase = 0 # first forward pass _UpperCAmelCase , _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _UpperCAmelCase = ids_tensor((1,) , __UpperCamelCase ).item() + 1 _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _UpperCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__UpperCamelCase )] , dim=1 , ) # get two different outputs _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )['''last_hidden_state'''] _UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase , attention_mask=__UpperCamelCase )['''last_hidden_state'''] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , *__UpperCamelCase : Tuple )->Optional[int]: _UpperCAmelCase = BioGptModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() _UpperCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__UpperCamelCase ) # first forward pass _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) _UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )['''last_hidden_state'''] _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[ '''last_hidden_state''' ] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Dict , *__UpperCamelCase : int , __UpperCamelCase : List[Any]=False )->Tuple: _UpperCAmelCase = BioGptForCausalLM(__UpperCamelCase ) model.to(__UpperCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowercase__ ( self : str , __UpperCamelCase : Any , *__UpperCamelCase : List[Any] )->int: _UpperCAmelCase = BioGptModel(__UpperCamelCase ) _UpperCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , *__UpperCamelCase : Any )->Optional[Any]: _UpperCAmelCase = self.num_labels _UpperCAmelCase = BioGptForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : str )->int: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCamelCase__ = (BioGptForCausalLM,) if is_torch_available() else () UpperCamelCase__ = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = False def lowercase__ ( self : Optional[int] )->Union[str, Any]: _UpperCAmelCase = BioGptModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[str] )->int: self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] )->str: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__UpperCamelCase ) def lowercase__ ( self : Tuple )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__UpperCamelCase , gradient_checkpointing=__UpperCamelCase ) def lowercase__ ( self : Optional[int] )->List[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->int: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : int )->Union[str, Any]: _UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__UpperCamelCase ) _UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _UpperCAmelCase = '''left''' # Define PAD Token = EOS Token = 50256 _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = model.config.eos_token_id # use different length sentences to test batching _UpperCAmelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors='''pt''' , padding=__UpperCamelCase ) _UpperCAmelCase = inputs['''input_ids'''].to(__UpperCamelCase ) _UpperCAmelCase = model.generate( input_ids=__UpperCamelCase , attention_mask=inputs['''attention_mask'''].to(__UpperCamelCase ) , ) _UpperCAmelCase = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids=__UpperCamelCase ) _UpperCAmelCase = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() _UpperCAmelCase = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids=__UpperCamelCase , max_length=model.config.max_length - num_paddings ) _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [non_padded_sentence, padded_sentence] ) @slow def lowercase__ ( self : Dict )->List[str]: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = BioGptModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__ ( self : int )->str: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = BioGptForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : str )->Tuple: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = '''multi_label_classification''' _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase = BioGptForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) _UpperCAmelCase = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = 4_2_3_8_4 _UpperCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : str )->Optional[Any]: _UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _UpperCAmelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(__UpperCamelCase ) torch.manual_seed(0 ) _UpperCAmelCase = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__UpperCamelCase ) _UpperCAmelCase = model.generate( **__UpperCamelCase , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__UpperCamelCase , ) _UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=__UpperCamelCase ) _UpperCAmelCase = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
370
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : List[Any] = logging.get_logger(__name__) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Tuple , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Tuple , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] )->np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : str , )->List[Any]: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
0
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 __A : Tuple = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class _a ( unittest.TestCase): """simple docstring""" @classmethod def lowercase__ ( cls : Optional[Any] )->List[str]: _UpperCAmelCase = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def lowercase__ ( cls : str )->str: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def lowercase__ ( self : Union[str, Any] )->str: _UpperCAmelCase = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCamelCase , repo_id='''test-config''' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained(F'{USER}/test-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def lowercase__ ( self : str )->int: _UpperCAmelCase = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __UpperCamelCase , repo_id='''valid_org/test-config-org''' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def lowercase__ ( self : str )->str: CustomConfig.register_for_auto_class() _UpperCAmelCase = CustomConfig(attribute=4_2 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) _UpperCAmelCase = AutoConfig.from_pretrained(F'{USER}/test-dynamic-config' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 4_2 ) class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int )->Tuple: _UpperCAmelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated _UpperCAmelCase = c.n_embd + 1 # int _UpperCAmelCase = c.resid_pdrop + 1.0 # float _UpperCAmelCase = not c.scale_attn_weights # bool _UpperCAmelCase = c.summary_type + '''foo''' # str c.update_from_string( F'n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}' ) self.assertEqual(__UpperCamelCase , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(__UpperCamelCase , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(__UpperCamelCase , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(__UpperCamelCase , c.summary_type , '''mismatch for key: summary_type''' ) def lowercase__ ( self : Any )->Tuple: _UpperCAmelCase = PretrainedConfig() _UpperCAmelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __UpperCamelCase , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) _UpperCAmelCase = [key for key, value in config_common_kwargs.items() if value == getattr(__UpperCamelCase , __UpperCamelCase )] if len(__UpperCamelCase ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F' {", ".join(__UpperCamelCase )}.' ) def lowercase__ ( self : Optional[int] )->Optional[Any]: with self.assertRaises(__UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) _UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(__UpperCamelCase ) def lowercase__ ( self : int )->Any: # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 5_0_0 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=__UpperCamelCase ) as mock_head: _UpperCAmelCase = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def lowercase__ ( self : int )->str: # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def lowercase__ ( self : Tuple )->Optional[int]: _UpperCAmelCase = AutoConfig.from_pretrained('''bert-base-cased''' ) _UpperCAmelCase = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(__UpperCamelCase , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 _UpperCAmelCase = ['''config.42.0.0.json'''] _UpperCAmelCase = 7_6_8 configuration.save_pretrained(__UpperCamelCase ) shutil.move(os.path.join(__UpperCamelCase , '''config.4.0.0.json''' ) , os.path.join(__UpperCamelCase , '''config.42.0.0.json''' ) ) _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertEqual(new_configuration.hidden_size , 7_6_8 ) def lowercase__ ( self : Dict )->Any: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. _UpperCAmelCase = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers _UpperCAmelCase = '''v4.0.0''' _UpperCAmelCase , _UpperCAmelCase = new_transformers.models.auto.AutoConfig.from_pretrained( __UpperCamelCase , return_unused_kwargs=__UpperCamelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__UpperCamelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers _UpperCAmelCase = '''v3.0.0''' _UpperCAmelCase = old_transformers.models.auto.AutoConfig.from_pretrained(__UpperCamelCase ) self.assertEqual(old_configuration.hidden_size , 7_6_8 )
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __A : List[Any] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" import argparse import datetime def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = { '''0''': '''Sunday''', '''1''': '''Monday''', '''2''': '''Tuesday''', '''3''': '''Wednesday''', '''4''': '''Thursday''', '''5''': '''Friday''', '''6''': '''Saturday''', } _UpperCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_SCREAMING_SNAKE_CASE ) < 11: raise ValueError('''Must be 10 characters long''' ) # Get month _UpperCAmelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('''Month must be between 1 - 12''' ) _UpperCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get day _UpperCAmelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('''Date must be between 1 - 31''' ) # Get second separator _UpperCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('''Date separator must be \'-\' or \'/\'''' ) # Get year _UpperCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( '''Year out of range. There has to be some sort of limit...right?''' ) # Get datetime obj for validation _UpperCAmelCase = datetime.date(int(_SCREAMING_SNAKE_CASE ) , int(_SCREAMING_SNAKE_CASE ) , int(_SCREAMING_SNAKE_CASE ) ) # Start math if m <= 2: _UpperCAmelCase = y - 1 _UpperCAmelCase = m + 12 # maths var _UpperCAmelCase = int(str(_SCREAMING_SNAKE_CASE )[:2] ) _UpperCAmelCase = int(str(_SCREAMING_SNAKE_CASE )[2:] ) _UpperCAmelCase = int(2.6 * m - 5.39 ) _UpperCAmelCase = int(c / 4 ) _UpperCAmelCase = int(k / 4 ) _UpperCAmelCase = int(d + k ) _UpperCAmelCase = int(t + u + v + x ) _UpperCAmelCase = int(z - (2 * c) ) _UpperCAmelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' ) # Response _UpperCAmelCase = f'Your date {date_input}, is a {days[str(_SCREAMING_SNAKE_CASE )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() __A : Union[str, Any] = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) __A : Optional[Any] = parser.parse_args() zeller(args.date_input)
351
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Dict )->List[Any]: _UpperCAmelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__UpperCamelCase ) , torch_builtin(__UpperCamelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(__UpperCamelCase ) , gelu_new(__UpperCamelCase ) ) ) def lowercase__ ( self : List[Any] )->List[Any]: _UpperCAmelCase = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) _UpperCAmelCase = get_activation('''gelu''' ) _UpperCAmelCase = get_activation('''gelu_10''' ) _UpperCAmelCase = torch_builtin(__UpperCamelCase ) _UpperCAmelCase = geluaa(__UpperCamelCase ) _UpperCAmelCase = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__UpperCamelCase ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowercase__ ( self : Tuple )->int: get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__UpperCamelCase ): get_activation('''bogus''' ) with self.assertRaises(__UpperCamelCase ): get_activation(__UpperCamelCase ) def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = get_activation('''gelu''' ) _UpperCAmelCase = 1 _UpperCAmelCase = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = acta.a
352
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_SCREAMING_SNAKE_CASE ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
326
0
def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' for i in range(0 , _SCREAMING_SNAKE_CASE ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for i in range(_SCREAMING_SNAKE_CASE , 0 , -1 ): for _ in range(_SCREAMING_SNAKE_CASE , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(_SCREAMING_SNAKE_CASE ) # upper half reverse_floyd(_SCREAMING_SNAKE_CASE ) # lower half if __name__ == "__main__": print(r"| /\ | |- | |- |--| |\ /| |-") print(r"|/ \| |- |_ |_ |__| | \/ | |_") __A : Optional[Any] = 1 while K: __A : Any = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __A : Any = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
353
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A : Tuple = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""") @require_torch @require_tf @slow class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Path , __UpperCamelCase : Union[str, None] = None , __UpperCamelCase : Union[List[str], None] = None , __UpperCamelCase : Union[str, List[str], None] = None , __UpperCamelCase : bool = True , )->Tuple: _UpperCAmelCase = [file for file in os.listdir(__UpperCamelCase ) if os.path.isfile(os.path.join(__UpperCamelCase , __UpperCamelCase ) )] if identifier is not None: _UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__UpperCamelCase , __UpperCamelCase ): for n_ in n_identifier: _UpperCAmelCase = [file for file in files if n_ not in file] else: _UpperCAmelCase = [file for file in files if n_identifier not in file] _UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) _UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , __UpperCamelCase ) if only_modules: _UpperCAmelCase = file.split('''.''' )[0] try: _UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = doctest.DocTestSuite(__UpperCamelCase ) _UpperCAmelCase = unittest.TextTestRunner().run(__UpperCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'{module_identifier} is not a module.' ) else: _UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : str )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''modeling''' _UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase , ignore_files=__UpperCamelCase ) def lowercase__ ( self : List[Any] )->int: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''tokenization''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : str )->Any: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = '''configuration''' self.analyze_directory(__UpperCamelCase , identifier=__UpperCamelCase ) def lowercase__ ( self : int )->Optional[Any]: _UpperCAmelCase = Path('''src/transformers''' ) _UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(__UpperCamelCase , n_identifier=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] )->Any: _UpperCAmelCase = Path('''docs/source''' ) _UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(__UpperCamelCase , ignore_files=__UpperCamelCase , only_modules=__UpperCamelCase )
326
0
"""simple docstring""" class _a : """simple docstring""" def __init__( self : List[Any] )->List[str]: _UpperCAmelCase = {} def lowercase__ ( self : Optional[int] )->None: print(self.vertex ) for i in self.vertex: print(__UpperCamelCase , ''' -> ''' , ''' -> '''.join([str(__UpperCamelCase ) for j in self.vertex[i]] ) ) def lowercase__ ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : int )->None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__UpperCamelCase ) else: # else make a new vertex _UpperCAmelCase = [to_vertex] def lowercase__ ( self : Optional[int] )->None: # visited array for storing already visited nodes _UpperCAmelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : list )->None: # mark start vertex as visited _UpperCAmelCase = True print(__UpperCamelCase , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": __A : str = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
354
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _UpperCAmelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _UpperCAmelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _UpperCAmelCase = subset[i - 1][j] if arr[i - 1] <= j: _UpperCAmelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
0
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str]=7_6_8 )->Tuple: super().__init__(__UpperCamelCase ) _UpperCAmelCase = proj_size _UpperCAmelCase = CLIPVisionModel(__UpperCamelCase ) _UpperCAmelCase = PaintByExampleMapper(__UpperCamelCase ) _UpperCAmelCase = nn.LayerNorm(config.hidden_size ) _UpperCAmelCase = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling _UpperCAmelCase = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = self.model(pixel_values=__UpperCamelCase ) _UpperCAmelCase = clip_output.pooler_output _UpperCAmelCase = self.mapper(latent_states[:, None] ) _UpperCAmelCase = self.final_layer_norm(__UpperCamelCase ) _UpperCAmelCase = self.proj_out(__UpperCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _a ( nn.Module): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : int )->Dict: super().__init__() _UpperCAmelCase = (config.num_hidden_layers + 1) // 5 _UpperCAmelCase = config.hidden_size _UpperCAmelCase = 1 _UpperCAmelCase = nn.ModuleList( [ BasicTransformerBlock(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , activation_fn='''gelu''' , attention_bias=__UpperCamelCase ) for _ in range(__UpperCamelCase ) ] ) def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] )->Union[str, Any]: for block in self.blocks: _UpperCAmelCase = block(__UpperCamelCase ) return hidden_states
356
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' with open(_SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''module'''] # Load the entity vocab file _UpperCAmelCase = load_original_entity_vocab(_SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase = AddedToken('''<ent>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = AddedToken('''<ent2>''' , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''r''' ) as f: _UpperCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''MLukeTokenizer''' with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] _UpperCAmelCase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] _UpperCAmelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCAmelCase = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase = state_dict[bias_name] _UpperCAmelCase = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase = f'encoder.layer.{layer_index}.attention.self.' _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] _UpperCAmelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCAmelCase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase = state_dict['''entity_predictions.bias'''] _UpperCAmelCase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) _UpperCAmelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) _UpperCAmelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): _UpperCAmelCase = state_dict[key] else: _UpperCAmelCase = state_dict[key] _UpperCAmelCase , _UpperCAmelCase = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(_SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task='''entity_classification''' ) _UpperCAmelCase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' _UpperCAmelCase = (0, 9) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 33, 768) ) _UpperCAmelCase = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase = torch.Size((1, 1, 768) ) _UpperCAmelCase = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Tokyo is the capital of <mask>.''' _UpperCAmelCase = (24, 30) _UpperCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors='''pt''' ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = encoding['''input_ids'''][0].tolist() _UpperCAmelCase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) _UpperCAmelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(_SCREAMING_SNAKE_CASE ) ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] _UpperCAmelCase = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )] _UpperCAmelCase = {} for entry in data: _UpperCAmelCase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase = entity_id break _UpperCAmelCase = f'{language}:{entity_name}' _UpperCAmelCase = entity_id return new_mapping if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) __A : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __A : Optional[Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __A : List[str] = json.load(f) @require_torch class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : int , __UpperCamelCase : List[str] )->str: return FSMTTokenizer.from_pretrained(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] )->str: _UpperCAmelCase = FSMTForConditionalGeneration.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 2_6.0], ['''ru-en''', 2_2.0], ['''en-de''', 2_2.0], ['''de-en''', 2_9.0], ] ) @slow def lowercase__ ( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str )->int: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _UpperCAmelCase = F'facebook/wmt19-{pair}' _UpperCAmelCase = self.get_tokenizer(__UpperCamelCase ) _UpperCAmelCase = self.get_model(__UpperCamelCase ) _UpperCAmelCase = bleu_data[pair]['''src'''] _UpperCAmelCase = bleu_data[pair]['''tgt'''] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors='''pt''' , truncation=__UpperCamelCase , padding='''longest''' ).to(__UpperCamelCase ) _UpperCAmelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _UpperCAmelCase = tokenizer.batch_decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) _UpperCAmelCase = calculate_bleu(__UpperCamelCase , __UpperCamelCase ) print(__UpperCamelCase ) self.assertGreaterEqual(scores['''bleu'''] , __UpperCamelCase )
357
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __A : Tuple = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def lowercase ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : Tuple=None ): '''simple docstring''' _UpperCAmelCase = True while ask_again: _UpperCAmelCase = input(_SCREAMING_SNAKE_CASE ) try: if default is not None and len(_SCREAMING_SNAKE_CASE ) == 0: return default return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result except Exception: if error_message is not None: print(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int]=[] , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : Dict=0 ): '''simple docstring''' _UpperCAmelCase = BulletMenu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = menu.run(default_choice=_SCREAMING_SNAKE_CASE ) return convert_value(_SCREAMING_SNAKE_CASE ) if convert_value is not None else result def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = int(_SCREAMING_SNAKE_CASE ) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] ) def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class _a ( argparse.RawDescriptionHelpFormatter): """simple docstring""" def lowercase__ ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : List[Any] )->Optional[int]: _UpperCAmelCase = super()._format_usage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
326
0
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _a ( datasets.BeamBasedBuilder): """simple docstring""" def lowercase__ ( self : Union[str, Any] )->Dict: return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=__UpperCamelCase , ) def lowercase__ ( self : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] )->Tuple: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] )->int: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCamelCase ) class _a ( datasets.BeamBasedBuilder): """simple docstring""" def lowercase__ ( self : Optional[int] )->Optional[Any]: return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=__UpperCamelCase , ) def lowercase__ ( self : int , __UpperCamelCase : Dict , __UpperCamelCase : str )->Tuple: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def lowercase__ ( self : Any , __UpperCamelCase : Any , __UpperCamelCase : str )->str: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__UpperCamelCase ) def lowercase ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def lowercase ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class _a ( lowerCAmelCase): """simple docstring""" @require_beam def lowercase__ ( self : int )->str: _UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = DummyBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowercase__ ( self : Any )->int: import apache_beam as beam _UpperCAmelCase = beam.io.parquetio.WriteToParquet _UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = DummyBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: _UpperCAmelCase = partial(__UpperCamelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) _UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def lowercase__ ( self : Dict )->Dict: with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = DummyBeamDataset(cache_dir=__UpperCamelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowercase__ ( self : Optional[Any] )->int: _UpperCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _UpperCAmelCase = NestedBeamDataset(cache_dir=__UpperCamelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) _UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , __UpperCamelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , __UpperCamelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__UpperCamelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
"""simple docstring""" __A : List[Any] = 256 # Modulus to hash a string __A : int = 1000003 def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) if p_len > t_len: return False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase ( ): '''simple docstring''' _UpperCAmelCase = '''abc1abc12''' _UpperCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _UpperCAmelCase = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 2) _UpperCAmelCase = '''ABABX''' _UpperCAmelCase = '''ABABZABABYABABX''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 3) _UpperCAmelCase = '''AAAB''' _UpperCAmelCase = '''ABAAAAAB''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 4) _UpperCAmelCase = '''abcdabcy''' _UpperCAmelCase = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test 5) _UpperCAmelCase = '''Lü''' _UpperCAmelCase = '''Lüsai''' assert rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = '''Lue''' assert not rabin_karp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
359
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
326
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __A : str = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Dict , __UpperCamelCase : int = 1_0_1 )->Tuple: _UpperCAmelCase = length def __len__( self : int )->Optional[Any]: return self.length def __getitem__( self : Optional[Any] , __UpperCamelCase : Any )->int: return i class _a : """simple docstring""" def __call__( self : Any , __UpperCamelCase : Optional[Any] )->List[str]: return {"input_ids": torch.tensor(__UpperCamelCase ), "labels": torch.tensor(__UpperCamelCase )} class _a ( nn.Module): """simple docstring""" def __init__( self : Optional[Any] )->Dict: super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase = nn.Linear(1_2_0 , 8_0 ) def lowercase__ ( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict=None )->List[Any]: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( lowerCAmelCase): """simple docstring""" @require_torch_neuroncore def lowercase__ ( self : Union[str, Any] )->Dict: _UpperCAmelCase = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F'--output_dir {output_dir}'.split() _UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( lowerCAmelCase): """simple docstring""" @require_torch_multi_gpu def lowercase__ ( self : str )->Dict: _UpperCAmelCase = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = F'--output_dir {output_dir}'.split() _UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__UpperCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __A : Any = HfArgumentParser((TrainingArguments,)) __A : str = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __A : Optional[Any] = DummyDataset(dataset_length) def lowercase ( _SCREAMING_SNAKE_CASE : EvalPrediction ): '''simple docstring''' _UpperCAmelCase = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __A : List[Any] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __A : int = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __A : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __A : List[Any] = 2 __A : Optional[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __A : int = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __A : Any = None
360
"""simple docstring""" class _a : """simple docstring""" def __init__( self : Tuple , __UpperCamelCase : list[int] )->None: _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = [0] * len_array if len_array > 0: _UpperCAmelCase = array[0] for i in range(1 , __UpperCamelCase ): _UpperCAmelCase = self.prefix_sum[i - 1] + array[i] def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : int )->int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowercase__ ( self : List[Any] , __UpperCamelCase : int )->bool: _UpperCAmelCase = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : List[str] = { "nielsr/canine-s": 2048, } # Unicode defines 1,114,112 total “codepoints” __A : Union[str, Any] = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __A : Dict = 0 __A : List[Any] = 0XE000 __A : Any = 0XE001 __A : Optional[int] = 0XE002 __A : List[Any] = 0XE003 __A : Dict = 0XE004 # Maps special codepoints to human-readable names. __A : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __A : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , __UpperCamelCase : Any=chr(__UpperCamelCase ) , __UpperCamelCase : Any=chr(__UpperCamelCase ) , __UpperCamelCase : List[Any]=chr(__UpperCamelCase ) , __UpperCamelCase : List[str]=chr(__UpperCamelCase ) , __UpperCamelCase : Tuple=chr(__UpperCamelCase ) , __UpperCamelCase : Optional[Any]=chr(__UpperCamelCase ) , __UpperCamelCase : Dict=False , __UpperCamelCase : List[Any]=2_0_4_8 , **__UpperCamelCase : str , )->List[str]: _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , model_max_length=__UpperCamelCase , **__UpperCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. _UpperCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _UpperCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _UpperCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } _UpperCAmelCase = UNICODE_VOCAB_SIZE _UpperCAmelCase = len(self._special_codepoints ) @property def lowercase__ ( self : List[str] )->int: return self._unicode_vocab_size def lowercase__ ( self : str , __UpperCamelCase : str )->List[str]: return list(__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : str )->int: try: return ord(__UpperCamelCase ) except TypeError: raise ValueError(F'invalid token: \'{token}\'' ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int )->str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__UpperCamelCase ) except TypeError: raise ValueError(F'invalid id: {index}' ) def lowercase__ ( self : Dict , __UpperCamelCase : List[str] )->Union[str, Any]: return "".join(__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowercase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False )->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) _UpperCAmelCase = [1] + ([0] * len(__UpperCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(__UpperCamelCase )) + [1] return result def lowercase__ ( self : Tuple , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] _UpperCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowercase__ ( self : int , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Dict: return ()
361
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[int] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __A : Any = ["gpt2"] __A : Optional[int] = "gpt2" if is_tf_available(): class _a ( tf.Module): """simple docstring""" def __init__( self : List[str] , __UpperCamelCase : Dict )->Any: super().__init__() _UpperCAmelCase = tokenizer _UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = TFGPTaLMHeadModel.from_config(__UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[Any] )->Optional[Any]: _UpperCAmelCase = self.tokenizer(__UpperCamelCase ) _UpperCAmelCase = tokenized['''input_ids'''].to_tensor() _UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _UpperCAmelCase = self.model(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )['''logits'''] return outputs @require_tf @require_keras_nlp class _a ( unittest.TestCase): """simple docstring""" def lowercase__ ( self : Any )->List[str]: super().setUp() _UpperCAmelCase = [GPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _UpperCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] _UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase__ ( self : Optional[int] )->List[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _UpperCAmelCase = tokenizer([test_inputs] , return_tensors='''tf''' ) _UpperCAmelCase = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _UpperCAmelCase = python_outputs[key].numpy() _UpperCAmelCase = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def lowercase__ ( self : Tuple )->int: for tf_tokenizer in self.tf_tokenizers: _UpperCAmelCase = tf.function(__UpperCamelCase ) for test_inputs in self.test_sentences: _UpperCAmelCase = tf.constant(__UpperCamelCase ) _UpperCAmelCase = compiled_tokenizer(__UpperCamelCase ) _UpperCAmelCase = tf_tokenizer(__UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase__ ( self : List[Any] )->int: for tf_tokenizer in self.tf_tokenizers: _UpperCAmelCase = ModelToSave(tokenizer=__UpperCamelCase ) _UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) _UpperCAmelCase = model.serving(__UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCAmelCase = Path(__UpperCamelCase ) / '''saved.model''' tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={'''serving_default''': model.serving} ) _UpperCAmelCase = tf.saved_model.load(__UpperCamelCase ) _UpperCAmelCase = loaded_model.signatures['''serving_default'''](__UpperCamelCase )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def lowercase__ ( self : Any )->List[str]: for tf_tokenizer in self.tf_tokenizers: _UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) _UpperCAmelCase = tf_tokenizer(__UpperCamelCase ) # Build model with some sample inputs _UpperCAmelCase = tf_tokenizer.get_config() _UpperCAmelCase = TFGPTaTokenizer.from_config(__UpperCamelCase ) _UpperCAmelCase = model_from_config(__UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def lowercase__ ( self : str )->Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: # for the test to run _UpperCAmelCase = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: _UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] ) _UpperCAmelCase = tf_tokenizer(__UpperCamelCase , max_length=__UpperCamelCase ) _UpperCAmelCase = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
362
"""simple docstring""" __A : Tuple = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : Union[str, Any] = frozenset(["prompt", "negative_prompt"]) __A : str = frozenset([]) __A : List[str] = frozenset(["image"]) __A : Optional[Any] = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __A : Optional[int] = frozenset(["image"]) __A : Optional[int] = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Optional[Any] = frozenset(["prompt", "image", "negative_prompt"]) __A : str = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __A : Tuple = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __A : List[str] = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : List[Any] = frozenset(["image", "mask_image"]) __A : List[str] = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __A : Tuple = frozenset(["example_image", "image", "mask_image"]) __A : Dict = frozenset(["class_labels"]) __A : str = frozenset(["class_labels"]) __A : str = frozenset(["batch_size"]) __A : Union[str, Any] = frozenset([]) __A : str = frozenset(["batch_size"]) __A : Optional[int] = frozenset([]) __A : Any = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __A : List[str] = frozenset(["prompt", "negative_prompt"]) __A : Tuple = frozenset(["input_tokens"]) __A : Optional[int] = frozenset(["input_tokens"])
326
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[str] = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """bert-generation""" def __init__( self : Tuple , __UpperCamelCase : Dict=5_0_3_5_8 , __UpperCamelCase : Optional[int]=1_0_2_4 , __UpperCamelCase : List[Any]=2_4 , __UpperCamelCase : Dict=1_6 , __UpperCamelCase : Tuple=4_0_9_6 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Any=5_1_2 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : List[str]=1e-12 , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : List[Any]="absolute" , __UpperCamelCase : Tuple=True , **__UpperCamelCase : Union[str, Any] , )->Any: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache
364
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate _UpperCAmelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _UpperCAmelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
365
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _UpperCAmelCase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = int(sequence[i] , 2 ) return sequence def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _UpperCAmelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _UpperCAmelCase = gray_code_sequence_string(bit_count - 1 ) _UpperCAmelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _UpperCAmelCase = '''0''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _UpperCAmelCase = '''1''' + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
326
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True _UpperCAmelCase = 4 _UpperCAmelCase = (1 << p) - 1 for _ in range(p - 2 ): _UpperCAmelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0