code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "instructblip_vision_model" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]=1_408 , __SCREAMING_SNAKE_CASE : Any=6_144 , __SCREAMING_SNAKE_CASE : List[Any]=39 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : Dict=224 , __SCREAMING_SNAKE_CASE : int=14 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : str=1E-6 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=1E-10 , __SCREAMING_SNAKE_CASE : Dict=True , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = qkv_bias @classmethod def UpperCAmelCase__ ( cls : List[str] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "instructblip_qformer" def __init__( self : int , __SCREAMING_SNAKE_CASE : Dict=30_522 , __SCREAMING_SNAKE_CASE : Any=768 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Tuple=3_072 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : int=512 , __SCREAMING_SNAKE_CASE : List[str]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : Tuple="absolute" , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : Optional[int]=1_408 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = cross_attention_frequency __SCREAMING_SNAKE_CASE = encoder_hidden_size @classmethod def UpperCAmelCase__ ( cls : List[str] , __SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , **__SCREAMING_SNAKE_CASE : str ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = cls.get_config_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __SCREAMING_SNAKE_CASE = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "instructblip" lowerCAmelCase__ = True def __init__( self : Any , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=32 , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) if vision_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: __SCREAMING_SNAKE_CASE = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __SCREAMING_SNAKE_CASE = InstructBlipVisionConfig(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = InstructBlipQFormerConfig(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __SCREAMING_SNAKE_CASE = CONFIG_MAPPING[text_model_type](**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.text_config.tie_word_embeddings __SCREAMING_SNAKE_CASE = self.text_config.is_encoder_decoder __SCREAMING_SNAKE_CASE = num_query_tokens __SCREAMING_SNAKE_CASE = self.vision_config.hidden_size __SCREAMING_SNAKE_CASE = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __SCREAMING_SNAKE_CASE = 1.0 __SCREAMING_SNAKE_CASE = 0.02 @classmethod def UpperCAmelCase__ ( cls : List[str] , __SCREAMING_SNAKE_CASE : InstructBlipVisionConfig , __SCREAMING_SNAKE_CASE : InstructBlipQFormerConfig , __SCREAMING_SNAKE_CASE : PretrainedConfig , **__SCREAMING_SNAKE_CASE : Dict , ) -> Optional[Any]: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE = self.qformer_config.to_dict() __SCREAMING_SNAKE_CASE = self.text_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
367
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(a ) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Any=None ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} if prompt is not None: __SCREAMING_SNAKE_CASE = prompt if generate_kwargs is not None: __SCREAMING_SNAKE_CASE = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __SCREAMING_SNAKE_CASE = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __SCREAMING_SNAKE_CASE = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : int , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError( f'Received an invalid text input, got - {type(__SCREAMING_SNAKE_CASE )} - but expected a single string. ' """Note also that one single text can be provided for conditional image to text generation.""" ) __SCREAMING_SNAKE_CASE = self.model.config.model_type if model_type == "git": __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = self.tokenizer(text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids __SCREAMING_SNAKE_CASE = [self.tokenizer.cls_token_id] + input_ids __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(__SCREAMING_SNAKE_CASE ) else: raise ValueError(f'Model type {model_type} does not support conditional text generation' ) else: __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __SCREAMING_SNAKE_CASE = None return model_inputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any]=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , __SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __SCREAMING_SNAKE_CASE = None if generate_kwargs is None: __SCREAMING_SNAKE_CASE = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __SCREAMING_SNAKE_CASE = model_inputs.pop(self.model.main_input_name ) __SCREAMING_SNAKE_CASE = self.model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for output_ids in model_outputs: __SCREAMING_SNAKE_CASE = { """generated_text""": self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , ) } records.append(__SCREAMING_SNAKE_CASE ) return records
331
0
'''simple docstring''' def a__ ( a__ ): """simple docstring""" return str(a__ ) == str(a__ )[::-1] def a__ ( a__ ): """simple docstring""" return int(a__ ) + int(str(a__ )[::-1] ) def a__ ( a__ = 1_00_00 ): """simple docstring""" __SCREAMING_SNAKE_CASE = [] for num in range(1 , a__ ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = num while iterations < 50: __SCREAMING_SNAKE_CASE = sum_reverse(a__ ) iterations += 1 if is_palindrome(a__ ): break else: lychrel_nums.append(a__ ) return len(a__ ) if __name__ == "__main__": print(f"""{solution() = }""")
368
'''simple docstring''' def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = len(a__ ) while cur > 1: # Find the maximum number in arr __SCREAMING_SNAKE_CASE = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __SCREAMING_SNAKE_CASE = arr[mi::-1] + arr[mi + 1 : len(a__ )] # Reverse whole list __SCREAMING_SNAKE_CASE = arr[cur - 1 :: -1] + arr[cur : len(a__ )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase : str = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
331
0
'''simple docstring''' UpperCAmelCase : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase : str = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase : Optional[int] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
369
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase : int = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """words.txt""" ) __SCREAMING_SNAKE_CASE = """""" with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readline() __SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] __SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
331
0
'''simple docstring''' def a__ ( ): return 1 def a__ ( a__ ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def a__ ( a__ ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(a__ ) def a__ ( a__ ): return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(a__ ) def a__ ( a__ = 2_00 ): return two_pound(a__ ) if __name__ == "__main__": print(solution(int(input().strip())))
370
'''simple docstring''' class lowerCAmelCase__ : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = row __SCREAMING_SNAKE_CASE = col __SCREAMING_SNAKE_CASE = graph def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] __SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: # And finally, count all islands. """simple docstring""" __SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] __SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += 1 return count
331
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def a__ ( a__ , a__ , a__ , a__ , a__ = None , a__ = None , a__ = None , ): """simple docstring""" if config_name_or_path is None: __SCREAMING_SNAKE_CASE = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: __SCREAMING_SNAKE_CASE = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __SCREAMING_SNAKE_CASE = question_encoder_name_or_path __SCREAMING_SNAKE_CASE = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. __SCREAMING_SNAKE_CASE = RagConfig.from_pretrained(a__ ) __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(a__ ) __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(a__ ) __SCREAMING_SNAKE_CASE = gen_config __SCREAMING_SNAKE_CASE = question_encoder_config __SCREAMING_SNAKE_CASE = model_class.from_pretrained_question_encoder_generator( a__ , a__ , config=a__ ) rag_model.save_pretrained(a__ ) # Sanity check. model_class.from_pretrained(a__ ) # Save tokenizers. __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(a__ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(a__ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) UpperCAmelCase : Optional[int] = parser.parse_args() UpperCAmelCase : Dict = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
371
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]=99 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Tuple=37 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=4 , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_attention_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_choices def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __SCREAMING_SNAKE_CASE = jnp.array([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_000 __SCREAMING_SNAKE_CASE = (1, 6, vocab_size) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
331
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Optional[Any] = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "markuplm" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple=30_522 , __SCREAMING_SNAKE_CASE : Optional[Any]=768 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : str=3_072 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=256 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_024 , __SCREAMING_SNAKE_CASE : Dict=216 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_001 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : str=50 , __SCREAMING_SNAKE_CASE : int="absolute" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout # additional properties __SCREAMING_SNAKE_CASE = max_depth __SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings __SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings __SCREAMING_SNAKE_CASE = tag_pad_id __SCREAMING_SNAKE_CASE = subs_pad_id __SCREAMING_SNAKE_CASE = xpath_unit_hidden_size
331
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = 42 class lowerCAmelCase__ ( a , a ): """simple docstring""" @register_to_config def __init__( self : Any , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : Tuple[str] = ("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE : Tuple[int] = (64,) , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : str = "silu" , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : int = 256 , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : float = 0.18215 , __SCREAMING_SNAKE_CASE : str = "group" , ) -> List[str]: """simple docstring""" super().__init__() # pass init params to Encoder __SCREAMING_SNAKE_CASE = Encoder( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , down_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , double_z=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vq_embed_dim if vq_embed_dim is not None else latent_channels __SCREAMING_SNAKE_CASE = nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) __SCREAMING_SNAKE_CASE = VectorQuantizer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , beta=0.25 , remap=__SCREAMING_SNAKE_CASE , sane_index_shape=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) # pass init params to Decoder __SCREAMING_SNAKE_CASE = Decoder( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , up_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , norm_type=__SCREAMING_SNAKE_CASE , ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : bool = True ) -> VQEncoderOutput: """simple docstring""" __SCREAMING_SNAKE_CASE = self.encoder(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.quant_conv(__SCREAMING_SNAKE_CASE ) if not return_dict: return (h,) return VQEncoderOutput(latents=__SCREAMING_SNAKE_CASE ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.quantize(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = h __SCREAMING_SNAKE_CASE = self.post_quant_conv(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.decoder(__SCREAMING_SNAKE_CASE , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" __SCREAMING_SNAKE_CASE = sample __SCREAMING_SNAKE_CASE = self.encode(__SCREAMING_SNAKE_CASE ).latents __SCREAMING_SNAKE_CASE = self.decode(__SCREAMING_SNAKE_CASE ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE )
351
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
331
0
'''simple docstring''' import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=a__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=a__ , default=5 ) parser.add_argument("""--batch_size""" , type=a__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=a__ , default=1 ) parser.add_argument("""--freeze""" , type=a__ , default=a__ ) parser.add_argument("""--learning_rate""" , type=a__ , default=5E-4 ) parser.add_argument("""--seed""" , type=a__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=a__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=a__ , default=10 ) parser.add_argument("""--weight_decay""" , type=a__ , default=0.01 ) parser.add_argument("""--output_dir""" , type=a__ , default="""./results""" ) return parser.parse_args() UpperCAmelCase : List[Any] = load('accuracy') def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = eval_pred __SCREAMING_SNAKE_CASE = np.argmax(a__ , axis=1 ) return metric.compute(predictions=a__ , references=a__ ) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> None: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = trainer def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Any ) -> Dict: """simple docstring""" if control.should_evaluate: __SCREAMING_SNAKE_CASE = deepcopy(__SCREAMING_SNAKE_CASE ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_args() set_seed(args.seed ) __SCREAMING_SNAKE_CASE = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) __SCREAMING_SNAKE_CASE = dataset.train_test_split(test_size=0.2 ) __SCREAMING_SNAKE_CASE = train_test["""test"""].train_test_split(test_size=0.5 ) __SCREAMING_SNAKE_CASE = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.model_ckpt ) __SCREAMING_SNAKE_CASE = tokenizer.eos_token __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __SCREAMING_SNAKE_CASE = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(a__ ): __SCREAMING_SNAKE_CASE = tokenizer(example["""src"""] , truncation=a__ , max_length=10_24 ) __SCREAMING_SNAKE_CASE = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __SCREAMING_SNAKE_CASE = train_test_validation.map( a__ , batched=a__ , remove_columns=train_test_validation["""train"""].column_names , ) __SCREAMING_SNAKE_CASE = DataCollatorWithPadding(tokenizer=a__ ) __SCREAMING_SNAKE_CASE = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) __SCREAMING_SNAKE_CASE = Trainer( model=a__ , args=a__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=a__ , data_collator=a__ , compute_metrics=a__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(a__ ) ) trainer.train() if __name__ == "__main__": main()
352
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Dict = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
353
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : Optional[int]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]="None" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = relative_attention __SCREAMING_SNAKE_CASE = position_biased_input __SCREAMING_SNAKE_CASE = pos_att_type __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
331
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = 42 class lowerCAmelCase__ ( a , a ): """simple docstring""" lowerCAmelCase__ = True @register_to_config def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : Tuple[str] = ("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE : Tuple[int] = (64,) , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : str = "silu" , __SCREAMING_SNAKE_CASE : int = 4 , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : float = 0.18215 , ) -> List[Any]: """simple docstring""" super().__init__() # pass init params to Encoder __SCREAMING_SNAKE_CASE = Encoder( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , down_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , double_z=__SCREAMING_SNAKE_CASE , ) # pass init params to Decoder __SCREAMING_SNAKE_CASE = Decoder( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , up_block_types=__SCREAMING_SNAKE_CASE , block_out_channels=__SCREAMING_SNAKE_CASE , layers_per_block=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __SCREAMING_SNAKE_CASE = nn.Convad(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False # only relevant if vae tiling is enabled __SCREAMING_SNAKE_CASE = self.config.sample_size __SCREAMING_SNAKE_CASE = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __SCREAMING_SNAKE_CASE = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __SCREAMING_SNAKE_CASE = 0.25 def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int=False ) -> List[Any]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , (Encoder, Decoder) ): __SCREAMING_SNAKE_CASE = value def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : bool = True ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = use_tiling def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" self.enable_tiling(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = True def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self : Dict ) -> Dict[str, AttentionProcessor]: """simple docstring""" __SCREAMING_SNAKE_CASE = {} def fn_recursive_add_processors(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : torch.nn.Module , __SCREAMING_SNAKE_CASE : Dict[str, AttentionProcessor] ): if hasattr(__SCREAMING_SNAKE_CASE , """set_processor""" ): __SCREAMING_SNAKE_CASE = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return processors def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = len(self.attn_processors.keys() ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(__SCREAMING_SNAKE_CASE )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : torch.nn.Module , __SCREAMING_SNAKE_CASE : Optional[Any] ): if hasattr(__SCREAMING_SNAKE_CASE , """set_processor""" ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.set_processor(__SCREAMING_SNAKE_CASE ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for name, module in self.named_children(): fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : bool = True ) -> AutoencoderKLOutput: """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) if self.use_slicing and x.shape[0] > 1: __SCREAMING_SNAKE_CASE = [self.encoder(__SCREAMING_SNAKE_CASE ) for x_slice in x.split(1 )] __SCREAMING_SNAKE_CASE = torch.cat(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = self.encoder(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.quant_conv(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = DiagonalGaussianDistribution(__SCREAMING_SNAKE_CASE ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.post_quant_conv(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.decoder(__SCREAMING_SNAKE_CASE ) if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE ) @apply_forward_hook def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if self.use_slicing and z.shape[0] > 1: __SCREAMING_SNAKE_CASE = [self._decode(__SCREAMING_SNAKE_CASE ).sample for z_slice in z.split(1 )] __SCREAMING_SNAKE_CASE = torch.cat(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = self._decode(__SCREAMING_SNAKE_CASE ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = min(a.shape[2] , b.shape[2] , __SCREAMING_SNAKE_CASE ) for y in range(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = min(a.shape[3] , b.shape[3] , __SCREAMING_SNAKE_CASE ) for x in range(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : bool = True ) -> AutoencoderKLOutput: """simple docstring""" __SCREAMING_SNAKE_CASE = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __SCREAMING_SNAKE_CASE = int(self.tile_latent_min_size * self.tile_overlap_factor ) __SCREAMING_SNAKE_CASE = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __SCREAMING_SNAKE_CASE = [] for i in range(0 , x.shape[2] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [] for j in range(0 , x.shape[3] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __SCREAMING_SNAKE_CASE = self.encoder(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.quant_conv(__SCREAMING_SNAKE_CASE ) row.append(__SCREAMING_SNAKE_CASE ) rows.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [] for i, row in enumerate(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [] for j, tile in enumerate(__SCREAMING_SNAKE_CASE ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __SCREAMING_SNAKE_CASE = self.blend_v(rows[i - 1][j] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if j > 0: __SCREAMING_SNAKE_CASE = self.blend_h(row[j - 1] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=3 ) ) __SCREAMING_SNAKE_CASE = torch.cat(__SCREAMING_SNAKE_CASE , dim=2 ) __SCREAMING_SNAKE_CASE = DiagonalGaussianDistribution(__SCREAMING_SNAKE_CASE ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" __SCREAMING_SNAKE_CASE = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __SCREAMING_SNAKE_CASE = int(self.tile_sample_min_size * self.tile_overlap_factor ) __SCREAMING_SNAKE_CASE = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __SCREAMING_SNAKE_CASE = [] for i in range(0 , z.shape[2] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [] for j in range(0 , z.shape[3] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __SCREAMING_SNAKE_CASE = self.post_quant_conv(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.decoder(__SCREAMING_SNAKE_CASE ) row.append(__SCREAMING_SNAKE_CASE ) rows.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [] for i, row in enumerate(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [] for j, tile in enumerate(__SCREAMING_SNAKE_CASE ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __SCREAMING_SNAKE_CASE = self.blend_v(rows[i - 1][j] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if j > 0: __SCREAMING_SNAKE_CASE = self.blend_h(row[j - 1] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=3 ) ) __SCREAMING_SNAKE_CASE = torch.cat(__SCREAMING_SNAKE_CASE , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" __SCREAMING_SNAKE_CASE = sample __SCREAMING_SNAKE_CASE = self.encode(__SCREAMING_SNAKE_CASE ).latent_dist if sample_posterior: __SCREAMING_SNAKE_CASE = posterior.sample(generator=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = posterior.mode() __SCREAMING_SNAKE_CASE = self.decode(__SCREAMING_SNAKE_CASE ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__SCREAMING_SNAKE_CASE )
354
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = analyze_text(a__ ) __SCREAMING_SNAKE_CASE = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __SCREAMING_SNAKE_CASE = sum(single_char_strings.values() ) # one length string __SCREAMING_SNAKE_CASE = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __SCREAMING_SNAKE_CASE = single_char_strings[ch] __SCREAMING_SNAKE_CASE = my_str / all_sum my_fir_sum += prob * math.loga(a__ ) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum ):.1f}' ) # two len string __SCREAMING_SNAKE_CASE = sum(two_char_strings.values() ) __SCREAMING_SNAKE_CASE = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __SCREAMING_SNAKE_CASE = cha + cha if sequence in two_char_strings: __SCREAMING_SNAKE_CASE = two_char_strings[sequence] __SCREAMING_SNAKE_CASE = int(a__ ) / all_sum my_sec_sum += prob * math.loga(a__ ) # print second entropy print(F'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = Counter() # type: ignore __SCREAMING_SNAKE_CASE = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(a__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
331
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "marian" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __SCREAMING_SNAKE_CASE : str=58_101 , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Optional[Any]=1_024 , __SCREAMING_SNAKE_CASE : Optional[Any]=12 , __SCREAMING_SNAKE_CASE : Any=4_096 , __SCREAMING_SNAKE_CASE : str=16 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=4_096 , __SCREAMING_SNAKE_CASE : int=16 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : List[str]="gelu" , __SCREAMING_SNAKE_CASE : int=1_024 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=58_100 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : str=58_100 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=True , **__SCREAMING_SNAKE_CASE : str , ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = decoder_vocab_size or vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = d_model __SCREAMING_SNAKE_CASE = encoder_ffn_dim __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = encoder_attention_heads __SCREAMING_SNAKE_CASE = decoder_ffn_dim __SCREAMING_SNAKE_CASE = decoder_layers __SCREAMING_SNAKE_CASE = decoder_attention_heads __SCREAMING_SNAKE_CASE = dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = init_std __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = encoder_layers __SCREAMING_SNAKE_CASE = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE = share_encoder_decoder_embeddings super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , is_encoder_decoder=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , forced_eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) class lowerCAmelCase__ ( a ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCAmelCase__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE = {0: """batch"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """decoder_sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCAmelCase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = super().outputs else: __SCREAMING_SNAKE_CASE = super(__SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers for i in range(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Generate decoder inputs __SCREAMING_SNAKE_CASE = seq_length if not self.use_past else 1 __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __SCREAMING_SNAKE_CASE = dict(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape __SCREAMING_SNAKE_CASE = common_inputs["""decoder_input_ids"""].shape[1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE = decoder_seq_length + 3 __SCREAMING_SNAKE_CASE = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __SCREAMING_SNAKE_CASE = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )] , dim=1 ) __SCREAMING_SNAKE_CASE = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers __SCREAMING_SNAKE_CASE = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) - min_num_layers __SCREAMING_SNAKE_CASE = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. __SCREAMING_SNAKE_CASE = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) ) return common_inputs def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_encoder_and_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_layers __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) __SCREAMING_SNAKE_CASE = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(__SCREAMING_SNAKE_CASE ) ] return common_inputs def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE = tokenizer.num_special_tokens_to_add(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = compute_effective_axis_dimension( __SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence __SCREAMING_SNAKE_CASE = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __SCREAMING_SNAKE_CASE = dict(tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE ) ) return common_inputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : PreTrainedTokenizer , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = self._generate_dummy_inputs_for_causal_lm( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) return common_inputs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE = super()._flatten_past_key_values_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = super(__SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase__ ( self : str ) -> float: """simple docstring""" return 1E-4
355
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( a__ ): """simple docstring""" return x + 2 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) __SCREAMING_SNAKE_CASE = """x = y""" __SCREAMING_SNAKE_CASE = {"""y""": 5} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 5, """y""": 5} ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = add_two(x)""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3\ny = 5""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """text""": """This is x: 3."""} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 2} ) __SCREAMING_SNAKE_CASE = {"""x""": 8} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 8, """y""": 5} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = x""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 3} ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""range""": range} , state=__SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 2, """i""": 2} )
331
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase : str = logging.get_logger(__name__) @add_end_docstrings(a ) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image", List["Image"]] , **__SCREAMING_SNAKE_CASE : Dict ) -> Tuple: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Optional[int]="This is a photo of {}." ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(__SCREAMING_SNAKE_CASE ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(__SCREAMING_SNAKE_CASE , axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : -x[0] ) ] return result
356
'''simple docstring''' import os def a__ ( a__ = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
331
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets UpperCAmelCase : Any = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' UpperCAmelCase : List[Any] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' UpperCAmelCase : Any = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def UpperCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : Any="uniform_average" , __SCREAMING_SNAKE_CASE : Any=True ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = mean_squared_error( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , sample_weight=__SCREAMING_SNAKE_CASE , multioutput=__SCREAMING_SNAKE_CASE , squared=__SCREAMING_SNAKE_CASE ) return {"mse": mse}
357
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Any = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : Optional[Any] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Dict = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) UpperCAmelCase : str = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCAmelCase__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : argparse.Namespace , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict="base" , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = config __SCREAMING_SNAKE_CASE = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert hasattr(self.config , __SCREAMING_SNAKE_CASE ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __SCREAMING_SNAKE_CASE , getattr(self.hparams , __SCREAMING_SNAKE_CASE ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = model def UpperCAmelCase__ ( self : List[str] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model __SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.weight"""] __SCREAMING_SNAKE_CASE = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE = Adafactor( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=__SCREAMING_SNAKE_CASE , relative_step=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = AdamW( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE = optimizer __SCREAMING_SNAKE_CASE = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" return self.validation_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: """simple docstring""" return self.validation_end(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" if stage == "test": __SCREAMING_SNAKE_CASE = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(self.train_dataloader().dataset ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> int: """simple docstring""" raise NotImplementedError("""You must implement this for your task""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.train_loader def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( __SCREAMING_SNAKE_CASE , list(filter(__SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.output_dir.joinpath("""best_tfmr""" ) __SCREAMING_SNAKE_CASE = self.step_count self.model.save_pretrained(__SCREAMING_SNAKE_CASE ) self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=__SCREAMING_SNAKE_CASE , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(__SCREAMING_SNAKE_CASE ).parent / """test_run""" / """cache""" ) , type=__SCREAMING_SNAKE_CASE , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=__SCREAMING_SNAKE_CASE , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=__SCREAMING_SNAKE_CASE , metavar=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__SCREAMING_SNAKE_CASE , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=__SCREAMING_SNAKE_CASE , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=__SCREAMING_SNAKE_CASE , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--train_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--eval_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = trainer.lr_schedulers[0]["""scheduler"""] __SCREAMING_SNAKE_CASE = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> List[Any]: """simple docstring""" rank_zero_info("""***** Validation results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log results for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> str: """simple docstring""" rank_zero_info("""***** Test results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def a__ ( a__ , a__ ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(a__ ).parent / """test_run""" / """model_checkpoints""" ) , type=a__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=a__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=a__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=a__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=a__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=a__ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(a__ ).parent / """test_run""" / """dummy-train-data""" ) , type=a__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def a__ ( a__ , a__ , a__=None , a__=True , a__=[] , a__=None , a__=None , **a__ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=a__ ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(a__ ) if logging_callback is None: __SCREAMING_SNAKE_CASE = LoggingCallback() __SCREAMING_SNAKE_CASE = {} if args.fpaa: __SCREAMING_SNAKE_CASE = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = """ddp""" __SCREAMING_SNAKE_CASE = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = pl.Trainer.from_argparse_args( a__ , weights_summary=a__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a__ , val_check_interval=1 , num_sanity_val_steps=2 , **a__ , ) if args.do_train: trainer.fit(a__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
331
0
UpperCAmelCase : Optional[int] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase : Union[str, Any] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
358
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = (DDPMScheduler,) def UpperCAmelCase__ ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: __SCREAMING_SNAKE_CASE = -1 else: __SCREAMING_SNAKE_CASE = timesteps[i + 1] __SCREAMING_SNAKE_CASE = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
331
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase__ ( self : int , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def UpperCAmelCase__ ( self : List[Any] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 10, 0.0 __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample return sample def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(steps_offset=1 ) __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE , num_inference_steps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE , eta=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 10, 0.0 scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = self.dummy_sample_deter + 0.1 __SCREAMING_SNAKE_CASE = self.dummy_sample_deter - 0.1 __SCREAMING_SNAKE_CASE = samplea.shape[0] __SCREAMING_SNAKE_CASE = torch.stack([samplea, samplea, samplea] , dim=0 ) __SCREAMING_SNAKE_CASE = torch.arange(__SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __SCREAMING_SNAKE_CASE = scheduler.batch_step_no_noise(__SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.full_loop() __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=__SCREAMING_SNAKE_CASE , beta_start=0.01 ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def UpperCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.full_loop(set_alpha_to_one=__SCREAMING_SNAKE_CASE , beta_start=0.01 ) __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
359
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase : Dict = TypeVar('T') def a__ ( a__ ): """simple docstring""" return (position - 1) // 2 def a__ ( a__ ): """simple docstring""" return (2 * position) + 1 def a__ ( a__ ): """simple docstring""" return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self.elements def __repr__( self : List[str] ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase__ ( self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __SCREAMING_SNAKE_CASE = self.elements self.elements += 1 self._bubble_up(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[0] self._bubble_down(__SCREAMING_SNAKE_CASE ) return elem def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE = (elem, weight) if position > 0: __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] if curr_pos == 0: return None __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_up(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE = get_child_left_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_child_right_position(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __SCREAMING_SNAKE_CASE = nodea_pos __SCREAMING_SNAKE_CASE = nodea_pos class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __repr__( self : Dict ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Dict ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" if node not in self.connections: __SCREAMING_SNAKE_CASE = {} self.nodes += 1 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = weight __SCREAMING_SNAKE_CASE = weight def a__ ( a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = {node: maxsize for node in graph.connections} __SCREAMING_SNAKE_CASE = {node: None for node in graph.connections} __SCREAMING_SNAKE_CASE = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization __SCREAMING_SNAKE_CASE = priority_queue.extract_min() __SCREAMING_SNAKE_CASE = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node # running prim's algorithm while not priority_queue.is_empty(): __SCREAMING_SNAKE_CASE = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node return dist, parent
331
0
'''simple docstring''' def _snake_case ( a__ ): """simple docstring""" if edge <= 0 or not isinstance(a__ , a__ ): raise ValueError("""Length must be a positive.""" ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _snake_case ( a__ ): """simple docstring""" if edge <= 0 or not isinstance(a__ , a__ ): raise ValueError("""Length must be a positive.""" ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' from __future__ import annotations from cmath import sqrt def a__ ( a__ , a__ , a__ ): """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) __SCREAMING_SNAKE_CASE = b * b - 4 * a * c __SCREAMING_SNAKE_CASE = (-b + sqrt(a__ )) / (2 * a) __SCREAMING_SNAKE_CASE = (-b - sqrt(a__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
331
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase : Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase : List[Any] = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) __SCREAMING_SNAKE_CASE = self.transformer_dir shutil.copy( os.path.join(__SCREAMING_SNAKE_CASE , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """src/transformers""" shutil.rmtree(self.transformer_dir ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __SCREAMING_SNAKE_CASE = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result __SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __SCREAMING_SNAKE_CASE = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = os.path.join(self.transformer_dir , """new_code.py""" ) with open(__SCREAMING_SNAKE_CASE , """w""" , newline="""\n""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , """r""" ) as f: self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __SCREAMING_SNAKE_CASE , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with a really long name __SCREAMING_SNAKE_CASE = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}' , f'{long_class_name}LMPredictionHead' , re.sub("""Bert""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub("""Bert""" , """TestModel""" , __SCREAMING_SNAKE_CASE ) , ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] __SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) __SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme["""format_model_list"""] ) self.assertFalse(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) __SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __SCREAMING_SNAKE_CASE = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
361
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase : Optional[int] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "retribert" def __init__( self : int , __SCREAMING_SNAKE_CASE : str=30_522 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : List[str]=3_072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-12 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : Tuple=0 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = share_encoders __SCREAMING_SNAKE_CASE = projection_dim
331
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( a__ ): """simple docstring""" return x + 2 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) __SCREAMING_SNAKE_CASE = """x = y""" __SCREAMING_SNAKE_CASE = {"""y""": 5} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 5, """y""": 5} ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = add_two(x)""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3\ny = 5""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """text""": """This is x: 3."""} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 2} ) __SCREAMING_SNAKE_CASE = {"""x""": 8} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 8, """y""": 5} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = x""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 3} ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""range""": range} , state=__SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 2, """i""": 2} )
362
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AltDiffusionPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __SCREAMING_SNAKE_CASE = 77 __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[str]: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A photo of an astronaut""" __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""numpy""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
331
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "gpt_bigcode" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str=50_257 , __SCREAMING_SNAKE_CASE : Any=1_024 , __SCREAMING_SNAKE_CASE : Optional[int]=768 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Dict=12 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : str="gelu_pytorch_tanh" , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[str]=1E-5 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=50_256 , __SCREAMING_SNAKE_CASE : Union[str, Any]=50_256 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_embd __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = n_inner __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = attn_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scale_attn_weights __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = attention_softmax_in_fpaa __SCREAMING_SNAKE_CASE = scale_attention_softmax_in_fpaa __SCREAMING_SNAKE_CASE = multi_query __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
363
'''simple docstring''' import argparse import os import re import packaging.version UpperCAmelCase : Optional[int] = 'examples/' UpperCAmelCase : List[str] = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCAmelCase : Union[str, Any] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } UpperCAmelCase : Tuple = 'README.md' def a__ ( a__ , a__ , a__ ): """simple docstring""" with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = REPLACE_PATTERNS[pattern] __SCREAMING_SNAKE_CASE = replace.replace("""VERSION""" , a__ ) __SCREAMING_SNAKE_CASE = re_pattern.sub(a__ , a__ ) with open(a__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(a__ ) def a__ ( a__ ): """simple docstring""" for folder, directories, fnames in os.walk(a__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(a__ , a__ ) , a__ , pattern="""examples""" ) def a__ ( a__ , a__=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a__ , a__ , a__ ) if not patch: update_version_in_examples(a__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = """🤗 Transformers currently provides the following architectures""" __SCREAMING_SNAKE_CASE = """1. Want to contribute a new model?""" with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() # Find the start of the list. __SCREAMING_SNAKE_CASE = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __SCREAMING_SNAKE_CASE = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __SCREAMING_SNAKE_CASE = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(a__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(a__ ) def a__ ( ): """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = REPLACE_PATTERNS["""init"""][0].search(a__ ).groups()[0] return packaging.version.parse(a__ ) def a__ ( a__=False ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __SCREAMING_SNAKE_CASE = default_version.base_version elif patch: __SCREAMING_SNAKE_CASE = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: __SCREAMING_SNAKE_CASE = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. __SCREAMING_SNAKE_CASE = input(F'Which version are you releasing? [{default_version}]' ) if len(a__ ) == 0: __SCREAMING_SNAKE_CASE = default_version print(F'Updating version to {version}.' ) global_version_update(a__ , patch=a__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_version() __SCREAMING_SNAKE_CASE = F'{current_version.major}.{current_version.minor + 1}.0.dev0' __SCREAMING_SNAKE_CASE = current_version.base_version # Check with the user we got that right. __SCREAMING_SNAKE_CASE = input(F'Which version are we developing now? [{dev_version}]' ) if len(a__ ) == 0: __SCREAMING_SNAKE_CASE = dev_version print(F'Updating version to {version}.' ) global_version_update(a__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase : Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
331
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(a ) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type(__SCREAMING_SNAKE_CASE ) def __call__( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str , **__SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" return {}, {}, {} def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image.size __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model(**__SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = model_outputs.predicted_depth __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = prediction.squeeze().cpu().numpy() __SCREAMING_SNAKE_CASE = (output * 255 / np.max(__SCREAMING_SNAKE_CASE )).astype("""uint8""" ) __SCREAMING_SNAKE_CASE = Image.fromarray(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = predicted_depth __SCREAMING_SNAKE_CASE = depth return output_dict
364
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[str]=8 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Tuple=99 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Optional[int]=5 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=36 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : int=None , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = MraModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = MraForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = MraModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""MRA does not output attentions""" ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" return @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __SCREAMING_SNAKE_CASE = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __SCREAMING_SNAKE_CASE = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_265 __SCREAMING_SNAKE_CASE = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __SCREAMING_SNAKE_CASE = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_265 __SCREAMING_SNAKE_CASE = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
331
0
'''simple docstring''' import os def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """triangle.txt""" ) with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readlines() __SCREAMING_SNAKE_CASE = [] for line in triangle: __SCREAMING_SNAKE_CASE = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(a__ ) ) a.append(a__ ) for i in range(1 , len(a__ ) ): for j in range(len(a[i] ) ): __SCREAMING_SNAKE_CASE = a[i - 1][j] if j != len(a[i - 1] ) else 0 __SCREAMING_SNAKE_CASE = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a__ , a__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
365
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase__ = 10000 lowerCAmelCase__ = None lowerCAmelCase__ = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase__ = ParquetConfig def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): __SCREAMING_SNAKE_CASE = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = pq.ParquetFile(__SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}' ) raise
331
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase__ ( a , a , a ): """simple docstring""" lowerCAmelCase__ = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : int = 50_257 , __SCREAMING_SNAKE_CASE : int = 1_024 , __SCREAMING_SNAKE_CASE : int = 768 , __SCREAMING_SNAKE_CASE : int = 12 , __SCREAMING_SNAKE_CASE : int = 12 , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : str = "gelu_new" , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 0.1 , __SCREAMING_SNAKE_CASE : float = 1E-5 , __SCREAMING_SNAKE_CASE : float = 0.02 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , ) -> Optional[int]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) __SCREAMING_SNAKE_CASE = prefix_inner_dim __SCREAMING_SNAKE_CASE = prefix_hidden_dim __SCREAMING_SNAKE_CASE = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __SCREAMING_SNAKE_CASE = ( nn.Linear(self.prefix_hidden_dim , __SCREAMING_SNAKE_CASE ) if self.prefix_hidden_dim is not None else nn.Identity() ) __SCREAMING_SNAKE_CASE = GPTaConfig( vocab_size=__SCREAMING_SNAKE_CASE , n_positions=__SCREAMING_SNAKE_CASE , n_embd=__SCREAMING_SNAKE_CASE , n_layer=__SCREAMING_SNAKE_CASE , n_head=__SCREAMING_SNAKE_CASE , n_inner=__SCREAMING_SNAKE_CASE , activation_function=__SCREAMING_SNAKE_CASE , resid_pdrop=__SCREAMING_SNAKE_CASE , embd_pdrop=__SCREAMING_SNAKE_CASE , attn_pdrop=__SCREAMING_SNAKE_CASE , layer_norm_epsilon=__SCREAMING_SNAKE_CASE , initializer_range=__SCREAMING_SNAKE_CASE , scale_attn_weights=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , scale_attn_by_inverse_layer_idx=__SCREAMING_SNAKE_CASE , reorder_and_upcast_attn=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = GPTaLMHeadModel(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : torch.Tensor , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.encode_prefix(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.decode_prefix(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: __SCREAMING_SNAKE_CASE = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) __SCREAMING_SNAKE_CASE = torch.cat((dummy_token, input_ids) , dim=1 ) __SCREAMING_SNAKE_CASE = self.transformer(inputs_embeds=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : torch.device ) -> torch.Tensor: """simple docstring""" return torch.zeros(__SCREAMING_SNAKE_CASE , self.prefix_length , dtype=torch.intaa , device=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" return self.encode_prefix(__SCREAMING_SNAKE_CASE ) @torch.no_grad() def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = torch.split(__SCREAMING_SNAKE_CASE , 1 , dim=0 ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for feature in features: __SCREAMING_SNAKE_CASE = self.decode_prefix(feature.to(__SCREAMING_SNAKE_CASE ) ) # back to the clip feature # Only support beam search for now __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.generate_beam( input_embeds=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __SCREAMING_SNAKE_CASE = torch.stack(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.stack(__SCREAMING_SNAKE_CASE ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : int = 5 , __SCREAMING_SNAKE_CASE : int = 67 , __SCREAMING_SNAKE_CASE : float = 1.0 , __SCREAMING_SNAKE_CASE : Optional[int] = None , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = torch.ones(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=torch.int ) __SCREAMING_SNAKE_CASE = torch.zeros(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=torch.bool ) if input_embeds is not None: __SCREAMING_SNAKE_CASE = input_embeds else: __SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(__SCREAMING_SNAKE_CASE ) for i in range(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.transformer(inputs_embeds=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.logits __SCREAMING_SNAKE_CASE = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __SCREAMING_SNAKE_CASE = logits.softmax(-1 ).log() if scores is None: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = logits.topk(__SCREAMING_SNAKE_CASE , -1 ) __SCREAMING_SNAKE_CASE = generated.expand(__SCREAMING_SNAKE_CASE , *generated.shape[1:] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: __SCREAMING_SNAKE_CASE = next_tokens else: __SCREAMING_SNAKE_CASE = tokens.expand(__SCREAMING_SNAKE_CASE , *tokens.shape[1:] ) __SCREAMING_SNAKE_CASE = torch.cat((tokens, next_tokens) , dim=1 ) else: __SCREAMING_SNAKE_CASE = -float(np.inf ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __SCREAMING_SNAKE_CASE = scores_sum / seq_lengths[:, None] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = scores_sum_average.view(-1 ).topk(__SCREAMING_SNAKE_CASE , -1 ) __SCREAMING_SNAKE_CASE = next_tokens // scores_sum.shape[1] __SCREAMING_SNAKE_CASE = seq_lengths[next_tokens_source] __SCREAMING_SNAKE_CASE = next_tokens % scores_sum.shape[1] __SCREAMING_SNAKE_CASE = next_tokens.unsqueeze(1 ) __SCREAMING_SNAKE_CASE = tokens[next_tokens_source] __SCREAMING_SNAKE_CASE = torch.cat((tokens, next_tokens) , dim=1 ) __SCREAMING_SNAKE_CASE = generated[next_tokens_source] __SCREAMING_SNAKE_CASE = scores_sum_average * seq_lengths __SCREAMING_SNAKE_CASE = is_stopped[next_tokens_source] __SCREAMING_SNAKE_CASE = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) __SCREAMING_SNAKE_CASE = torch.cat((generated, next_token_embed) , dim=1 ) __SCREAMING_SNAKE_CASE = is_stopped + next_tokens.eq(__SCREAMING_SNAKE_CASE ).squeeze() if is_stopped.all(): break __SCREAMING_SNAKE_CASE = scores / seq_lengths __SCREAMING_SNAKE_CASE = scores.argsort(descending=__SCREAMING_SNAKE_CASE ) # tokens tensors are already padded to max_seq_length __SCREAMING_SNAKE_CASE = [tokens[i] for i in order] __SCREAMING_SNAKE_CASE = torch.stack(__SCREAMING_SNAKE_CASE , dim=0 ) __SCREAMING_SNAKE_CASE = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
366
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCAmelCase : Any = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] UpperCAmelCase : Optional[Any] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] UpperCAmelCase : Optional[int] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[str] = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[Any] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def a__ ( a__ , a__ ): """simple docstring""" for tf_name, hf_name in patterns: __SCREAMING_SNAKE_CASE = k.replace(a__ , a__ ) return k def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = BigBirdPegasusConfig(**a__ ) __SCREAMING_SNAKE_CASE = BigBirdPegasusForConditionalGeneration(a__ ) __SCREAMING_SNAKE_CASE = torch_model.state_dict() __SCREAMING_SNAKE_CASE = {} # separating decoder weights __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = DECODER_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = REMAINING_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __SCREAMING_SNAKE_CASE = mapping["""model.embed_positions.weight"""] __SCREAMING_SNAKE_CASE = mapping.pop("""model.embed_positions.weight""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch_model.load_state_dict(a__ , strict=a__ ) __SCREAMING_SNAKE_CASE = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tf.train.list_variables(a__ ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = ["""global_step"""] for name, shape in tqdm(a__ , desc="""converting tf checkpoint to dict""" ): __SCREAMING_SNAKE_CASE = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE = tf.train.load_variable(a__ , a__ ) __SCREAMING_SNAKE_CASE = array return tf_weights def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_tf_weights_as_numpy(a__ ) __SCREAMING_SNAKE_CASE = convert_bigbird_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase : int = parser.parse_args() UpperCAmelCase : Dict = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(a ) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Any=None ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} if prompt is not None: __SCREAMING_SNAKE_CASE = prompt if generate_kwargs is not None: __SCREAMING_SNAKE_CASE = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __SCREAMING_SNAKE_CASE = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __SCREAMING_SNAKE_CASE = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : int , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError( f'Received an invalid text input, got - {type(__SCREAMING_SNAKE_CASE )} - but expected a single string. ' """Note also that one single text can be provided for conditional image to text generation.""" ) __SCREAMING_SNAKE_CASE = self.model.config.model_type if model_type == "git": __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = self.tokenizer(text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids __SCREAMING_SNAKE_CASE = [self.tokenizer.cls_token_id] + input_ids __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(__SCREAMING_SNAKE_CASE ) else: raise ValueError(f'Model type {model_type} does not support conditional text generation' ) else: __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __SCREAMING_SNAKE_CASE = None return model_inputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any]=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , __SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __SCREAMING_SNAKE_CASE = None if generate_kwargs is None: __SCREAMING_SNAKE_CASE = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __SCREAMING_SNAKE_CASE = model_inputs.pop(self.model.main_input_name ) __SCREAMING_SNAKE_CASE = self.model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for output_ids in model_outputs: __SCREAMING_SNAKE_CASE = { """generated_text""": self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , ) } records.append(__SCREAMING_SNAKE_CASE ) return records
331
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = '▁' UpperCAmelCase : Union[str, Any] = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} UpperCAmelCase : List[Any] = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } UpperCAmelCase : List[str] = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } UpperCAmelCase : Optional[Any] = { 'ernie-m-base': 5_1_4, 'ernie-m-large': 5_1_4, } UpperCAmelCase : List[str] = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = ["input_ids"] lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = RESOURCE_FILES_NAMES def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : int="utf8" , __SCREAMING_SNAKE_CASE : Optional[Any]="[UNK]" , __SCREAMING_SNAKE_CASE : Any="[SEP]" , __SCREAMING_SNAKE_CASE : Tuple="[PAD]" , __SCREAMING_SNAKE_CASE : str="[CLS]" , __SCREAMING_SNAKE_CASE : Any="[MASK]" , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = sentencepiece_model_ckpt __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __SCREAMING_SNAKE_CASE = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} __SCREAMING_SNAKE_CASE = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" if text is None: return None __SCREAMING_SNAKE_CASE = self.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = """""", [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: __SCREAMING_SNAKE_CASE = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = unicodedata.normalize("""NFKC""" , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = normalized_text, [], 0 if self.do_lower_case: __SCREAMING_SNAKE_CASE = text.lower() for token in split_tokens: if token[:1] == "▁": __SCREAMING_SNAKE_CASE = token[1:] __SCREAMING_SNAKE_CASE = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset __SCREAMING_SNAKE_CASE = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __SCREAMING_SNAKE_CASE = end return token_mapping @property def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : List[str]=64 , __SCREAMING_SNAKE_CASE : int=0.1 ) -> Union[str, Any]: """simple docstring""" if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __SCREAMING_SNAKE_CASE = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __SCREAMING_SNAKE_CASE = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __SCREAMING_SNAKE_CASE = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue __SCREAMING_SNAKE_CASE = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __SCREAMING_SNAKE_CASE = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __SCREAMING_SNAKE_CASE = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> int: """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any]=None ) -> Optional[Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any]=None ) -> str: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Any=False ) -> List[str]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: __SCREAMING_SNAKE_CASE = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Dict ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = {} with io.open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = line.rstrip("""\n""" ) __SCREAMING_SNAKE_CASE = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __SCREAMING_SNAKE_CASE = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) __SCREAMING_SNAKE_CASE = token_index writer.write(token + """\n""" ) index += 1 __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , """sentencepiece.bpe.model""" ) with open(__SCREAMING_SNAKE_CASE , """wb""" ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
368
'''simple docstring''' def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = len(a__ ) while cur > 1: # Find the maximum number in arr __SCREAMING_SNAKE_CASE = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __SCREAMING_SNAKE_CASE = arr[mi::-1] + arr[mi + 1 : len(a__ )] # Reverse whole list __SCREAMING_SNAKE_CASE = arr[cur - 1 :: -1] + arr[cur : len(a__ )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase : str = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
331
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = {'vocab_file': 'spiece.model'} UpperCAmelCase : Union[str, Any] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } UpperCAmelCase : int = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) UpperCAmelCase : Tuple = 0 UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : Optional[Any] = 2 UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : List[Any] = 4 class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = "left" def __init__( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Tuple="<s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="<unk>" , __SCREAMING_SNAKE_CASE : Tuple="<sep>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Optional[int]="<cls>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<mask>" , __SCREAMING_SNAKE_CASE : str=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" if self.remove_space: __SCREAMING_SNAKE_CASE = """ """.join(inputs.strip().split() ) else: __SCREAMING_SNAKE_CASE = inputs __SCREAMING_SNAKE_CASE = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __SCREAMING_SNAKE_CASE = unicodedata.normalize("""NFKD""" , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """""".join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: __SCREAMING_SNAKE_CASE = outputs.lower() return outputs def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __SCREAMING_SNAKE_CASE = cur_pieces[1:] else: __SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__SCREAMING_SNAKE_CASE ) else: new_pieces.append(__SCREAMING_SNAKE_CASE ) return new_pieces def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.pop("""use_source_tokenizer""" , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = [] sub_texts.append(__SCREAMING_SNAKE_CASE ) else: current_sub_text.append(__SCREAMING_SNAKE_CASE ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__SCREAMING_SNAKE_CASE ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __SCREAMING_SNAKE_CASE = """""".join(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __SCREAMING_SNAKE_CASE = self.clean_up_tokenization(__SCREAMING_SNAKE_CASE ) return clean_text else: return text def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , """wb""" ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
369
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase : int = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """words.txt""" ) __SCREAMING_SNAKE_CASE = """""" with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readline() __SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] __SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
331
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase : List[Any] = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase : Optional[int] = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase : Tuple = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=4 , __SCREAMING_SNAKE_CASE : Optional[int]=False ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = compute_bleu( reference_corpus=__SCREAMING_SNAKE_CASE , translation_corpus=__SCREAMING_SNAKE_CASE , max_order=__SCREAMING_SNAKE_CASE , smooth=__SCREAMING_SNAKE_CASE ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
370
'''simple docstring''' class lowerCAmelCase__ : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = row __SCREAMING_SNAKE_CASE = col __SCREAMING_SNAKE_CASE = graph def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] __SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: # And finally, count all islands. """simple docstring""" __SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] __SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += 1 return count
331
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__ : """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : int=7 , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Tuple=99 , __SCREAMING_SNAKE_CASE : str=32 , __SCREAMING_SNAKE_CASE : Optional[int]=2 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : str=37 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=512 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : str=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = 13 __SCREAMING_SNAKE_CASE = 7 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = 99 __SCREAMING_SNAKE_CASE = 384 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 37 __SCREAMING_SNAKE_CASE = """gelu""" __SCREAMING_SNAKE_CASE = 0.1 __SCREAMING_SNAKE_CASE = 0.1 __SCREAMING_SNAKE_CASE = 512 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0.02 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 128 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 9 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFConvBertModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __SCREAMING_SNAKE_CASE = [input_ids, input_mask] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = TFConvBertForMaskedLM(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFConvBertForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Dict ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = TFConvBertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFConvBertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFConvBertForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = TFConvBertModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True if hasattr(__SCREAMING_SNAKE_CASE , """use_cache""" ): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __SCREAMING_SNAKE_CASE = getattr(self.model_tester , """key_length""" , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(model(__SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE , saved_model=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , """saved_model""" , """1""" ) __SCREAMING_SNAKE_CASE = tf.keras.models.load_model(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: __SCREAMING_SNAKE_CASE = outputs["""encoder_hidden_states"""] __SCREAMING_SNAKE_CASE = outputs["""encoder_attentions"""] else: __SCREAMING_SNAKE_CASE = outputs["""hidden_states"""] __SCREAMING_SNAKE_CASE = outputs["""attentions"""] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __SCREAMING_SNAKE_CASE = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __SCREAMING_SNAKE_CASE = getattr(self.model_tester , """key_length""" , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = getattr(self.model_tester , """key_length""" , __SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(__SCREAMING_SNAKE_CASE : List[str] ): __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 , 0 ) __SCREAMING_SNAKE_CASE = outputs.decoder_attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__SCREAMING_SNAKE_CASE : Union[str, Any] ): __SCREAMING_SNAKE_CASE = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , __SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , __SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(__SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , __SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , __SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(__SCREAMING_SNAKE_CASE ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = [1, 6, 768] self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
371
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]=99 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Tuple=37 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=4 , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_attention_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_choices def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __SCREAMING_SNAKE_CASE = jnp.array([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_000 __SCREAMING_SNAKE_CASE = (1, 6, vocab_size) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
331
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : Any = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "decision_transformer" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=17 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : str=128 , __SCREAMING_SNAKE_CASE : List[str]=4_096 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Tuple=1_024 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : List[str]=1 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict="relu" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Dict=1E-5 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : str=50_256 , __SCREAMING_SNAKE_CASE : Union[str, Any]=50_256 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : str=False , **__SCREAMING_SNAKE_CASE : int , ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = state_dim __SCREAMING_SNAKE_CASE = act_dim __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = max_ep_len __SCREAMING_SNAKE_CASE = action_tanh __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = n_inner __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = attn_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scale_attn_weights __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx __SCREAMING_SNAKE_CASE = reorder_and_upcast_attn __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "markuplm" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple=30_522 , __SCREAMING_SNAKE_CASE : Optional[Any]=768 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : str=3_072 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=256 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_024 , __SCREAMING_SNAKE_CASE : Dict=216 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_001 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : str=50 , __SCREAMING_SNAKE_CASE : int="absolute" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout # additional properties __SCREAMING_SNAKE_CASE = max_depth __SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings __SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings __SCREAMING_SNAKE_CASE = tag_pad_id __SCREAMING_SNAKE_CASE = subs_pad_id __SCREAMING_SNAKE_CASE = xpath_unit_hidden_size
331
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def a__ ( a__ = 1_00_00_00 , a__ = 10 ): """simple docstring""" __SCREAMING_SNAKE_CASE = defaultdict(a__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __SCREAMING_SNAKE_CASE = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __SCREAMING_SNAKE_CASE = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(a__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
351
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
331
0
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCAmelCase : Any = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] UpperCAmelCase : Optional[Any] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] UpperCAmelCase : Optional[int] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[str] = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[Any] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def a__ ( a__ , a__ ): """simple docstring""" for tf_name, hf_name in patterns: __SCREAMING_SNAKE_CASE = k.replace(a__ , a__ ) return k def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = BigBirdPegasusConfig(**a__ ) __SCREAMING_SNAKE_CASE = BigBirdPegasusForConditionalGeneration(a__ ) __SCREAMING_SNAKE_CASE = torch_model.state_dict() __SCREAMING_SNAKE_CASE = {} # separating decoder weights __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = DECODER_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = REMAINING_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __SCREAMING_SNAKE_CASE = mapping["""model.embed_positions.weight"""] __SCREAMING_SNAKE_CASE = mapping.pop("""model.embed_positions.weight""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch_model.load_state_dict(a__ , strict=a__ ) __SCREAMING_SNAKE_CASE = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tf.train.list_variables(a__ ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = ["""global_step"""] for name, shape in tqdm(a__ , desc="""converting tf checkpoint to dict""" ): __SCREAMING_SNAKE_CASE = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE = tf.train.load_variable(a__ , a__ ) __SCREAMING_SNAKE_CASE = array return tf_weights def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_tf_weights_as_numpy(a__ ) __SCREAMING_SNAKE_CASE = convert_bigbird_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase : int = parser.parse_args() UpperCAmelCase : Dict = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
352
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
'''simple docstring''' def a__ ( a__ , a__ , a__ , a__ , a__ , a__ ): """simple docstring""" if index == r: for j in range(a__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __SCREAMING_SNAKE_CASE = arr[i] combination_util(a__ , a__ , a__ , index + 1 , a__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(a__ , a__ , a__ , a__ , a__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [0] * r # Print all combination using temporary array 'data[]' combination_util(a__ , a__ , a__ , 0 , a__ , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCAmelCase : List[Any] = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
353
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : Optional[int]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]="None" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = relative_attention __SCREAMING_SNAKE_CASE = position_biased_input __SCREAMING_SNAKE_CASE = pos_att_type __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
331
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase : Optional[int] = re.compile(R'\s+') def a__ ( a__ ): """simple docstring""" return {"hash": hashlib.mda(re.sub(a__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = [len(a__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(a__ ), "line_max": max(a__ )} def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def a__ ( a__ , a__ ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def a__ ( a__ , a__=5 ): """simple docstring""" __SCREAMING_SNAKE_CASE = ["""auto-generated""", """autogenerated""", """automatically generated"""] __SCREAMING_SNAKE_CASE = example["""content"""].splitlines() for _, line in zip(range(a__ ) , a__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a__ ( a__ , a__=5 , a__=0.05 ): """simple docstring""" __SCREAMING_SNAKE_CASE = ["""unit tests""", """test file""", """configuration file"""] __SCREAMING_SNAKE_CASE = example["""content"""].splitlines() __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 # first test for _, line in zip(range(a__ ) , a__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __SCREAMING_SNAKE_CASE = example["""content"""].count("""\n""" ) __SCREAMING_SNAKE_CASE = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ["""def """, """class """, """for """, """while """] __SCREAMING_SNAKE_CASE = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a__ ( a__ , a__=4 ): """simple docstring""" __SCREAMING_SNAKE_CASE = example["""content"""].splitlines() __SCREAMING_SNAKE_CASE = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tokenizer(example["""content"""] , truncation=a__ )["""input_ids"""] __SCREAMING_SNAKE_CASE = len(example["""content"""] ) / len(a__ ) return {"ratio": ratio} def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = {} results.update(get_hash(a__ ) ) results.update(line_stats(a__ ) ) results.update(alpha_stats(a__ ) ) results.update(char_token_ratio(a__ ) ) results.update(is_autogenerated(a__ ) ) results.update(is_config_or_test(a__ ) ) results.update(has_no_keywords(a__ ) ) results.update(has_few_assignments(a__ ) ) return results def a__ ( a__ , a__ , a__ ): """simple docstring""" if not check_uniques(a__ , a__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a__ ( a__ ): """simple docstring""" with open(a__ , """rb""" ) as f_in: with gzip.open(str(a__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(a__ , a__ ) os.unlink(a__ ) # Settings UpperCAmelCase : Dict = HfArgumentParser(PreprocessingArguments) UpperCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase : int = multiprocessing.cpu_count() UpperCAmelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase : List[Any] = time.time() UpperCAmelCase : str = load_dataset(args.dataset_name, split='train') print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing UpperCAmelCase : int = time.time() UpperCAmelCase : List[Any] = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes UpperCAmelCase : Optional[Any] = set(ds.unique('hash')) UpperCAmelCase : Dict = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics UpperCAmelCase : Optional[int] = time.time() UpperCAmelCase : Tuple = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase : Dict = time.time() UpperCAmelCase : Tuple = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file UpperCAmelCase : Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase : Union[str, Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase : str = str(data_dir / f"""file-{file_number+1:012}.json""") UpperCAmelCase : List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
354
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = analyze_text(a__ ) __SCREAMING_SNAKE_CASE = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __SCREAMING_SNAKE_CASE = sum(single_char_strings.values() ) # one length string __SCREAMING_SNAKE_CASE = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __SCREAMING_SNAKE_CASE = single_char_strings[ch] __SCREAMING_SNAKE_CASE = my_str / all_sum my_fir_sum += prob * math.loga(a__ ) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum ):.1f}' ) # two len string __SCREAMING_SNAKE_CASE = sum(two_char_strings.values() ) __SCREAMING_SNAKE_CASE = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __SCREAMING_SNAKE_CASE = cha + cha if sequence in two_char_strings: __SCREAMING_SNAKE_CASE = two_char_strings[sequence] __SCREAMING_SNAKE_CASE = int(a__ ) / all_sum my_sec_sum += prob * math.loga(a__ ) # print second entropy print(F'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = Counter() # type: ignore __SCREAMING_SNAKE_CASE = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(a__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
331
0
'''simple docstring''' def a__ ( a__ ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( a__ ): """simple docstring""" return x + 2 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) __SCREAMING_SNAKE_CASE = """x = y""" __SCREAMING_SNAKE_CASE = {"""y""": 5} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 5, """y""": 5} ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = add_two(x)""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3\ny = 5""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """text""": """This is x: 3."""} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 2} ) __SCREAMING_SNAKE_CASE = {"""x""": 8} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 8, """y""": 5} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = x""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 3} ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""range""": range} , state=__SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 2, """i""": 2} )
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase : Dict = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import os def a__ ( a__ = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
331
0
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCAmelCase : Tuple = logging.get_logger(__name__) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(a__ ) == len(a__ ), F'{len(a__ )} != {len(a__ )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCAmelCase : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCAmelCase : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def a__ ( a__ , a__ ): """simple docstring""" try: __SCREAMING_SNAKE_CASE = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(a__ ) ) def a__ ( a__ , a__ ): """simple docstring""" if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(a__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( a__ , a__ = "student" , a__ = None , a__ = None , a__=False , a__=None , a__=None , **a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(a__ , a__ ): AutoTokenizer.from_pretrained(a__ ).save_pretrained(a__ ) # purely for convenience __SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(a__ ).eval() else: assert isinstance(a__ , a__ ), F'teacher must be a model or string got type {type(a__ )}' __SCREAMING_SNAKE_CASE = teacher.config.to_diff_dict() try: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: __SCREAMING_SNAKE_CASE = teacher_e if d is None: __SCREAMING_SNAKE_CASE = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: __SCREAMING_SNAKE_CASE = teacher_e if d is None: __SCREAMING_SNAKE_CASE = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(a__ ) # Copy weights __SCREAMING_SNAKE_CASE = teacher.config_class(**a__ ) __SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_config(a__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. __SCREAMING_SNAKE_CASE = student.load_state_dict(teacher.state_dict() , strict=a__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = list(range(a__ ) ), list(range(a__ ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(a__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: __SCREAMING_SNAKE_CASE = pick_layers_to_copy(a__ , a__ ) if d_layers_to_copy is None: __SCREAMING_SNAKE_CASE = pick_layers_to_copy(a__ , a__ ) try: if hasattr( a__ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , a__ ) copy_layers(teacher.decoder.block , student.decoder.block , a__ ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) __SCREAMING_SNAKE_CASE = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(a__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
357
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Any = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : Optional[Any] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Dict = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) UpperCAmelCase : str = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCAmelCase__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : argparse.Namespace , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict="base" , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = config __SCREAMING_SNAKE_CASE = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert hasattr(self.config , __SCREAMING_SNAKE_CASE ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __SCREAMING_SNAKE_CASE , getattr(self.hparams , __SCREAMING_SNAKE_CASE ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = model def UpperCAmelCase__ ( self : List[str] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model __SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.weight"""] __SCREAMING_SNAKE_CASE = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE = Adafactor( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=__SCREAMING_SNAKE_CASE , relative_step=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = AdamW( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE = optimizer __SCREAMING_SNAKE_CASE = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" return self.validation_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: """simple docstring""" return self.validation_end(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" if stage == "test": __SCREAMING_SNAKE_CASE = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(self.train_dataloader().dataset ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> int: """simple docstring""" raise NotImplementedError("""You must implement this for your task""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.train_loader def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( __SCREAMING_SNAKE_CASE , list(filter(__SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.output_dir.joinpath("""best_tfmr""" ) __SCREAMING_SNAKE_CASE = self.step_count self.model.save_pretrained(__SCREAMING_SNAKE_CASE ) self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=__SCREAMING_SNAKE_CASE , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(__SCREAMING_SNAKE_CASE ).parent / """test_run""" / """cache""" ) , type=__SCREAMING_SNAKE_CASE , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=__SCREAMING_SNAKE_CASE , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=__SCREAMING_SNAKE_CASE , metavar=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__SCREAMING_SNAKE_CASE , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=__SCREAMING_SNAKE_CASE , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=__SCREAMING_SNAKE_CASE , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--train_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--eval_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = trainer.lr_schedulers[0]["""scheduler"""] __SCREAMING_SNAKE_CASE = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> List[Any]: """simple docstring""" rank_zero_info("""***** Validation results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log results for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> str: """simple docstring""" rank_zero_info("""***** Test results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def a__ ( a__ , a__ ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(a__ ).parent / """test_run""" / """model_checkpoints""" ) , type=a__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=a__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=a__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=a__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=a__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=a__ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(a__ ).parent / """test_run""" / """dummy-train-data""" ) , type=a__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def a__ ( a__ , a__ , a__=None , a__=True , a__=[] , a__=None , a__=None , **a__ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=a__ ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(a__ ) if logging_callback is None: __SCREAMING_SNAKE_CASE = LoggingCallback() __SCREAMING_SNAKE_CASE = {} if args.fpaa: __SCREAMING_SNAKE_CASE = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = """ddp""" __SCREAMING_SNAKE_CASE = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = pl.Trainer.from_argparse_args( a__ , weights_summary=a__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a__ , val_check_interval=1 , num_sanity_val_steps=2 , **a__ , ) if args.do_train: trainer.fit(a__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
331
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = ["audio_values", "audio_mask"] def __init__( self : str , __SCREAMING_SNAKE_CASE : Tuple=2_048 , __SCREAMING_SNAKE_CASE : Optional[Any]=1 , __SCREAMING_SNAKE_CASE : List[str]=[16, 16] , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : Tuple=44_100 , __SCREAMING_SNAKE_CASE : Union[str, Any]=86 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2_048 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = spectrogram_length __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = feature_size // self.patch_size[1] __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = sampling_rate // hop_length_to_sampling_rate __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm="""slaney""" , mel_scale="""slaney""" , ).T def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = log_spec - 20.0 __SCREAMING_SNAKE_CASE = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , **__SCREAMING_SNAKE_CASE : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __SCREAMING_SNAKE_CASE = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __SCREAMING_SNAKE_CASE = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __SCREAMING_SNAKE_CASE = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __SCREAMING_SNAKE_CASE = np.ones([len(__SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = padded_audio_features * self.padding_value for i in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = audio_features[i] __SCREAMING_SNAKE_CASE = feature # return as BatchFeature if return_attention_mask: __SCREAMING_SNAKE_CASE = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: __SCREAMING_SNAKE_CASE = {"""audio_values""": padded_audio_features} __SCREAMING_SNAKE_CASE = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
358
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = (DDPMScheduler,) def UpperCAmelCase__ ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: __SCREAMING_SNAKE_CASE = -1 else: __SCREAMING_SNAKE_CASE = timesteps[i + 1] __SCREAMING_SNAKE_CASE = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
331
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a__ ( a__ , a__ , a__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' __SCREAMING_SNAKE_CASE = nn.Parameter(a__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' __SCREAMING_SNAKE_CASE = nn.Parameter(a__ ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(a__ ).transpose(1 , 2 ).contiguous().view(-1 , a__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a__ ).transpose(1 , 2 ).contiguous().view(-1 , a__ ) , ) set_param( torch_layer.output.dense , torch.tensor(a__ ).view(-1 , a__ ).contiguous().transpose(0 , 1 ) , ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = np.asarray(weights[0] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[2] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(a__ ).transpose(1 , 2 ).contiguous().view(-1 , a__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(a__ ).transpose(1 , 2 ).contiguous().view(-1 , a__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(a__ ).transpose(1 , 2 ).contiguous().view(-1 , a__ ) , ) set_param( torch_layer.output.dense , torch.tensor(a__ ).view(-1 , a__ ).contiguous().transpose(0 , 1 ) , ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = weights[0][0][0] __SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[0] ) __SCREAMING_SNAKE_CASE = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(a__ ) , torch.tensor(a__ ) , ) # lsh weights + output __SCREAMING_SNAKE_CASE = weights[0][1] if len(a__ ) < 4: set_layer_weights_in_torch_lsh(a__ , torch_block.attention , a__ ) else: set_layer_weights_in_torch_local(a__ , torch_block.attention , a__ ) # intermediate weighs __SCREAMING_SNAKE_CASE = weights[2][0][1][2] # Chunked Feed Forward if len(a__ ) == 4: __SCREAMING_SNAKE_CASE = intermediate_weights[2] # layernorm 2 __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][0] ) __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(a__ ) , torch.tensor(a__ ) , ) # intermediate dense __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][0] ) __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(a__ ).transpose(0 , 1 ).contiguous() , torch.tensor(a__ ) , ) # intermediate out __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][0] ) __SCREAMING_SNAKE_CASE = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(a__ ).transpose(0 , 1 ).contiguous() , torch.tensor(a__ ) , ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = torch_model.reformer # word embeds __SCREAMING_SNAKE_CASE = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(a__ ) , ) if isinstance(weights[3] , a__ ): __SCREAMING_SNAKE_CASE = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __SCREAMING_SNAKE_CASE = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' __SCREAMING_SNAKE_CASE = nn.Parameter(torch.tensor(a__ ) ) __SCREAMING_SNAKE_CASE = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( a__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __SCREAMING_SNAKE_CASE = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(a__ , a__ , a__ ) # output layer norm __SCREAMING_SNAKE_CASE = np.asarray(weights[7][0] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(a__ ) , torch.tensor(a__ ) , ) # output embeddings __SCREAMING_SNAKE_CASE = np.asarray(weights[9][0] ) __SCREAMING_SNAKE_CASE = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(a__ ).transpose(0 , 1 ).contiguous() , torch.tensor(a__ ) , ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ReformerConfig.from_json_file(a__ ) print(F'Building PyTorch model from configuration: {config}' ) __SCREAMING_SNAKE_CASE = ReformerModelWithLMHead(a__ ) with open(a__ , """rb""" ) as f: __SCREAMING_SNAKE_CASE = pickle.load(a__ )["""weights"""] set_model_weights_in_torch(a__ , a__ , config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
359
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase : Dict = TypeVar('T') def a__ ( a__ ): """simple docstring""" return (position - 1) // 2 def a__ ( a__ ): """simple docstring""" return (2 * position) + 1 def a__ ( a__ ): """simple docstring""" return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self.elements def __repr__( self : List[str] ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase__ ( self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __SCREAMING_SNAKE_CASE = self.elements self.elements += 1 self._bubble_up(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[0] self._bubble_down(__SCREAMING_SNAKE_CASE ) return elem def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE = (elem, weight) if position > 0: __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] if curr_pos == 0: return None __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_up(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE = get_child_left_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_child_right_position(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __SCREAMING_SNAKE_CASE = nodea_pos __SCREAMING_SNAKE_CASE = nodea_pos class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __repr__( self : Dict ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Dict ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" if node not in self.connections: __SCREAMING_SNAKE_CASE = {} self.nodes += 1 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = weight __SCREAMING_SNAKE_CASE = weight def a__ ( a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = {node: maxsize for node in graph.connections} __SCREAMING_SNAKE_CASE = {node: None for node in graph.connections} __SCREAMING_SNAKE_CASE = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization __SCREAMING_SNAKE_CASE = priority_queue.extract_min() __SCREAMING_SNAKE_CASE = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node # running prim's algorithm while not priority_queue.is_empty(): __SCREAMING_SNAKE_CASE = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node return dist, parent
331
0
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase : int = TypeVar('T') UpperCAmelCase : Optional[int] = Union[List[T], Tuple[T, ...]] UpperCAmelCase : Optional[int] = Union[T, List[T], Dict[str, T]] UpperCAmelCase : Optional[Any] = Union[str, bytes, os.PathLike]
360
'''simple docstring''' from __future__ import annotations from cmath import sqrt def a__ ( a__ , a__ , a__ ): """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) __SCREAMING_SNAKE_CASE = b * b - 4 * a * c __SCREAMING_SNAKE_CASE = (-b + sqrt(a__ )) / (2 * a) __SCREAMING_SNAKE_CASE = (-b - sqrt(a__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
331
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase : Any = logging.get_logger(__name__) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = ["input_features"] def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=80 , __SCREAMING_SNAKE_CASE : Union[str, Any]=16_000 , __SCREAMING_SNAKE_CASE : Optional[int]=160 , __SCREAMING_SNAKE_CASE : Optional[Any]=30 , __SCREAMING_SNAKE_CASE : Dict=400 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : Tuple=False , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> List[str]: """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = n_fft __SCREAMING_SNAKE_CASE = hop_length __SCREAMING_SNAKE_CASE = chunk_length __SCREAMING_SNAKE_CASE = chunk_length * sampling_rate __SCREAMING_SNAKE_CASE = self.n_samples // hop_length __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm="""slaney""" , mel_scale="""slaney""" , ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : np.array ) -> np.ndarray: """simple docstring""" __SCREAMING_SNAKE_CASE = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) __SCREAMING_SNAKE_CASE = log_spec[:, :-1] __SCREAMING_SNAKE_CASE = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) __SCREAMING_SNAKE_CASE = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : List[np.ndarray] , __SCREAMING_SNAKE_CASE : List[np.ndarray] , __SCREAMING_SNAKE_CASE : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: __SCREAMING_SNAKE_CASE = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) __SCREAMING_SNAKE_CASE = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): __SCREAMING_SNAKE_CASE = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __SCREAMING_SNAKE_CASE = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[str] = "max_length" , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __SCREAMING_SNAKE_CASE = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __SCREAMING_SNAKE_CASE = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __SCREAMING_SNAKE_CASE = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE = [np.asarray([raw_speech] ).T] __SCREAMING_SNAKE_CASE = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding __SCREAMING_SNAKE_CASE = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __SCREAMING_SNAKE_CASE = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) __SCREAMING_SNAKE_CASE = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format __SCREAMING_SNAKE_CASE = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) __SCREAMING_SNAKE_CASE = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: __SCREAMING_SNAKE_CASE = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __SCREAMING_SNAKE_CASE = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: __SCREAMING_SNAKE_CASE = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def UpperCAmelCase__ ( self : List[Any] ) -> Dict[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
361
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase : Optional[int] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "retribert" def __init__( self : int , __SCREAMING_SNAKE_CASE : str=30_522 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : List[str]=3_072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-12 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : Tuple=0 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = share_encoders __SCREAMING_SNAKE_CASE = projection_dim
331
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class lowerCAmelCase__ : """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # sigma(t_i) @classmethod def UpperCAmelCase__ ( cls : Dict ) -> List[Any]: """simple docstring""" return cls() @dataclass class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 class lowerCAmelCase__ ( a , a ): """simple docstring""" @property def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return True @register_to_config def __init__( self : str , __SCREAMING_SNAKE_CASE : float = 0.02 , __SCREAMING_SNAKE_CASE : float = 100 , __SCREAMING_SNAKE_CASE : float = 1.007 , __SCREAMING_SNAKE_CASE : float = 80 , __SCREAMING_SNAKE_CASE : float = 0.05 , __SCREAMING_SNAKE_CASE : float = 50 , ) -> str: """simple docstring""" pass def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" return KarrasVeSchedulerState.create() def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple = () ) -> KarrasVeSchedulerState: """simple docstring""" __SCREAMING_SNAKE_CASE = jnp.arange(0 , __SCREAMING_SNAKE_CASE )[::-1].copy() __SCREAMING_SNAKE_CASE = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__SCREAMING_SNAKE_CASE , schedule=jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) , timesteps=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : random.KeyArray , ) -> Tuple[jnp.ndarray, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __SCREAMING_SNAKE_CASE = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: __SCREAMING_SNAKE_CASE = 0 # sample eps ~ N(0, S_noise^2 * I) __SCREAMING_SNAKE_CASE = random.split(__SCREAMING_SNAKE_CASE , num=1 ) __SCREAMING_SNAKE_CASE = self.config.s_noise * random.normal(key=__SCREAMING_SNAKE_CASE , shape=sample.shape ) __SCREAMING_SNAKE_CASE = sigma + gamma * sigma __SCREAMING_SNAKE_CASE = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE = sample_hat + sigma_hat * model_output __SCREAMING_SNAKE_CASE = (sample_hat - pred_original_sample) / sigma_hat __SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : jnp.ndarray , __SCREAMING_SNAKE_CASE : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE = sample_prev + sigma_prev * model_output __SCREAMING_SNAKE_CASE = (sample_prev - pred_original_sample) / sigma_prev __SCREAMING_SNAKE_CASE = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : KarrasVeSchedulerState , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" raise NotImplementedError()
362
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AltDiffusionPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __SCREAMING_SNAKE_CASE = 77 __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[str]: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A photo of an astronaut""" __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""numpy""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
331
0
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase : int = logging.get_logger(__name__) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "vision-encoder-decoder" lowerCAmelCase__ = True def __init__( self : Any , **__SCREAMING_SNAKE_CASE : Dict ) -> Any: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'A configuraton of type {self.model_type} cannot be instantiated because ' f'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) __SCREAMING_SNAKE_CASE = kwargs.pop("""encoder""" ) __SCREAMING_SNAKE_CASE = encoder_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = kwargs.pop("""decoder""" ) __SCREAMING_SNAKE_CASE = decoder_config.pop("""model_type""" ) __SCREAMING_SNAKE_CASE = AutoConfig.for_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoConfig.for_model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = True @classmethod def UpperCAmelCase__ ( cls : int , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : PretrainedConfig , **__SCREAMING_SNAKE_CASE : Tuple ) -> PretrainedConfig: """simple docstring""" logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.encoder.to_dict() __SCREAMING_SNAKE_CASE = self.decoder.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = version.parse("1.11" ) @property def UpperCAmelCase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self : List[str] ) -> float: """simple docstring""" return 1E-4 @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class lowerCAmelCase__ ( a ): """simple docstring""" @property def UpperCAmelCase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_decoder_sequence + sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_decoder_sequence + sequence"""} __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : "PreTrainedTokenizerBase" , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : int = -1 , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" import torch __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE = super().generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dummy_input["""input_ids"""].shape __SCREAMING_SNAKE_CASE = (batch, encoder_sequence, self._config.encoder_hidden_size) __SCREAMING_SNAKE_CASE = dummy_input.pop("""input_ids""" ) __SCREAMING_SNAKE_CASE = dummy_input.pop("""attention_mask""" ) __SCREAMING_SNAKE_CASE = torch.zeros(__SCREAMING_SNAKE_CASE ) return common_inputs class lowerCAmelCase__ ( a ): """simple docstring""" @property def UpperCAmelCase__ ( self : str ) -> None: """simple docstring""" pass def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : PretrainedConfig ) -> OnnxConfig: """simple docstring""" return VisionEncoderDecoderEncoderOnnxConfig(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : PretrainedConfig , __SCREAMING_SNAKE_CASE : str = "default" ) -> OnnxConfig: """simple docstring""" __SCREAMING_SNAKE_CASE = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
363
'''simple docstring''' import argparse import os import re import packaging.version UpperCAmelCase : Optional[int] = 'examples/' UpperCAmelCase : List[str] = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCAmelCase : Union[str, Any] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } UpperCAmelCase : Tuple = 'README.md' def a__ ( a__ , a__ , a__ ): """simple docstring""" with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = REPLACE_PATTERNS[pattern] __SCREAMING_SNAKE_CASE = replace.replace("""VERSION""" , a__ ) __SCREAMING_SNAKE_CASE = re_pattern.sub(a__ , a__ ) with open(a__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(a__ ) def a__ ( a__ ): """simple docstring""" for folder, directories, fnames in os.walk(a__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(a__ , a__ ) , a__ , pattern="""examples""" ) def a__ ( a__ , a__=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a__ , a__ , a__ ) if not patch: update_version_in_examples(a__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = """🤗 Transformers currently provides the following architectures""" __SCREAMING_SNAKE_CASE = """1. Want to contribute a new model?""" with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() # Find the start of the list. __SCREAMING_SNAKE_CASE = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __SCREAMING_SNAKE_CASE = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __SCREAMING_SNAKE_CASE = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(a__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(a__ ) def a__ ( ): """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = REPLACE_PATTERNS["""init"""][0].search(a__ ).groups()[0] return packaging.version.parse(a__ ) def a__ ( a__=False ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __SCREAMING_SNAKE_CASE = default_version.base_version elif patch: __SCREAMING_SNAKE_CASE = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: __SCREAMING_SNAKE_CASE = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. __SCREAMING_SNAKE_CASE = input(F'Which version are you releasing? [{default_version}]' ) if len(a__ ) == 0: __SCREAMING_SNAKE_CASE = default_version print(F'Updating version to {version}.' ) global_version_update(a__ , patch=a__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_version() __SCREAMING_SNAKE_CASE = F'{current_version.major}.{current_version.minor + 1}.0.dev0' __SCREAMING_SNAKE_CASE = current_version.base_version # Check with the user we got that right. __SCREAMING_SNAKE_CASE = input(F'Which version are we developing now? [{dev_version}]' ) if len(a__ ) == 0: __SCREAMING_SNAKE_CASE = dev_version print(F'Updating version to {version}.' ) global_version_update(a__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase : Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
331
0
'''simple docstring''' def a__ ( a__ = 10_00 ): """simple docstring""" __SCREAMING_SNAKE_CASE = -1 __SCREAMING_SNAKE_CASE = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __SCREAMING_SNAKE_CASE = (n * n - 2 * a * n) // (2 * n - 2 * a) __SCREAMING_SNAKE_CASE = n - a - b if c * c == (a * a + b * b): __SCREAMING_SNAKE_CASE = a * b * c if candidate >= product: __SCREAMING_SNAKE_CASE = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
364
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[str]=8 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Tuple=99 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Optional[int]=5 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=36 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : int=None , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = MraModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = MraForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = MraModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""MRA does not output attentions""" ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" return @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __SCREAMING_SNAKE_CASE = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __SCREAMING_SNAKE_CASE = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_265 __SCREAMING_SNAKE_CASE = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __SCREAMING_SNAKE_CASE = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_265 __SCREAMING_SNAKE_CASE = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
331
0
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCAmelCase : Optional[Any] = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : list = None ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) __SCREAMING_SNAKE_CASE = os.path.abspath("""examples""" ) for item in os.listdir(__SCREAMING_SNAKE_CASE ): if item not in EXCLUDE_EXAMPLES: __SCREAMING_SNAKE_CASE = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if os.path.isfile(__SCREAMING_SNAKE_CASE ) and ".py" in item_path: with self.subTest( tested_script=__SCREAMING_SNAKE_CASE , feature_script=__SCREAMING_SNAKE_CASE , tested_section="""main()""" if parser_only else """training_function()""" , ): __SCREAMING_SNAKE_CASE = compare_against_test( os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """\n""".join(__SCREAMING_SNAKE_CASE ) if special_strings is not None: for string in special_strings: __SCREAMING_SNAKE_CASE = diff.replace(__SCREAMING_SNAKE_CASE , """""" ) self.assertEqual(__SCREAMING_SNAKE_CASE , """""" ) def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , __SCREAMING_SNAKE_CASE ) self.one_complete_example("""complete_nlp_example.py""" , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) __SCREAMING_SNAKE_CASE = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.one_complete_example("""complete_cv_example.py""" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = False @classmethod def UpperCAmelCase__ ( cls : List[str] ) -> str: """simple docstring""" super().setUpClass() __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) __SCREAMING_SNAKE_CASE = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def UpperCAmelCase__ ( cls : Any ) -> Dict: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() __SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split() __SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=__SCREAMING_SNAKE_CASE ) self.assertNotIn("""epoch 0:""" , __SCREAMING_SNAKE_CASE ) self.assertIn("""epoch 1:""" , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split() __SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=__SCREAMING_SNAKE_CASE ) if torch.cuda.is_available(): __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: __SCREAMING_SNAKE_CASE = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , __SCREAMING_SNAKE_CASE ) self.assertIn("""epoch 1:""" , __SCREAMING_SNAKE_CASE ) else: self.assertIn("""epoch 0:""" , __SCREAMING_SNAKE_CASE ) self.assertIn("""epoch 1:""" , __SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): __SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = re.findall("""({.+})""" , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [r for r in results if """accuracy""" in r][-1] __SCREAMING_SNAKE_CASE = ast.literal_eval(__SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: __SCREAMING_SNAKE_CASE = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__SCREAMING_SNAKE_CASE , """tracking""" ) ) ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
365
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase__ = 10000 lowerCAmelCase__ = None lowerCAmelCase__ = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase__ = ParquetConfig def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): __SCREAMING_SNAKE_CASE = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = pq.ParquetFile(__SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}' ) raise
331
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "bert" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : int=30_522 , __SCREAMING_SNAKE_CASE : str=768 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Any=3_072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : str=512 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Tuple=1E-12 , __SCREAMING_SNAKE_CASE : int=0 , __SCREAMING_SNAKE_CASE : Any="absolute" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class lowerCAmelCase__ ( a ): """simple docstring""" @property def UpperCAmelCase__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
366
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCAmelCase : Any = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] UpperCAmelCase : Optional[Any] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] UpperCAmelCase : Optional[int] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[str] = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[Any] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def a__ ( a__ , a__ ): """simple docstring""" for tf_name, hf_name in patterns: __SCREAMING_SNAKE_CASE = k.replace(a__ , a__ ) return k def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = BigBirdPegasusConfig(**a__ ) __SCREAMING_SNAKE_CASE = BigBirdPegasusForConditionalGeneration(a__ ) __SCREAMING_SNAKE_CASE = torch_model.state_dict() __SCREAMING_SNAKE_CASE = {} # separating decoder weights __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = DECODER_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = REMAINING_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __SCREAMING_SNAKE_CASE = mapping["""model.embed_positions.weight"""] __SCREAMING_SNAKE_CASE = mapping.pop("""model.embed_positions.weight""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch_model.load_state_dict(a__ , strict=a__ ) __SCREAMING_SNAKE_CASE = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tf.train.list_variables(a__ ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = ["""global_step"""] for name, shape in tqdm(a__ , desc="""converting tf checkpoint to dict""" ): __SCREAMING_SNAKE_CASE = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE = tf.train.load_variable(a__ , a__ ) __SCREAMING_SNAKE_CASE = array return tf_weights def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_tf_weights_as_numpy(a__ ) __SCREAMING_SNAKE_CASE = convert_bigbird_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase : int = parser.parse_args() UpperCAmelCase : Dict = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
331
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Any = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = XLMProphetNetTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = """[PAD]""" __SCREAMING_SNAKE_CASE = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1_012 ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """Hello World!""" __SCREAMING_SNAKE_CASE = [35_389, 6_672, 49, 2] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def UpperCAmelCase__ ( self : Tuple ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = {"""input_ids""": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
367
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(a ) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Any=None ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} if prompt is not None: __SCREAMING_SNAKE_CASE = prompt if generate_kwargs is not None: __SCREAMING_SNAKE_CASE = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __SCREAMING_SNAKE_CASE = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __SCREAMING_SNAKE_CASE = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : int , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError( f'Received an invalid text input, got - {type(__SCREAMING_SNAKE_CASE )} - but expected a single string. ' """Note also that one single text can be provided for conditional image to text generation.""" ) __SCREAMING_SNAKE_CASE = self.model.config.model_type if model_type == "git": __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = self.tokenizer(text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids __SCREAMING_SNAKE_CASE = [self.tokenizer.cls_token_id] + input_ids __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(__SCREAMING_SNAKE_CASE ) else: raise ValueError(f'Model type {model_type} does not support conditional text generation' ) else: __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __SCREAMING_SNAKE_CASE = None return model_inputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any]=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , __SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __SCREAMING_SNAKE_CASE = None if generate_kwargs is None: __SCREAMING_SNAKE_CASE = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __SCREAMING_SNAKE_CASE = model_inputs.pop(self.model.main_input_name ) __SCREAMING_SNAKE_CASE = self.model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for output_ids in model_outputs: __SCREAMING_SNAKE_CASE = { """generated_text""": self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , ) } records.append(__SCREAMING_SNAKE_CASE ) return records
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
368
'''simple docstring''' def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = len(a__ ) while cur > 1: # Find the maximum number in arr __SCREAMING_SNAKE_CASE = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __SCREAMING_SNAKE_CASE = arr[mi::-1] + arr[mi + 1 : len(a__ )] # Reverse whole list __SCREAMING_SNAKE_CASE = arr[cur - 1 :: -1] + arr[cur : len(a__ )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase : str = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
331
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase__ = Features({"text": Value("string" )} ) lowerCAmelCase__ = Features({"labels": ClassLabel} ) lowerCAmelCase__ = "text" lowerCAmelCase__ = "labels" def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __SCREAMING_SNAKE_CASE = copy.deepcopy(self ) __SCREAMING_SNAKE_CASE = self.label_schema.copy() __SCREAMING_SNAKE_CASE = features[self.label_column] __SCREAMING_SNAKE_CASE = label_schema return task_template @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict[str, str]: """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
369
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase : int = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """words.txt""" ) __SCREAMING_SNAKE_CASE = """""" with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readline() __SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] __SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
331
0
'''simple docstring''' from manim import * class lowerCAmelCase__ ( a ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) __SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) __SCREAMING_SNAKE_CASE = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) __SCREAMING_SNAKE_CASE = VGroup(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) __SCREAMING_SNAKE_CASE = Text("""CPU""" , font_size=24 ) __SCREAMING_SNAKE_CASE = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] __SCREAMING_SNAKE_CASE = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) __SCREAMING_SNAKE_CASE = Text("""GPU""" , font_size=24 ) __SCREAMING_SNAKE_CASE = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) gpu.move_to([-1, -1, 0] ) self.add(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) __SCREAMING_SNAKE_CASE = Text("""Model""" , font_size=24 ) __SCREAMING_SNAKE_CASE = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=__SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.add(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__SCREAMING_SNAKE_CASE ): rect.set_stroke(__SCREAMING_SNAKE_CASE ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__SCREAMING_SNAKE_CASE , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__SCREAMING_SNAKE_CASE ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__SCREAMING_SNAKE_CASE , buff=0.0 ) self.add(__SCREAMING_SNAKE_CASE ) cpu_targs.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] __SCREAMING_SNAKE_CASE = VGroup(*__SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , buff=0 ) __SCREAMING_SNAKE_CASE = Text("""Loaded Checkpoint""" , font_size=24 ) __SCREAMING_SNAKE_CASE = Group(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).arrange(__SCREAMING_SNAKE_CASE , aligned_edge=__SCREAMING_SNAKE_CASE , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __SCREAMING_SNAKE_CASE = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(__SCREAMING_SNAKE_CASE , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __SCREAMING_SNAKE_CASE = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__SCREAMING_SNAKE_CASE ) , Write(__SCREAMING_SNAKE_CASE ) ) self.play(Write(__SCREAMING_SNAKE_CASE , run_time=1 ) , Create(__SCREAMING_SNAKE_CASE , run_time=1 ) ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = fill.copy().set_fill(__SCREAMING_SNAKE_CASE , opacity=0.7 ) target.move_to(__SCREAMING_SNAKE_CASE ) first_animations.append(GrowFromCenter(__SCREAMING_SNAKE_CASE , run_time=1 ) ) __SCREAMING_SNAKE_CASE = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*__SCREAMING_SNAKE_CASE ) self.play(*__SCREAMING_SNAKE_CASE ) self.wait()
370
'''simple docstring''' class lowerCAmelCase__ : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = row __SCREAMING_SNAKE_CASE = col __SCREAMING_SNAKE_CASE = graph def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] __SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: # And finally, count all islands. """simple docstring""" __SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] __SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += 1 return count
331
0
'''simple docstring''' import argparse import os import re import packaging.version UpperCAmelCase : str = 'examples/' UpperCAmelCase : Any = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCAmelCase : Dict = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCAmelCase : Dict = 'README.md' def a__ ( a__ , a__ , a__ ): """simple docstring""" with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = REPLACE_PATTERNS[pattern] __SCREAMING_SNAKE_CASE = replace.replace("""VERSION""" , a__ ) __SCREAMING_SNAKE_CASE = re_pattern.sub(a__ , a__ ) with open(a__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(a__ ) def a__ ( a__ ): """simple docstring""" for folder, directories, fnames in os.walk(a__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(a__ , a__ ) , a__ , pattern="""examples""" ) def a__ ( a__ , a__=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a__ , a__ , a__ ) if not patch: update_version_in_examples(a__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = """🤗 Transformers currently provides the following architectures""" __SCREAMING_SNAKE_CASE = """1. Want to contribute a new model?""" with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() # Find the start of the list. __SCREAMING_SNAKE_CASE = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __SCREAMING_SNAKE_CASE = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __SCREAMING_SNAKE_CASE = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(a__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(a__ ) def a__ ( ): """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = REPLACE_PATTERNS["""init"""][0].search(a__ ).groups()[0] return packaging.version.parse(a__ ) def a__ ( a__=False ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __SCREAMING_SNAKE_CASE = default_version.base_version elif patch: __SCREAMING_SNAKE_CASE = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: __SCREAMING_SNAKE_CASE = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. __SCREAMING_SNAKE_CASE = input(F'Which version are you releasing? [{default_version}]' ) if len(a__ ) == 0: __SCREAMING_SNAKE_CASE = default_version print(F'Updating version to {version}.' ) global_version_update(a__ , patch=a__ ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_version() __SCREAMING_SNAKE_CASE = F'{current_version.major}.{current_version.minor + 1}.0.dev0' __SCREAMING_SNAKE_CASE = current_version.base_version # Check with the user we got that right. __SCREAMING_SNAKE_CASE = input(F'Which version are we developing now? [{dev_version}]' ) if len(a__ ) == 0: __SCREAMING_SNAKE_CASE = dev_version print(F'Updating version to {version}.' ) global_version_update(a__ ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
371
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]=99 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Tuple=37 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=4 , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_attention_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_choices def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __SCREAMING_SNAKE_CASE = jnp.array([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_000 __SCREAMING_SNAKE_CASE = (1, 6, vocab_size) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
331
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any=None ) -> Optional[Any]: """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = None def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int ) -> Tuple: """simple docstring""" logger.info("""initializing retrieval""" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("""dist initialized""" ) # needs to be set manually __SCREAMING_SNAKE_CASE = self._infer_socket_ifname() # avoid clash with the NCCL port __SCREAMING_SNAKE_CASE = str(distributed_port + 1 ) __SCREAMING_SNAKE_CASE = dist.new_group(ranks=__SCREAMING_SNAKE_CASE , backend="""gloo""" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("""dist not initialized / main""" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=torch.floataa ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = torch.empty(__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE ) dist.scatter(__SCREAMING_SNAKE_CASE , src=0 , scatter_list=__SCREAMING_SNAKE_CASE , group=self.process_group ) return target_tensor def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __SCREAMING_SNAKE_CASE = next((addr for addr in addrs if addr.startswith("""e""" )) , __SCREAMING_SNAKE_CASE ) return ifname def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE ) # distributed training __SCREAMING_SNAKE_CASE = dist.get_world_size(group=self.process_group ) # gather logic __SCREAMING_SNAKE_CASE = None if self._is_main(): __SCREAMING_SNAKE_CASE = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__SCREAMING_SNAKE_CASE )] dist.gather(torch.tensor(__SCREAMING_SNAKE_CASE ) , dst=0 , gather_list=__SCREAMING_SNAKE_CASE , group=self.process_group ) # scatter logic __SCREAMING_SNAKE_CASE = question_hidden_states.shape[0] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] if self._is_main(): assert len(__SCREAMING_SNAKE_CASE ) == world_size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._main_retrieve(torch.cat(__SCREAMING_SNAKE_CASE ).numpy() , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ), torch.tensor(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._chunk_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._chunk_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._scattered(__SCREAMING_SNAKE_CASE , [n_queries, n_docs] , target_type=torch.intaa ) __SCREAMING_SNAKE_CASE = self._scattered(__SCREAMING_SNAKE_CASE , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE )
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "markuplm" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple=30_522 , __SCREAMING_SNAKE_CASE : Optional[Any]=768 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : List[Any]=12 , __SCREAMING_SNAKE_CASE : str=3_072 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1E-12 , __SCREAMING_SNAKE_CASE : str=0 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Union[str, Any]=256 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_024 , __SCREAMING_SNAKE_CASE : Dict=216 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1_001 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : str=50 , __SCREAMING_SNAKE_CASE : int="absolute" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> Tuple: """simple docstring""" super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout # additional properties __SCREAMING_SNAKE_CASE = max_depth __SCREAMING_SNAKE_CASE = max_xpath_tag_unit_embeddings __SCREAMING_SNAKE_CASE = max_xpath_subs_unit_embeddings __SCREAMING_SNAKE_CASE = tag_pad_id __SCREAMING_SNAKE_CASE = subs_pad_id __SCREAMING_SNAKE_CASE = xpath_unit_hidden_size
331
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase : Optional[Any] = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location="""cpu""" ) return sd def a__ ( a__ , a__ , a__=rename_keys_prefix ): """simple docstring""" __SCREAMING_SNAKE_CASE = OrderedDict() __SCREAMING_SNAKE_CASE = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __SCREAMING_SNAKE_CASE = key for name_pair in rename_keys_prefix: __SCREAMING_SNAKE_CASE = new_key.replace(name_pair[0] , name_pair[1] ) __SCREAMING_SNAKE_CASE = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __SCREAMING_SNAKE_CASE = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def a__ ( a__ , a__ ): """simple docstring""" assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: __SCREAMING_SNAKE_CASE = """pretraining""" if "vcr" in checkpoint_path: __SCREAMING_SNAKE_CASE = {"""visual_embedding_dim""": 5_12} elif "vqa_advanced" in checkpoint_path: __SCREAMING_SNAKE_CASE = {"""visual_embedding_dim""": 20_48} elif "vqa" in checkpoint_path: __SCREAMING_SNAKE_CASE = {"""visual_embedding_dim""": 20_48} elif "nlvr" in checkpoint_path: __SCREAMING_SNAKE_CASE = {"""visual_embedding_dim""": 10_24} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: __SCREAMING_SNAKE_CASE = {"""visual_embedding_dim""": 5_12} __SCREAMING_SNAKE_CASE = """multichoice""" elif "vqa_advanced" in checkpoint_path: __SCREAMING_SNAKE_CASE = {"""visual_embedding_dim""": 20_48} __SCREAMING_SNAKE_CASE = """vqa_advanced""" elif "vqa" in checkpoint_path: __SCREAMING_SNAKE_CASE = {"""visual_embedding_dim""": 20_48, """num_labels""": 31_29} __SCREAMING_SNAKE_CASE = """vqa""" elif "nlvr" in checkpoint_path: __SCREAMING_SNAKE_CASE = { """visual_embedding_dim""": 10_24, """num_labels""": 2, } __SCREAMING_SNAKE_CASE = """nlvr""" __SCREAMING_SNAKE_CASE = VisualBertConfig(**a__ ) # Load State Dict __SCREAMING_SNAKE_CASE = load_state_dict(a__ ) __SCREAMING_SNAKE_CASE = get_new_dict(a__ , a__ ) if model_type == "pretraining": __SCREAMING_SNAKE_CASE = VisualBertForPreTraining(a__ ) elif model_type == "vqa": __SCREAMING_SNAKE_CASE = VisualBertForQuestionAnswering(a__ ) elif model_type == "nlvr": __SCREAMING_SNAKE_CASE = VisualBertForVisualReasoning(a__ ) elif model_type == "multichoice": __SCREAMING_SNAKE_CASE = VisualBertForMultipleChoice(a__ ) model.load_state_dict(a__ ) # Save Checkpoints Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
351
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
331
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets UpperCAmelCase : Union[str, Any] = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' UpperCAmelCase : Optional[Any] = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' UpperCAmelCase : Any = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = 0.0 for i, j in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): n_correct += 1.0 if math_equivalence.is_equiv(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else 0.0 __SCREAMING_SNAKE_CASE = n_correct / len(__SCREAMING_SNAKE_CASE ) return { "accuracy": accuracy, }
352
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = torch.nn.Linear(10 , 10 ) __SCREAMING_SNAKE_CASE = torch.optim.SGD(model.parameters() , 0.1 ) __SCREAMING_SNAKE_CASE = Accelerator() __SCREAMING_SNAKE_CASE = accelerator.prepare(__SCREAMING_SNAKE_CASE ) try: pickle.loads(pickle.dumps(__SCREAMING_SNAKE_CASE ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
353
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : Optional[int]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]="None" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = relative_attention __SCREAMING_SNAKE_CASE = position_biased_input __SCREAMING_SNAKE_CASE = pos_att_type __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
331
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is False and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(3 ) __SCREAMING_SNAKE_CASE = stepped is True and completed is True and reset is False self.assertTrue(__SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
354
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = analyze_text(a__ ) __SCREAMING_SNAKE_CASE = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. __SCREAMING_SNAKE_CASE = sum(single_char_strings.values() ) # one length string __SCREAMING_SNAKE_CASE = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __SCREAMING_SNAKE_CASE = single_char_strings[ch] __SCREAMING_SNAKE_CASE = my_str / all_sum my_fir_sum += prob * math.loga(a__ ) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum ):.1f}' ) # two len string __SCREAMING_SNAKE_CASE = sum(two_char_strings.values() ) __SCREAMING_SNAKE_CASE = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __SCREAMING_SNAKE_CASE = cha + cha if sequence in two_char_strings: __SCREAMING_SNAKE_CASE = two_char_strings[sequence] __SCREAMING_SNAKE_CASE = int(a__ ) / all_sum my_sec_sum += prob * math.loga(a__ ) # print second entropy print(F'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = Counter() # type: ignore __SCREAMING_SNAKE_CASE = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(a__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
331
0
'''simple docstring''' class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : list ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = set_counts __SCREAMING_SNAKE_CASE = max(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [1] * num_sets __SCREAMING_SNAKE_CASE = list(range(__SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_parent(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_parent(__SCREAMING_SNAKE_CASE ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __SCREAMING_SNAKE_CASE = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = src_parent __SCREAMING_SNAKE_CASE = self.set_counts[src_parent] __SCREAMING_SNAKE_CASE = max(self.max_set , __SCREAMING_SNAKE_CASE ) return True def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set __SCREAMING_SNAKE_CASE = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
355
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( a__ ): """simple docstring""" return x + 2 class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) __SCREAMING_SNAKE_CASE = """x = y""" __SCREAMING_SNAKE_CASE = {"""y""": 5} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 5, """y""": 5} ) def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = add_two(x)""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3} ) def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 3\ny = 5""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 5} ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """text""": """This is x: 3."""} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 2} ) __SCREAMING_SNAKE_CASE = {"""x""": 8} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 8, """y""": 5} ) def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """y = x""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {} , state=__SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """y""": 3} ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_list""": [3, 5]} ) __SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" __SCREAMING_SNAKE_CASE = {"""x""": 3} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""add_two""": add_two} , state=__SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = evaluate(__SCREAMING_SNAKE_CASE , {"""range""": range} , state=__SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(__SCREAMING_SNAKE_CASE , {"""x""": 2, """i""": 2} )
331
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase : Tuple = pytest.mark.integration @require_faiss class lowerCAmelCase__ ( a ): """simple docstring""" def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(__SCREAMING_SNAKE_CASE ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" import faiss __SCREAMING_SNAKE_CASE = self._create_dummy_dataset() __SCREAMING_SNAKE_CASE = dset.map( lambda __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = dset.add_faiss_index("""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" import faiss __SCREAMING_SNAKE_CASE = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" import faiss __SCREAMING_SNAKE_CASE = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__SCREAMING_SNAKE_CASE ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(__SCREAMING_SNAKE_CASE , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" from elasticsearch import Elasticsearch __SCREAMING_SNAKE_CASE = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: __SCREAMING_SNAKE_CASE = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) __SCREAMING_SNAKE_CASE = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} __SCREAMING_SNAKE_CASE = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class lowerCAmelCase__ ( a ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" import faiss __SCREAMING_SNAKE_CASE = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __SCREAMING_SNAKE_CASE = np.zeros(5 , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = index.search(__SCREAMING_SNAKE_CASE ) self.assertRaises(__SCREAMING_SNAKE_CASE , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __SCREAMING_SNAKE_CASE = np.eye(5 , dtype=np.floataa )[::-1] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = index.search_batch(__SCREAMING_SNAKE_CASE ) self.assertRaises(__SCREAMING_SNAKE_CASE , index.search_batch , queries[0] ) __SCREAMING_SNAKE_CASE = [scores[0] for scores in total_scores] __SCREAMING_SNAKE_CASE = [indices[0] for indices in total_indices] self.assertGreater(np.min(__SCREAMING_SNAKE_CASE ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" import faiss __SCREAMING_SNAKE_CASE = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __SCREAMING_SNAKE_CASE = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" import faiss __SCREAMING_SNAKE_CASE = faiss.IndexFlat(5 ) __SCREAMING_SNAKE_CASE = FaissIndex(custom_index=__SCREAMING_SNAKE_CASE ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" import faiss __SCREAMING_SNAKE_CASE = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__SCREAMING_SNAKE_CASE ) as tmp_file: index.save(tmp_file.name ) __SCREAMING_SNAKE_CASE = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __SCREAMING_SNAKE_CASE = np.zeros(5 , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = index.search(__SCREAMING_SNAKE_CASE ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def a__ ( a__ ): """simple docstring""" import faiss __SCREAMING_SNAKE_CASE = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __SCREAMING_SNAKE_CASE = """index.faiss""" __SCREAMING_SNAKE_CASE = F'mock://{index_name}' index.save(a__ , storage_options=mockfs.storage_options ) __SCREAMING_SNAKE_CASE = FaissIndex.load(a__ , storage_options=mockfs.storage_options ) __SCREAMING_SNAKE_CASE = np.zeros(5 , dtype=np.floataa ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = index.search(a__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase__ ( a ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: __SCREAMING_SNAKE_CASE = Elasticsearch() __SCREAMING_SNAKE_CASE = {"""acknowledged""": True} __SCREAMING_SNAKE_CASE = ElasticSearchIndex(es_client=__SCREAMING_SNAKE_CASE ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query __SCREAMING_SNAKE_CASE = """foo""" __SCREAMING_SNAKE_CASE = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = index.search(__SCREAMING_SNAKE_CASE ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __SCREAMING_SNAKE_CASE = """foo""" __SCREAMING_SNAKE_CASE = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = index.search(__SCREAMING_SNAKE_CASE , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __SCREAMING_SNAKE_CASE = ["""foo""", """bar""", """foobar"""] __SCREAMING_SNAKE_CASE = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = index.search_batch(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [scores[0] for scores in total_scores] __SCREAMING_SNAKE_CASE = [indices[0] for indices in total_indices] self.assertGreater(np.min(__SCREAMING_SNAKE_CASE ) , 0 ) self.assertListEqual([1, 1, 1] , __SCREAMING_SNAKE_CASE ) # batched queries with timeout __SCREAMING_SNAKE_CASE = ["""foo""", """bar""", """foobar"""] __SCREAMING_SNAKE_CASE = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = index.search_batch(__SCREAMING_SNAKE_CASE , request_timeout=30 ) __SCREAMING_SNAKE_CASE = [scores[0] for scores in total_scores] __SCREAMING_SNAKE_CASE = [indices[0] for indices in total_indices] self.assertGreater(np.min(__SCREAMING_SNAKE_CASE ) , 0 ) self.assertListEqual([1, 1, 1] , __SCREAMING_SNAKE_CASE )
356
'''simple docstring''' import os def a__ ( a__ = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase : int = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCAmelCase : Any = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') UpperCAmelCase : Optional[Any] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCAmelCase : Dict = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCAmelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) UpperCAmelCase : str = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCAmelCase__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : argparse.Namespace , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict="base" , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : str=None , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = Path(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"""num_labels""": num_labels} if num_labels is not None else {}) , cache_dir=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = config __SCREAMING_SNAKE_CASE = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(self.hparams , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert hasattr(self.config , __SCREAMING_SNAKE_CASE ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __SCREAMING_SNAKE_CASE , getattr(self.hparams , __SCREAMING_SNAKE_CASE ) ) if tokenizer is None: __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = MODEL_MODES[mode] if model is None: __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(""".ckpt""" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__SCREAMING_SNAKE_CASE , ) else: __SCREAMING_SNAKE_CASE = model def UpperCAmelCase__ ( self : List[str] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_type.from_pretrained(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = arg_to_scheduler[self.hparams.lr_scheduler] __SCREAMING_SNAKE_CASE = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __SCREAMING_SNAKE_CASE = {"""scheduler""": scheduler, """interval""": """step""", """frequency""": 1} return scheduler def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model __SCREAMING_SNAKE_CASE = ["""bias""", """LayerNorm.weight"""] __SCREAMING_SNAKE_CASE = [ { """params""": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters """weight_decay""": self.hparams.weight_decay, }, { """params""": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] if self.hparams.adafactor: __SCREAMING_SNAKE_CASE = Adafactor( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=__SCREAMING_SNAKE_CASE , relative_step=__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = AdamW( __SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __SCREAMING_SNAKE_CASE = optimizer __SCREAMING_SNAKE_CASE = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" return self.validation_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: """simple docstring""" return self.validation_end(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __SCREAMING_SNAKE_CASE = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" if stage == "test": __SCREAMING_SNAKE_CASE = len(self.test_dataloader().dataset ) else: __SCREAMING_SNAKE_CASE = self.get_dataloader("""train""" , self.hparams.train_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(self.train_dataloader().dataset ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False ) -> int: """simple docstring""" raise NotImplementedError("""You must implement this for your task""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return self.train_loader def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return self.get_dataloader("""dev""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" return self.get_dataloader("""test""" , self.hparams.eval_batch_size , shuffle=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: """simple docstring""" return os.path.join( self.hparams.data_dir , """cached_{}_{}_{}""".format( __SCREAMING_SNAKE_CASE , list(filter(__SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("""/""" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.output_dir.joinpath("""best_tfmr""" ) __SCREAMING_SNAKE_CASE = self.step_count self.model.save_pretrained(__SCREAMING_SNAKE_CASE ) self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase__ ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" parser.add_argument( """--model_name_or_path""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--config_name""" , default="""""" , type=__SCREAMING_SNAKE_CASE , help="""Pretrained config name or path if not the same as model_name""" ) parser.add_argument( """--tokenizer_name""" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument( """--cache_dir""" , default=str(Path(__SCREAMING_SNAKE_CASE ).parent / """test_run""" / """cache""" ) , type=__SCREAMING_SNAKE_CASE , help="""Where do you want to store the pre-trained models downloaded from huggingface.co""" , ) parser.add_argument( """--encoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Encoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--decoder_layerdrop""" , type=__SCREAMING_SNAKE_CASE , help="""Decoder layer dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Dropout probability (Optional). Goes into model.config""" , ) parser.add_argument( """--attention_dropout""" , type=__SCREAMING_SNAKE_CASE , help="""Attention dropout probability (Optional). Goes into model.config""" , ) parser.add_argument("""--learning_rate""" , default=5E-5 , type=__SCREAMING_SNAKE_CASE , help="""The initial learning rate for Adam.""" ) parser.add_argument( """--lr_scheduler""" , default="""linear""" , choices=__SCREAMING_SNAKE_CASE , metavar=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="""Learning rate scheduler""" , ) parser.add_argument("""--weight_decay""" , default=0.0 , type=__SCREAMING_SNAKE_CASE , help="""Weight decay if we apply some.""" ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__SCREAMING_SNAKE_CASE , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--warmup_steps""" , default=0 , type=__SCREAMING_SNAKE_CASE , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--num_workers""" , default=4 , type=__SCREAMING_SNAKE_CASE , help="""kwarg passed to DataLoader""" ) parser.add_argument("""--num_train_epochs""" , dest="""max_epochs""" , default=3 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--train_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--eval_batch_size""" , default=32 , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--adafactor""" , action="""store_true""" ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( pl.Callback ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = trainer.lr_schedulers[0]["""scheduler"""] __SCREAMING_SNAKE_CASE = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> List[Any]: """simple docstring""" rank_zero_info("""***** Validation results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log results for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : pl.Trainer , __SCREAMING_SNAKE_CASE : pl.LightningModule ) -> str: """simple docstring""" rank_zero_info("""***** Test results *****""" ) __SCREAMING_SNAKE_CASE = trainer.callback_metrics # Log and save results to file __SCREAMING_SNAKE_CASE = os.path.join(pl_module.hparams.output_dir , """test_results.txt""" ) with open(__SCREAMING_SNAKE_CASE , """w""" ) as writer: for key in sorted(__SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) writer.write("""{} = {}\n""".format(__SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def a__ ( a__ , a__ ): """simple docstring""" parser.add_argument( """--output_dir""" , default=str(Path(a__ ).parent / """test_run""" / """model_checkpoints""" ) , type=a__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=a__ , default="""O2""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_tpu_cores""" , dest="""tpu_cores""" , type=a__ ) parser.add_argument("""--max_grad_norm""" , dest="""gradient_clip_val""" , default=1.0 , type=a__ , help="""Max gradient norm""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_predict""" , action="""store_true""" , help="""Whether to run predictions on the test set.""" ) parser.add_argument( """--gradient_accumulation_steps""" , dest="""accumulate_grad_batches""" , type=a__ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--seed""" , type=a__ , default=42 , help="""random seed for initialization""" ) parser.add_argument( """--data_dir""" , default=str(Path(a__ ).parent / """test_run""" / """dummy-train-data""" ) , type=a__ , help="""The input data dir. Should contain the training files for the CoNLL-2003 NER task.""" , ) def a__ ( a__ , a__ , a__=None , a__=True , a__=[] , a__=None , a__=None , **a__ , ): """simple docstring""" pl.seed_everything(args.seed ) # init model __SCREAMING_SNAKE_CASE = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=a__ ) # add custom checkpoints if checkpoint_callback is None: __SCREAMING_SNAKE_CASE = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="""checkpoint""" , monitor="""val_loss""" , mode="""min""" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(a__ ) if logging_callback is None: __SCREAMING_SNAKE_CASE = LoggingCallback() __SCREAMING_SNAKE_CASE = {} if args.fpaa: __SCREAMING_SNAKE_CASE = 16 if args.gpus > 1: __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = """ddp""" __SCREAMING_SNAKE_CASE = args.accumulate_grad_batches __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """auto""" __SCREAMING_SNAKE_CASE = pl.Trainer.from_argparse_args( a__ , weights_summary=a__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=a__ , val_check_interval=1 , num_sanity_val_steps=2 , **a__ , ) if args.do_train: trainer.fit(a__ ) else: print("""RAG modeling tests with new set functions successfuly executed!""" ) return trainer
331
0
import os def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(a__ ) , """num.txt""" ) with open(a__ ) as file_hand: return str(sum(int(a__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
358
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = (DDPMScheduler,) def UpperCAmelCase__ ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.dummy_model() __SCREAMING_SNAKE_CASE = self.dummy_sample_deter __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE = pred_prev_sample __SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def UpperCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: __SCREAMING_SNAKE_CASE = -1 else: __SCREAMING_SNAKE_CASE = timesteps[i + 1] __SCREAMING_SNAKE_CASE = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [100, 87, 50, 1, 0] __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE = self.get_scheduler_config() __SCREAMING_SNAKE_CASE = scheduler_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
331
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=a ): """simple docstring""" lowerCAmelCase__ = ["flax", "transformers"] def __init__( self : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Optional[int] , **__SCREAMING_SNAKE_CASE : Any ) -> List[Any]: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase__ ( cls : List[str] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Any ) -> Tuple: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCAmelCase__ ( metaclass=a ): """simple docstring""" lowerCAmelCase__ = ["flax", "transformers"] def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCAmelCase__ ( metaclass=a ): """simple docstring""" lowerCAmelCase__ = ["flax", "transformers"] def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase__ ( cls : str , *__SCREAMING_SNAKE_CASE : Optional[Any] , **__SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase__ ( cls : Any , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCAmelCase__ ( metaclass=a ): """simple docstring""" lowerCAmelCase__ = ["flax", "transformers"] def __init__( self : Optional[int] , *__SCREAMING_SNAKE_CASE : List[str] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase__ ( cls : Any , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def UpperCAmelCase__ ( cls : str , *__SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: """simple docstring""" requires_backends(cls , ["""flax""", """transformers"""] )
359
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase : Dict = TypeVar('T') def a__ ( a__ ): """simple docstring""" return (position - 1) // 2 def a__ ( a__ ): """simple docstring""" return (2 * position) + 1 def a__ ( a__ ): """simple docstring""" return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self.elements def __repr__( self : List[str] ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase__ ( self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __SCREAMING_SNAKE_CASE = self.elements self.elements += 1 self._bubble_up(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[0] self._bubble_down(__SCREAMING_SNAKE_CASE ) return elem def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE = (elem, weight) if position > 0: __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] if curr_pos == 0: return None __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_up(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE = get_child_left_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_child_right_position(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __SCREAMING_SNAKE_CASE = nodea_pos __SCREAMING_SNAKE_CASE = nodea_pos class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __repr__( self : Dict ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Dict ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" if node not in self.connections: __SCREAMING_SNAKE_CASE = {} self.nodes += 1 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = weight __SCREAMING_SNAKE_CASE = weight def a__ ( a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = {node: maxsize for node in graph.connections} __SCREAMING_SNAKE_CASE = {node: None for node in graph.connections} __SCREAMING_SNAKE_CASE = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization __SCREAMING_SNAKE_CASE = priority_queue.extract_min() __SCREAMING_SNAKE_CASE = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node # running prim's algorithm while not priority_queue.is_empty(): __SCREAMING_SNAKE_CASE = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node return dist, parent
331
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : List[str]=30 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : Tuple="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : int=10 , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : Tuple=None , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE = num_patches + 1 def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = TFViTModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __SCREAMING_SNAKE_CASE = self.image_size // 2 __SCREAMING_SNAKE_CASE = pixel_values[:, :, :image_size, :image_size] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , interpolate_pos_encoding=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = TFViTForImageClassification(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __SCREAMING_SNAKE_CASE = self.image_size // 2 __SCREAMING_SNAKE_CASE = pixel_values[:, :, :image_size, :image_size] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , interpolate_pos_encoding=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = TFViTForImageClassification(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCAmelCase__ = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = TFViTModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) ) def UpperCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _snake_case ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) # forward pass __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
360
'''simple docstring''' from __future__ import annotations from cmath import sqrt def a__ ( a__ , a__ , a__ ): """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) __SCREAMING_SNAKE_CASE = b * b - 4 * a * c __SCREAMING_SNAKE_CASE = (-b + sqrt(a__ )) / (2 * a) __SCREAMING_SNAKE_CASE = (-b - sqrt(a__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
331
0
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "efficientformer" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] = [3, 2, 6, 4] , __SCREAMING_SNAKE_CASE : List[int] = [48, 96, 224, 448] , __SCREAMING_SNAKE_CASE : List[bool] = [True, True, True, True] , __SCREAMING_SNAKE_CASE : int = 448 , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : int = 4 , __SCREAMING_SNAKE_CASE : int = 7 , __SCREAMING_SNAKE_CASE : int = 5 , __SCREAMING_SNAKE_CASE : int = 8 , __SCREAMING_SNAKE_CASE : int = 4 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : int = 16 , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 3 , __SCREAMING_SNAKE_CASE : int = 2 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : float = 1E-5 , __SCREAMING_SNAKE_CASE : str = "gelu" , __SCREAMING_SNAKE_CASE : float = 0.02 , __SCREAMING_SNAKE_CASE : float = 1E-12 , __SCREAMING_SNAKE_CASE : int = 224 , __SCREAMING_SNAKE_CASE : float = 1E-05 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> None: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_expansion_ratio __SCREAMING_SNAKE_CASE = downsamples __SCREAMING_SNAKE_CASE = dim __SCREAMING_SNAKE_CASE = key_dim __SCREAMING_SNAKE_CASE = attention_ratio __SCREAMING_SNAKE_CASE = resolution __SCREAMING_SNAKE_CASE = pool_size __SCREAMING_SNAKE_CASE = downsample_patch_size __SCREAMING_SNAKE_CASE = downsample_stride __SCREAMING_SNAKE_CASE = downsample_pad __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = num_metaad_blocks __SCREAMING_SNAKE_CASE = distillation __SCREAMING_SNAKE_CASE = use_layer_scale __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = batch_norm_eps
361
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase : Optional[int] = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "retribert" def __init__( self : int , __SCREAMING_SNAKE_CASE : str=30_522 , __SCREAMING_SNAKE_CASE : int=768 , __SCREAMING_SNAKE_CASE : Any=8 , __SCREAMING_SNAKE_CASE : List[str]=12 , __SCREAMING_SNAKE_CASE : List[str]=3_072 , __SCREAMING_SNAKE_CASE : int="gelu" , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-12 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : Tuple=0 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Any: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = share_encoders __SCREAMING_SNAKE_CASE = projection_dim
331
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=13 , __SCREAMING_SNAKE_CASE : Optional[Any]=7 , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Any=5 , __SCREAMING_SNAKE_CASE : Dict=4 , __SCREAMING_SNAKE_CASE : Optional[int]=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]="None" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = relative_attention __SCREAMING_SNAKE_CASE = position_biased_input __SCREAMING_SNAKE_CASE = pos_att_type __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = DebertaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
362
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( a , a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AltDiffusionPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __SCREAMING_SNAKE_CASE = 77 __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict=0 ) -> List[str]: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A photo of an astronaut""" __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder __SCREAMING_SNAKE_CASE = RobertaSeriesModelWithTransformation(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = text_encoder __SCREAMING_SNAKE_CASE = AltDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=20 , output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained("""BAAI/AltDiffusion""" , subfolder="""scheduler""" ) __SCREAMING_SNAKE_CASE = AltDiffusionPipeline.from_pretrained("""BAAI/AltDiffusion""" , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = alt_pipe.to(__SCREAMING_SNAKE_CASE ) alt_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = alt_pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""numpy""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
331
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __SCREAMING_SNAKE_CASE = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 48 __SCREAMING_SNAKE_CASE = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __SCREAMING_SNAKE_CASE = [6, 6, 6, 6] __SCREAMING_SNAKE_CASE = 60 __SCREAMING_SNAKE_CASE = [6, 6, 6, 6] __SCREAMING_SNAKE_CASE = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1_26 __SCREAMING_SNAKE_CASE = 7 __SCREAMING_SNAKE_CASE = 255.0 __SCREAMING_SNAKE_CASE = """""" return config def a__ ( a__ , a__ ): """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: __SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: __SCREAMING_SNAKE_CASE = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __SCREAMING_SNAKE_CASE = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __SCREAMING_SNAKE_CASE = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __SCREAMING_SNAKE_CASE = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: __SCREAMING_SNAKE_CASE = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: __SCREAMING_SNAKE_CASE = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: __SCREAMING_SNAKE_CASE = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: __SCREAMING_SNAKE_CASE = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": __SCREAMING_SNAKE_CASE = """layernorm.weight""" if name == "norm.bias": __SCREAMING_SNAKE_CASE = """layernorm.bias""" if "conv_first" in name: __SCREAMING_SNAKE_CASE = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __SCREAMING_SNAKE_CASE = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __SCREAMING_SNAKE_CASE = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: __SCREAMING_SNAKE_CASE = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: __SCREAMING_SNAKE_CASE = name.replace("""upsample.2""" , """upsample.convolution_1""" ) __SCREAMING_SNAKE_CASE = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": __SCREAMING_SNAKE_CASE = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) __SCREAMING_SNAKE_CASE = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: __SCREAMING_SNAKE_CASE = """swin2sr.""" + name return name def a__ ( a__ , a__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = orig_state_dict.pop(a__ ) if "qkv" in key: __SCREAMING_SNAKE_CASE = key.split(""".""" ) __SCREAMING_SNAKE_CASE = int(key_split[1] ) __SCREAMING_SNAKE_CASE = int(key_split[4] ) __SCREAMING_SNAKE_CASE = config.embed_dim if "weight" in key: __SCREAMING_SNAKE_CASE = val[:dim, :] __SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE = val[-dim:, :] else: __SCREAMING_SNAKE_CASE = val[:dim] __SCREAMING_SNAKE_CASE = val[dim : dim * 2] __SCREAMING_SNAKE_CASE = val[-dim:] pass else: __SCREAMING_SNAKE_CASE = val return orig_state_dict def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_config(a__ ) __SCREAMING_SNAKE_CASE = SwinaSRForImageSuperResolution(a__ ) model.eval() __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(a__ , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = convert_state_dict(a__ , a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model.load_state_dict(a__ , strict=a__ ) if len(a__ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(a__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'Unexpected key {key} in state_dict' ) # verify values __SCREAMING_SNAKE_CASE = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ).convert("""RGB""" ) __SCREAMING_SNAKE_CASE = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __SCREAMING_SNAKE_CASE = 1_26 if """Jpeg""" in checkpoint_url else 2_56 __SCREAMING_SNAKE_CASE = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __SCREAMING_SNAKE_CASE = transforms(a__ ).unsqueeze(0 ) if config.num_channels == 1: __SCREAMING_SNAKE_CASE = pixel_values[:, 0, :, :].unsqueeze(1 ) __SCREAMING_SNAKE_CASE = model(a__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.Size([1, 3, 5_12, 5_12] ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.Size([1, 3, 10_24, 10_24] ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __SCREAMING_SNAKE_CASE = torch.Size([1, 3, 10_24, 10_24] ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.Size([1, 3, 5_12, 5_12] ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __SCREAMING_SNAKE_CASE = torch.Size([1, 3, 10_24, 10_24] ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , a__ , atol=1E-3 ) print("""Looks ok!""" ) __SCREAMING_SNAKE_CASE = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } __SCREAMING_SNAKE_CASE = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(a__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(a__ ) if push_to_hub: model.push_to_hub(F'caidas/{model_name}' ) processor.push_to_hub(F'caidas/{model_name}' ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') UpperCAmelCase : List[str] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
363
'''simple docstring''' import argparse import os import re import packaging.version UpperCAmelCase : Optional[int] = 'examples/' UpperCAmelCase : List[str] = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCAmelCase : Union[str, Any] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } UpperCAmelCase : Tuple = 'README.md' def a__ ( a__ , a__ , a__ ): """simple docstring""" with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = REPLACE_PATTERNS[pattern] __SCREAMING_SNAKE_CASE = replace.replace("""VERSION""" , a__ ) __SCREAMING_SNAKE_CASE = re_pattern.sub(a__ , a__ ) with open(a__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(a__ ) def a__ ( a__ ): """simple docstring""" for folder, directories, fnames in os.walk(a__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(a__ , a__ ) , a__ , pattern="""examples""" ) def a__ ( a__ , a__=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a__ , a__ , a__ ) if not patch: update_version_in_examples(a__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = """🤗 Transformers currently provides the following architectures""" __SCREAMING_SNAKE_CASE = """1. Want to contribute a new model?""" with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __SCREAMING_SNAKE_CASE = f.readlines() # Find the start of the list. __SCREAMING_SNAKE_CASE = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __SCREAMING_SNAKE_CASE = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __SCREAMING_SNAKE_CASE = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(a__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(a__ ) def a__ ( ): """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __SCREAMING_SNAKE_CASE = f.read() __SCREAMING_SNAKE_CASE = REPLACE_PATTERNS["""init"""][0].search(a__ ).groups()[0] return packaging.version.parse(a__ ) def a__ ( a__=False ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __SCREAMING_SNAKE_CASE = default_version.base_version elif patch: __SCREAMING_SNAKE_CASE = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: __SCREAMING_SNAKE_CASE = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. __SCREAMING_SNAKE_CASE = input(F'Which version are you releasing? [{default_version}]' ) if len(a__ ) == 0: __SCREAMING_SNAKE_CASE = default_version print(F'Updating version to {version}.' ) global_version_update(a__ , patch=a__ ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_version() __SCREAMING_SNAKE_CASE = F'{current_version.major}.{current_version.minor + 1}.0.dev0' __SCREAMING_SNAKE_CASE = current_version.base_version # Check with the user we got that right. __SCREAMING_SNAKE_CASE = input(F'Which version are we developing now? [{dev_version}]' ) if len(a__ ) == 0: __SCREAMING_SNAKE_CASE = dev_version print(F'Updating version to {version}.' ) global_version_update(a__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase : Dict = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
331
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( a__ , a__ ): """simple docstring""" assert isinstance(a__ , a__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , cache_dir=a__ , keep_in_memory=a__ ).read() _check_text_dataset(a__ , a__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , features=a__ , cache_dir=a__ ).read() _check_text_dataset(a__ , a__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , cache_dir=a__ , split=a__ ).read() _check_text_dataset(a__ , a__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" if issubclass(a__ , a__ ): __SCREAMING_SNAKE_CASE = text_path elif issubclass(a__ , a__ ): __SCREAMING_SNAKE_CASE = [text_path] __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , cache_dir=a__ ).read() _check_text_dataset(a__ , a__ ) def a__ ( a__ , a__ , a__=("train",) ): """simple docstring""" assert isinstance(a__ , a__ ) for split in splits: __SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE = TextDatasetReader({"""train""": text_path} , cache_dir=a__ , keep_in_memory=a__ ).read() _check_text_datasetdict(a__ , a__ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = TextDatasetReader({"""train""": text_path} , features=a__ , cache_dir=a__ ).read() _check_text_datasetdict(a__ , a__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def a__ ( a__ , a__ , a__ ): """simple docstring""" if split: __SCREAMING_SNAKE_CASE = {split: text_path} else: __SCREAMING_SNAKE_CASE = """train""" __SCREAMING_SNAKE_CASE = {"""train""": text_path, """test""": text_path} __SCREAMING_SNAKE_CASE = tmp_path / """cache""" __SCREAMING_SNAKE_CASE = {"""text""": """string"""} __SCREAMING_SNAKE_CASE = TextDatasetReader(a__ , cache_dir=a__ ).read() _check_text_datasetdict(a__ , a__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
364
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : List[str]=8 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=True , __SCREAMING_SNAKE_CASE : Tuple=99 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Optional[int]=5 , __SCREAMING_SNAKE_CASE : str=2 , __SCREAMING_SNAKE_CASE : Optional[Any]=36 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Any=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : int=4 , __SCREAMING_SNAKE_CASE : int=None , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 300 return config def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str] , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = MraModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = MraForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = () def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = MraModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""MRA does not output attentions""" ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" return @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __SCREAMING_SNAKE_CASE = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __SCREAMING_SNAKE_CASE = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_265 __SCREAMING_SNAKE_CASE = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __SCREAMING_SNAKE_CASE = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_265 __SCREAMING_SNAKE_CASE = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
331
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=a__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=a__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=a__ ) return parser.parse_args() def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = parse_args() # Import training_script as a module. __SCREAMING_SNAKE_CASE = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __SCREAMING_SNAKE_CASE = script_fpath.stem __SCREAMING_SNAKE_CASE = importlib.import_module(a__ ) # Patch sys.argv __SCREAMING_SNAKE_CASE = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
365
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase__ = 10000 lowerCAmelCase__ = None lowerCAmelCase__ = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase__ = ParquetConfig def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): __SCREAMING_SNAKE_CASE = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = pq.ParquetFile(__SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}' ) raise
331
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )["""last_hidden_state"""] __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
366
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCAmelCase : Any = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] UpperCAmelCase : Optional[Any] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] UpperCAmelCase : Optional[int] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[str] = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[Any] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def a__ ( a__ , a__ ): """simple docstring""" for tf_name, hf_name in patterns: __SCREAMING_SNAKE_CASE = k.replace(a__ , a__ ) return k def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = BigBirdPegasusConfig(**a__ ) __SCREAMING_SNAKE_CASE = BigBirdPegasusForConditionalGeneration(a__ ) __SCREAMING_SNAKE_CASE = torch_model.state_dict() __SCREAMING_SNAKE_CASE = {} # separating decoder weights __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = DECODER_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = REMAINING_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __SCREAMING_SNAKE_CASE = mapping["""model.embed_positions.weight"""] __SCREAMING_SNAKE_CASE = mapping.pop("""model.embed_positions.weight""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch_model.load_state_dict(a__ , strict=a__ ) __SCREAMING_SNAKE_CASE = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tf.train.list_variables(a__ ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = ["""global_step"""] for name, shape in tqdm(a__ , desc="""converting tf checkpoint to dict""" ): __SCREAMING_SNAKE_CASE = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE = tf.train.load_variable(a__ , a__ ) __SCREAMING_SNAKE_CASE = array return tf_weights def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_tf_weights_as_numpy(a__ ) __SCREAMING_SNAKE_CASE = convert_bigbird_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase : int = parser.parse_args() UpperCAmelCase : Dict = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
331
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def a__ ( a__ ): """simple docstring""" return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = ArgumentParser( """HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=a__ ) __SCREAMING_SNAKE_CASE = parser.add_subparsers(help="""datasets-cli command helpers""" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(a__ ) EnvironmentCommand.register_subcommand(a__ ) TestCommand.register_subcommand(a__ ) RunBeamCommand.register_subcommand(a__ ) DummyDataCommand.register_subcommand(a__ ) # Parse args __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_known_args() if not hasattr(a__ , """func""" ): parser.print_help() exit(1 ) __SCREAMING_SNAKE_CASE = parse_unknown_args(a__ ) # Run __SCREAMING_SNAKE_CASE = args.func(a__ , **a__ ) service.run() if __name__ == "__main__": main()
367
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(a ) class lowerCAmelCase__ ( a ): """simple docstring""" def __init__( self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Any=None ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = {} if prompt is not None: __SCREAMING_SNAKE_CASE = prompt if generate_kwargs is not None: __SCREAMING_SNAKE_CASE = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __SCREAMING_SNAKE_CASE = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __SCREAMING_SNAKE_CASE = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : int , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image(__SCREAMING_SNAKE_CASE ) if prompt is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError( f'Received an invalid text input, got - {type(__SCREAMING_SNAKE_CASE )} - but expected a single string. ' """Note also that one single text can be provided for conditional image to text generation.""" ) __SCREAMING_SNAKE_CASE = self.model.config.model_type if model_type == "git": __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = self.tokenizer(text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ).input_ids __SCREAMING_SNAKE_CASE = [self.tokenizer.cls_token_id] + input_ids __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) model_inputs.update(__SCREAMING_SNAKE_CASE ) else: raise ValueError(f'Model type {model_type} does not support conditional text generation' ) else: __SCREAMING_SNAKE_CASE = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __SCREAMING_SNAKE_CASE = None return model_inputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any]=None ) -> List[str]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , __SCREAMING_SNAKE_CASE ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __SCREAMING_SNAKE_CASE = None if generate_kwargs is None: __SCREAMING_SNAKE_CASE = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __SCREAMING_SNAKE_CASE = model_inputs.pop(self.model.main_input_name ) __SCREAMING_SNAKE_CASE = self.model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return model_outputs def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for output_ids in model_outputs: __SCREAMING_SNAKE_CASE = { """generated_text""": self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , ) } records.append(__SCREAMING_SNAKE_CASE ) return records
331
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 9, 14 # noqa: F841 __SCREAMING_SNAKE_CASE = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __SCREAMING_SNAKE_CASE = defaultdict(a__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __SCREAMING_SNAKE_CASE = mst(a__ ) __SCREAMING_SNAKE_CASE = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __SCREAMING_SNAKE_CASE = tuple(answer[:2] ) __SCREAMING_SNAKE_CASE = tuple(edge[::-1] ) assert edge in result or reverse in result
368
'''simple docstring''' def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = len(a__ ) while cur > 1: # Find the maximum number in arr __SCREAMING_SNAKE_CASE = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __SCREAMING_SNAKE_CASE = arr[mi::-1] + arr[mi + 1 : len(a__ )] # Reverse whole list __SCREAMING_SNAKE_CASE = arr[cur - 1 :: -1] + arr[cur : len(a__ )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase : str = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
331
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = VideoToVideoSDPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} lowerCAmelCase__ = False # No `output_type`. lowerCAmelCase__ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any]=0 ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """np""" __SCREAMING_SNAKE_CASE = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __SCREAMING_SNAKE_CASE = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE , expected_max_diff=5E-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase__ ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = torch.randn((1, 10, 3, 1_024, 576) , generator=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = video.to("""cuda""" ) __SCREAMING_SNAKE_CASE = """Spiderman is surfing""" __SCREAMING_SNAKE_CASE = pipe(__SCREAMING_SNAKE_CASE , video=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=3 , output_type="""pt""" ).frames __SCREAMING_SNAKE_CASE = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
369
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase : int = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(a__ ) ) __SCREAMING_SNAKE_CASE = os.path.join(a__ , """words.txt""" ) __SCREAMING_SNAKE_CASE = """""" with open(a__ ) as f: __SCREAMING_SNAKE_CASE = f.readline() __SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] __SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
331
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : List[Any] = logging.get_logger(__name__) def a__ ( a__ ): __SCREAMING_SNAKE_CASE = """huggingface/label-files""" __SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" __SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(a__ , a__ , repo_type="""dataset""" ) , """r""" ) ) __SCREAMING_SNAKE_CASE = {int(a__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __SCREAMING_SNAKE_CASE = BitConfig( conv_layer=a__ , num_labels=10_00 , idalabel=a__ , labelaid=a__ , ) return config def a__ ( a__ ): if "stem.conv" in name: __SCREAMING_SNAKE_CASE = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __SCREAMING_SNAKE_CASE = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: __SCREAMING_SNAKE_CASE = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): __SCREAMING_SNAKE_CASE = """bit.""" + name if "bit" not in name and "classifier" not in name: __SCREAMING_SNAKE_CASE = """bit.encoder.""" + name return name def a__ ( ): __SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" __SCREAMING_SNAKE_CASE = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def a__ ( a__ , a__ , a__=False ): __SCREAMING_SNAKE_CASE = get_config(a__ ) # load original model from timm __SCREAMING_SNAKE_CASE = create_model(a__ , pretrained=a__ ) timm_model.eval() # load state_dict of original model __SCREAMING_SNAKE_CASE = timm_model.state_dict() for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE = state_dict.pop(a__ ) __SCREAMING_SNAKE_CASE = val.squeeze() if """head""" in key else val # load HuggingFace model __SCREAMING_SNAKE_CASE = BitForImageClassification(a__ ) model.eval() model.load_state_dict(a__ ) # create image processor __SCREAMING_SNAKE_CASE = create_transform(**resolve_data_config({} , model=a__ ) ) __SCREAMING_SNAKE_CASE = transform.transforms __SCREAMING_SNAKE_CASE = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __SCREAMING_SNAKE_CASE = BitImageProcessor( do_resize=a__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=a__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = transform(a__ ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE = processor(a__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(a__ , a__ ) # verify logits with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(a__ ) __SCREAMING_SNAKE_CASE = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) __SCREAMING_SNAKE_CASE = timm_model(a__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(a__ ).mkdir(exist_ok=a__ ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) UpperCAmelCase : Any = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
370
'''simple docstring''' class lowerCAmelCase__ : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = row __SCREAMING_SNAKE_CASE = col __SCREAMING_SNAKE_CASE = graph def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] __SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: # And finally, count all islands. """simple docstring""" __SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] __SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += 1 return count
331
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = "megatron-bert" def __init__( self : Any , __SCREAMING_SNAKE_CASE : Dict=29_056 , __SCREAMING_SNAKE_CASE : Tuple=1_024 , __SCREAMING_SNAKE_CASE : int=24 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : str=4_096 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=512 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : List[str]=1E-12 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : str="absolute" , __SCREAMING_SNAKE_CASE : int=True , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> int: """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache
371
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=13 , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[Any]=99 , __SCREAMING_SNAKE_CASE : Union[str, Any]=32 , __SCREAMING_SNAKE_CASE : Dict=5 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Tuple=37 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=512 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : List[Any]=4 , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_attention_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_choices def UpperCAmelCase__ ( self : Dict ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __SCREAMING_SNAKE_CASE = jnp.array([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE )[0] __SCREAMING_SNAKE_CASE = 50_000 __SCREAMING_SNAKE_CASE = (1, 6, vocab_size) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
331
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_ = 1_6 lowerCAmelCase_ = 3_2 def __magic_name__ ( A , A = 1_6 , A = "bert-base-cased" ) -> Optional[int]: snake_case = AutoTokenizer.from_pretrained(A ) snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case = datasets.map( A , batched=A , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return tokenizer.pad(A , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. snake_case = DataLoader( tokenized_datasets['train'] , shuffle=A , collate_fn=A , batch_size=A ) snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __magic_name__ ( A , A , A , A ) -> str: model.eval() snake_case = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case = model(**A ) snake_case = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case , snake_case = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) snake_case = metric.compute() return eval_metric["accuracy"] def __magic_name__ ( A , A ) -> int: # Initialize accelerator snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case = config['lr'] snake_case = int(config['num_epochs'] ) snake_case = int(config['seed'] ) snake_case = int(config['batch_size'] ) snake_case = args.model_name_or_path set_seed(A ) snake_case , snake_case = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: snake_case = 1 snake_case = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: snake_case = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case , snake_case , snake_case , snake_case , snake_case = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over snake_case = 0 # We also need to keep track of the stating epoch so files are named properly snake_case = 0 snake_case = evaluate.load('glue' , 'mrpc' ) snake_case = num_epochs if args.partial_train_epoch is not None: snake_case = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) snake_case = args.resume_from_checkpoint.split('epoch_' )[1] snake_case = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break snake_case = int(A ) + 1 snake_case = evaluation_loop(A , A , A , A ) accelerator.print('resumed checkpoint performance:' , A ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , 'r' ) as f: snake_case = json.load(A ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model snake_case = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): snake_case = model(**A ) snake_case = outputs.loss snake_case = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 snake_case = F'''epoch_{epoch}''' snake_case = os.path.join(args.output_dir , A ) accelerator.save_state(A ) snake_case = evaluation_loop(A , A , A , A ) snake_case = accuracy snake_case = lr_scheduler.get_lr()[0] snake_case = optimizer.param_groups[0]['lr'] snake_case = epoch snake_case = overall_step accelerator.print(F'''epoch {epoch}:''' , A ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , 'w' ) as f: json.dump(A , A ) def __magic_name__ ( ) -> Any: snake_case = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=A , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=A , ) parser.add_argument( '--output_dir' , type=A , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=A , default=A , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=A , default=A , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=A , default=2 , help='Number of train epochs.' , ) snake_case = parser.parse_args() snake_case = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 4_2, 'batch_size': 1_6} training_function(A , A ) if __name__ == "__main__": main()
332
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCamelCase : snake_case_ = 42 snake_case_ = None snake_case_ = None def __magic_name__ ( ) -> Node | None: snake_case = Node(1 ) snake_case = Node(2 ) snake_case = Node(3 ) snake_case = Node(4 ) snake_case = Node(5 ) return tree def __magic_name__ ( A ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __magic_name__ ( A ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __magic_name__ ( A ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __magic_name__ ( A ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __magic_name__ ( A ) -> Sequence[Node | None]: snake_case = [] if root is None: return output snake_case = deque([root] ) while process_queue: snake_case = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __magic_name__ ( A , A ) -> Sequence[Node | None]: snake_case = [] def populate_output(A , A ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(A , A ) return output def __magic_name__ ( A , A ) -> Sequence[Node | None]: snake_case = [] def populate_output(A , A ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(A , A ) return output def __magic_name__ ( A ) -> Sequence[Node | None] | list[Any]: if root is None: return [] snake_case = [] snake_case = 0 snake_case = height(A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A , A ) ) snake_case = 1 else: output.append(get_nodes_from_right_to_left(A , A ) ) snake_case = 0 return output def __magic_name__ ( ) -> None: # Main function for testing. snake_case = make_tree() print(F'''In-order Traversal: {inorder(A )}''' ) print(F'''Pre-order Traversal: {preorder(A )}''' ) print(F'''Post-order Traversal: {postorder(A )}''' , '\n' ) print(F'''Height of Tree: {height(A )}''' , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(A ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(A ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(A , level=A ) ) print('\nZigZag order Traversal: ' ) print(zigzag(A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
332
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
1
'''simple docstring''' def __magic_name__ ( A = 1_0 , A = 2_2 ) -> int: snake_case = range(1 , A ) snake_case = range(1 , A ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"{solution(1_0, 2_2) = }")
332
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = (DDPMScheduler,) def _lowerCamelCase ( self, **lowercase_ ) -> List[str]: snake_case = { 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**lowercase_ ) return config def _lowerCamelCase ( self ) -> Union[str, Any]: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def _lowerCamelCase ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase_, beta_end=lowercase_ ) def _lowerCamelCase ( self ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def _lowerCamelCase ( self ) -> str: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowercase_ ) def _lowerCamelCase ( self ) -> int: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: self.check_over_configs(thresholding=lowercase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowercase_, prediction_type=lowercase_, sample_max_value=lowercase_, ) def _lowerCamelCase ( self ) -> List[Any]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def _lowerCamelCase ( self ) -> Tuple: for t in [0, 500, 999]: self.check_over_forward(time_step=lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _lowerCamelCase ( self ) -> int: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = len(lowercase_ ) snake_case = self.dummy_model() snake_case = self.dummy_sample_deter snake_case = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual snake_case = model(lowercase_, lowercase_ ) # 2. predict previous mean of sample x_t-1 snake_case = scheduler.step(lowercase_, lowercase_, lowercase_, generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case = pred_prev_sample snake_case = torch.sum(torch.abs(lowercase_ ) ) snake_case = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def _lowerCamelCase ( self ) -> List[Any]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(prediction_type='v_prediction' ) snake_case = scheduler_class(**lowercase_ ) snake_case = len(lowercase_ ) snake_case = self.dummy_model() snake_case = self.dummy_sample_deter snake_case = torch.manual_seed(0 ) for t in reversed(range(lowercase_ ) ): # 1. predict noise residual snake_case = model(lowercase_, lowercase_ ) # 2. predict previous mean of sample x_t-1 snake_case = scheduler.step(lowercase_, lowercase_, lowercase_, generator=lowercase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance snake_case = pred_prev_sample snake_case = torch.sum(torch.abs(lowercase_ ) ) snake_case = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def _lowerCamelCase ( self ) -> List[Any]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowercase_ ) snake_case = scheduler.timesteps for i, timestep in enumerate(lowercase_ ): if i == len(lowercase_ ) - 1: snake_case = -1 else: snake_case = timesteps[i + 1] snake_case = scheduler.previous_timestep(lowercase_ ) snake_case = prev_t.item() self.assertEqual(lowercase_, lowercase_ ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = [100, 87, 50, 51, 0] with self.assertRaises(lowercase_, msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=lowercase_ ) def _lowerCamelCase ( self ) -> Dict: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = [100, 87, 50, 1, 0] snake_case = len(lowercase_ ) with self.assertRaises(lowercase_, msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=lowercase_, timesteps=lowercase_ ) def _lowerCamelCase ( self ) -> Any: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowercase_ ) snake_case = [scheduler.config.num_train_timesteps] with self.assertRaises( lowercase_, msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}', ): scheduler.set_timesteps(timesteps=lowercase_ )
332
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
1
'''simple docstring''' import os import sys import unittest lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase_ = os.path.join("tests", "models", "bert", "test_modeling_bert.py") lowerCAmelCase_ = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: snake_case = get_test_to_tester_mapping(lowercase_ ) snake_case = get_test_to_tester_mapping(lowercase_ ) snake_case = {'BertModelTest': 'BertModelTester'} snake_case = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = get_model_to_test_mapping(lowercase_ ) snake_case = get_model_to_test_mapping(lowercase_ ) snake_case = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } snake_case = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) def _lowerCamelCase ( self ) -> str: snake_case = get_model_to_tester_mapping(lowercase_ ) snake_case = get_model_to_tester_mapping(lowercase_ ) snake_case = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } snake_case = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ )
332
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''Wav2Vec2FeatureExtractor''' snake_case_ = '''AutoTokenizer''' def __init__( self, lowercase_, lowercase_ ) -> str: super().__init__(lowercase_, lowercase_ ) snake_case = self.feature_extractor snake_case = False @classmethod def _lowerCamelCase ( cls, lowercase_, **lowercase_ ) -> Optional[Any]: try: return super().from_pretrained(lowercase_, **lowercase_ ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ', lowercase_, ) snake_case = WavaVecaFeatureExtractor.from_pretrained(lowercase_, **lowercase_ ) snake_case = WavaVecaCTCTokenizer.from_pretrained(lowercase_, **lowercase_ ) return cls(feature_extractor=lowercase_, tokenizer=lowercase_ ) def __call__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase_, **lowercase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) snake_case = kwargs.pop('raw_speech' ) else: snake_case = kwargs.pop('audio', lowercase_ ) snake_case = kwargs.pop('sampling_rate', lowercase_ ) snake_case = kwargs.pop('text', lowercase_ ) if len(lowercase_ ) > 0: snake_case = args[0] snake_case = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: snake_case = self.feature_extractor(lowercase_, *lowercase_, sampling_rate=lowercase_, **lowercase_ ) if text is not None: snake_case = self.tokenizer(lowercase_, **lowercase_ ) if text is None: return inputs elif audio is None: return encodings else: snake_case = encodings['input_ids'] return inputs def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowercase_, **lowercase_ ) snake_case = kwargs.pop('input_features', lowercase_ ) snake_case = kwargs.pop('labels', lowercase_ ) if len(lowercase_ ) > 0: snake_case = args[0] snake_case = args[1:] if input_features is not None: snake_case = self.feature_extractor.pad(lowercase_, *lowercase_, **lowercase_ ) if labels is not None: snake_case = self.tokenizer.pad(lowercase_, **lowercase_ ) if labels is None: return input_features elif input_features is None: return labels else: snake_case = labels['input_ids'] return input_features def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Optional[int]: return self.tokenizer.batch_decode(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Optional[Any]: return self.tokenizer.decode(*lowercase_, **lowercase_ ) @contextmanager def _lowerCamelCase ( self ) -> Union[str, Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) snake_case = True snake_case = self.tokenizer yield snake_case = self.feature_extractor snake_case = False
332
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
1
'''simple docstring''' import cva import numpy as np class lowerCamelCase : def __init__( self, lowercase_, lowercase_ ) -> Union[str, Any]: if k in (0.04, 0.06): snake_case = k snake_case = window_size else: raise ValueError('invalid k value' ) def __str__( self ) -> str: return str(self.k ) def _lowerCamelCase ( self, lowercase_ ) -> tuple[cva.Mat, list[list[int]]]: snake_case = cva.imread(lowercase_, 0 ) snake_case , snake_case = img.shape snake_case = [] snake_case = img.copy() snake_case = cva.cvtColor(lowercase_, cva.COLOR_GRAY2RGB ) snake_case , snake_case = np.gradient(lowercase_ ) snake_case = dx**2 snake_case = dy**2 snake_case = dx * dy snake_case = 0.04 snake_case = self.window_size // 2 for y in range(lowercase_, h - offset ): for x in range(lowercase_, w - offset ): snake_case = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case = (wxx * wyy) - (wxy**2) snake_case = wxx + wyy snake_case = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 255 ) return color_img, corner_list if __name__ == "__main__": lowerCAmelCase_ = HarrisCorner(0.04, 3) lowerCAmelCase_ , lowerCAmelCase_ = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
332
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowerCAmelCase_ = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] lowerCAmelCase_ = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def __magic_name__ ( ) -> Any: snake_case = calculate_rouge(A , A , bootstrap_aggregation=A , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(A , A ) snake_case = calculate_rouge(A , A , bootstrap_aggregation=A , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def __magic_name__ ( ) -> Tuple: snake_case = 'rougeLsum' snake_case = calculate_rouge(A , A , newline_sep=A , rouge_keys=[k] )[k] snake_case = calculate_rouge(A , A , newline_sep=A , rouge_keys=[k] )[k] assert score > score_no_sep def __magic_name__ ( ) -> List[str]: snake_case = ['rouge1', 'rouge2', 'rougeL'] snake_case = calculate_rouge(A , A , newline_sep=A , rouge_keys=A ) snake_case = calculate_rouge(A , A , newline_sep=A , rouge_keys=A ) assert score_sep == score_no_sep def __magic_name__ ( ) -> Optional[Any]: snake_case = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] snake_case = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(A , A , newline_sep=A ) == calculate_rouge(A , A , newline_sep=A ) def __magic_name__ ( ) -> List[str]: snake_case = [ '" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ' ] snake_case = [ ' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] snake_case = calculate_rouge(A , A , rouge_keys=['rougeLsum'] , newline_sep=A )['rougeLsum'] snake_case = calculate_rouge(A , A , rouge_keys=['rougeLsum'] )['rougeLsum'] assert new_score > prev_score def __magic_name__ ( ) -> int: snake_case = Path('examples/seq2seq/test_data/wmt_en_ro' ) snake_case = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(A , A ) snake_case = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=A ) assert isinstance(A , A )
332
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def __magic_name__ ( A ) -> int: snake_case = botoa.client('iam' ) snake_case = { 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A , AssumeRolePolicyDocument=json.dumps(A , indent=2 ) ) snake_case = { 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=A , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def __magic_name__ ( A ) -> Any: snake_case = botoa.client('iam' ) return iam_client.get_role(RoleName=A )["Role"]["Arn"] def __magic_name__ ( ) -> List[str]: snake_case = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , A , ) snake_case = None if credentials_configuration == 0: snake_case = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) snake_case = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) snake_case = _ask_field('AWS Access Key ID: ' ) snake_case = aws_access_key_id snake_case = _ask_field('AWS Secret Access Key: ' ) snake_case = aws_secret_access_key snake_case = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) snake_case = aws_region snake_case = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , A , ) if role_management == 0: snake_case = _ask_field('Enter your IAM role name: ' ) else: snake_case = 'accelerate_sagemaker_execution_role' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(A ) snake_case = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = None if is_custom_docker_image: snake_case = _ask_field('Enter your Docker image: ' , lambda A : str(A ).lower() ) snake_case = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = None if is_sagemaker_inputs_enabled: snake_case = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda A : str(A ).lower() , ) snake_case = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = None if is_sagemaker_metrics_enabled: snake_case = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda A : str(A ).lower() , ) snake_case = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) snake_case = {} snake_case = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) if use_dynamo: snake_case = 'dynamo_' snake_case = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) snake_case = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) if use_custom_options: snake_case = _ask_options( 'Which mode do you want to use?' , A , lambda A : TORCH_DYNAMO_MODES[int(A )] , default='default' , ) snake_case = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=A , error_message='Please enter yes or no.' , ) snake_case = 'Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: snake_case = _ask_options( A , A , lambda A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" snake_case = _ask_field(A , lambda A : str(A ).lower() , default='ml.p3.2xlarge' ) snake_case = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): snake_case = _ask_field( 'How many machines do you want use? [1]: ' , A , default=1 , ) snake_case = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A , use_cpu=A , dynamo_config=A , eca_instance_type=A , profile=A , region=A , iam_role_name=A , mixed_precision=A , num_machines=A , sagemaker_inputs_file=A , sagemaker_metrics_file=A , )
332
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
1
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __magic_name__ ( ) -> Optional[int]: raise RuntimeError('CUDA out of memory.' ) class lowerCamelCase ( nn.Module ): def __init__( self ) -> Optional[int]: super().__init__() snake_case = nn.Linear(3, 4 ) snake_case = nn.BatchNormad(4 ) snake_case = nn.Linear(4, 5 ) def _lowerCamelCase ( self, lowercase_ ) -> str: return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Tuple: snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_ ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowercase_, [128, 64, 32, 16, 8] ) def _lowerCamelCase ( self ) -> Tuple: snake_case = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_, lowercase_ ): nonlocal batch_sizes batch_sizes.append(lowercase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga snake_case , snake_case = mock_training_loop_function('hello' ) self.assertListEqual(lowercase_, [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga], [8, 'hello'] ) def _lowerCamelCase ( self ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowercase_ ): pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.', cm.exception.args[0] ) def _lowerCamelCase ( self ) -> Tuple: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.', cm.exception.args[0] ) def _lowerCamelCase ( self ) -> Any: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase_, lowercase_, lowercase_ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function(128, 'hello', 'world' ) self.assertIn('Batch size was passed into `f`', cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')', cm.exception.args[0] ) def _lowerCamelCase ( self ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase_ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowercase_ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!', cm.exception.args[0] ) @require_cuda def _lowerCamelCase ( self ) -> int: snake_case = torch.cuda.memory_allocated() snake_case = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated(), lowercase_ ) snake_case = release_memory(lowercase_ ) self.assertEqual(torch.cuda.memory_allocated(), lowercase_ )
332
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
1
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> bool: return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
332
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
1
'''simple docstring''' import os from pathlib import Path def __magic_name__ ( ) -> str: from torch.utils.cpp_extension import load snake_case = Path(A ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' snake_case = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , A , with_cuda=A , extra_include_paths=[str(A )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
332
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowerCAmelCase ) class lowerCamelCase ( __lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def _lowerCamelCase ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
332
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ): snake_case_ = FunnelTokenizer snake_case_ = FunnelTokenizerFast snake_case_ = True snake_case_ = True def _lowerCamelCase ( self ) -> str: super().setUp() snake_case = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCamelCase ( self, **lowercase_ ) -> Tuple: return FunnelTokenizer.from_pretrained(self.tmpdirname, **lowercase_ ) def _lowerCamelCase ( self, **lowercase_ ) -> Optional[int]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **lowercase_ ) def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = 'UNwant\u00E9d,running' snake_case = 'unwanted, running' return input_text, output_text def _lowerCamelCase ( self ) -> Dict: snake_case = self.tokenizer_class(self.vocab_file ) snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowercase_, ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ), [7, 4, 5, 10, 8, 9] ) def _lowerCamelCase ( self ) -> Any: snake_case = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: snake_case = tokenizer('UNwant\u00E9d,running' ) snake_case = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'], [2] + [0] * sentence_len ) snake_case = tokenizer('UNwant\u00E9d,running', 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'], [2] + [0] * sentence_len + [1] * sentence_len )
332
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
1
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowerCamelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ) -> List[str]: snake_case = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowercase_ ) @slow def _lowerCamelCase ( self ) -> List[Any]: self.resolver.convert_models(['heb-eng'] ) @slow def _lowerCamelCase ( self ) -> List[Any]: snake_case , snake_case = self.resolver.write_model_card('opus-mt-he-en', dry_run=lowercase_ ) assert mmeta["long_pair"] == "heb-eng"
332
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger("transformers.models.encodec") lowerCAmelCase_ = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } lowerCAmelCase_ = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } lowerCAmelCase_ = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } lowerCAmelCase_ = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } lowerCAmelCase_ = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } lowerCAmelCase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCAmelCase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __magic_name__ ( A , A , A , A , A ) -> int: for attribute in key.split('.' ): snake_case = getattr(A , A ) if weight_type is not None: snake_case = getattr(A , A ).shape else: snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value elif weight_type == "running_mean": snake_case = value elif weight_type == "running_var": snake_case = value elif weight_type == "num_batches_tracked": snake_case = value elif weight_type == "weight_ih_l0": snake_case = value elif weight_type == "weight_hh_l0": snake_case = value elif weight_type == "bias_ih_l0": snake_case = value elif weight_type == "bias_hh_l0": snake_case = value elif weight_type == "weight_ih_l1": snake_case = value elif weight_type == "weight_hh_l1": snake_case = value elif weight_type == "bias_ih_l1": snake_case = value elif weight_type == "bias_hh_l1": snake_case = value else: snake_case = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def __magic_name__ ( A , A ) -> str: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case , snake_case = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = [] if model_name == "encodec_24khz" or "encodec_32khz": snake_case = MAPPING_24K elif model_name == "encodec_48khz": snake_case = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(A , A ): logger.info(F'''{name} was ignored''' ) continue snake_case = False for key, mapped_key in MAPPING.items(): if "*" in key: snake_case , snake_case = key.split('.*.' ) if prefix in name and suffix in name: snake_case = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue snake_case = True if "*" in mapped_key: snake_case = name.split(A )[0].split('.' )[-2] snake_case = mapped_key.replace('*' , A ) if "weight_g" in name: snake_case = 'weight_g' elif "weight_v" in name: snake_case = 'weight_v' elif "weight_ih_l0" in name: snake_case = 'weight_ih_l0' elif "weight_hh_l0" in name: snake_case = 'weight_hh_l0' elif "bias_ih_l0" in name: snake_case = 'bias_ih_l0' elif "bias_hh_l0" in name: snake_case = 'bias_hh_l0' elif "weight_ih_l1" in name: snake_case = 'weight_ih_l1' elif "weight_hh_l1" in name: snake_case = 'weight_hh_l1' elif "bias_ih_l1" in name: snake_case = 'bias_ih_l1' elif "bias_hh_l1" in name: snake_case = 'bias_hh_l1' elif "bias" in name: snake_case = 'bias' elif "weight" in name: snake_case = 'weight' elif "running_mean" in name: snake_case = 'running_mean' elif "running_var" in name: snake_case = 'running_var' elif "num_batches_tracked" in name: snake_case = 'num_batches_tracked' else: snake_case = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def __magic_name__ ( A , A , A , A=None , A=None , ) -> List[str]: if config_path is not None: snake_case = EncodecConfig.from_pretrained(A ) else: snake_case = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": snake_case = [8, 5, 4, 4] snake_case = [2.2] snake_case = 6_4 snake_case = 3_2_0_0_0 snake_case = 2_0_4_8 snake_case = False snake_case = False snake_case = False elif model_name == "encodec_48khz": snake_case = [8, 5, 4, 2] snake_case = [3.0, 6.0, 12.0, 24.0] snake_case = 4_8_0_0_0 snake_case = 2 snake_case = False snake_case = 'time_group_norm' snake_case = True snake_case = 1.0 snake_case = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) snake_case = EncodecModel(A ) snake_case = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(A ) snake_case = torch.load(A ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights snake_case = original_checkpoint['best_state'] recursively_load_weights(A , A , A ) model.save_pretrained(A ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(A ) model.push_to_hub(A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) lowerCAmelCase_ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
332
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
1
'''simple docstring''' import numpy as np def __magic_name__ ( A ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
332
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
1
'''simple docstring''' def __magic_name__ ( A = 1_0_0 ) -> int: snake_case = 0 snake_case = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
332
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = ['''pixel_values'''] def __init__( self, lowercase_ = True, lowercase_ = None, lowercase_ = PILImageResampling.BICUBIC, lowercase_ = True, lowercase_ = None, lowercase_ = True, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = None, lowercase_ = None, lowercase_ = True, **lowercase_, ) -> None: super().__init__(**lowercase_ ) snake_case = size if size is not None else {'shortest_edge': 224} snake_case = get_size_dict(lowercase_, default_to_square=lowercase_ ) snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case = get_size_dict(lowercase_, default_to_square=lowercase_, param_name='crop_size' ) snake_case = do_resize snake_case = size snake_case = resample snake_case = do_center_crop snake_case = crop_size snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case = image_std if image_std is not None else OPENAI_CLIP_STD snake_case = do_convert_rgb def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = PILImageResampling.BICUBIC, lowercase_ = None, **lowercase_, ) -> np.ndarray: snake_case = get_size_dict(lowercase_, default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case = get_resize_output_image_size(lowercase_, size=size['shortest_edge'], default_to_square=lowercase_ ) return resize(lowercase_, size=lowercase_, resample=lowercase_, data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray: snake_case = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase_, size=(size['height'], size['width']), data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> Union[str, Any]: return rescale(lowercase_, scale=lowercase_, data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray: return normalize(lowercase_, mean=lowercase_, std=lowercase_, data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = ChannelDimension.FIRST, **lowercase_, ) -> PIL.Image.Image: snake_case = do_resize if do_resize is not None else self.do_resize snake_case = size if size is not None else self.size snake_case = get_size_dict(lowercase_, param_name='size', default_to_square=lowercase_ ) snake_case = resample if resample is not None else self.resample snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case = crop_size if crop_size is not None else self.crop_size snake_case = get_size_dict(lowercase_, param_name='crop_size', default_to_square=lowercase_ ) snake_case = do_rescale if do_rescale is not None else self.do_rescale snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case = do_normalize if do_normalize is not None else self.do_normalize snake_case = image_mean if image_mean is not None else self.image_mean snake_case = image_std if image_std is not None else self.image_std snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. snake_case = [to_numpy_array(lowercase_ ) for image in images] if do_resize: snake_case = [self.resize(image=lowercase_, size=lowercase_, resample=lowercase_ ) for image in images] if do_center_crop: snake_case = [self.center_crop(image=lowercase_, size=lowercase_ ) for image in images] if do_rescale: snake_case = [self.rescale(image=lowercase_, scale=lowercase_ ) for image in images] if do_normalize: snake_case = [self.normalize(image=lowercase_, mean=lowercase_, std=lowercase_ ) for image in images] snake_case = [to_channel_dimension_format(lowercase_, lowercase_ ) for image in images] snake_case = {'pixel_values': images} return BatchFeature(data=lowercase_, tensor_type=lowercase_ )
332
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
1
'''simple docstring''' import pprint import requests lowerCAmelCase_ = "https://zenquotes.io/api" def __magic_name__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def __magic_name__ ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": lowerCAmelCase_ = random_quotes() pprint.pprint(response)
332
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
1
'''simple docstring''' def __magic_name__ ( A ) -> List[Any]: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection snake_case = len(A ) snake_case = max(A ) snake_case = min(A ) # create the counting array snake_case = coll_max + 1 - coll_min snake_case = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , A ): snake_case = counting_arr[i] + counting_arr[i - 1] # create the output collection snake_case = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , A ) ): snake_case = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __magic_name__ ( A ) -> List[Any]: return "".join([chr(A ) for i in counting_sort([ord(A ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
332
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
332
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
1
'''simple docstring''' import os def __magic_name__ ( A ) -> List[Any]: snake_case = len(grid[0] ) snake_case = len(A ) snake_case = 0 snake_case = 0 snake_case = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(A ): for j in range(n_rows - 3 ): snake_case = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] snake_case = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: snake_case = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: snake_case = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) snake_case = max( A , A , A , A ) if max_product > largest: snake_case = max_product return largest def __magic_name__ ( ) -> int: snake_case = [] with open(os.path.dirname(A ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) snake_case = [[int(A ) for i in grid[j]] for j in range(len(A ) )] return largest_product(A ) if __name__ == "__main__": print(solution())
332
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
1
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCAmelCase_ = False try: lowerCAmelCase_ = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class lowerCamelCase : def __init__( self, lowercase_ = None, lowercase_ = [] ) -> Union[str, Any]: snake_case = 0 snake_case = choices snake_case = prompt if sys.platform == "win32": snake_case = '*' else: snake_case = '➔ ' def _lowerCamelCase ( self, lowercase_, lowercase_ = "" ) -> Union[str, Any]: if sys.platform != "win32": writeColor(self.choices[index], 32, lowercase_ ) else: forceWrite(self.choices[index], lowercase_ ) def _lowerCamelCase ( self, lowercase_ ) -> Optional[Any]: if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(lowercase_ ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def _lowerCamelCase ( self, lowercase_, lowercase_ = 1 ) -> List[Any]: snake_case = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(lowercase_ ) move_cursor(lowercase_, direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def _lowerCamelCase ( self ) -> Optional[int]: self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def _lowerCamelCase ( self ) -> str: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def _lowerCamelCase ( self ) -> Any: move_cursor(len(self.choices ) - self.position, 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def _lowerCamelCase ( self ) -> Any: move_cursor(len(self.choices ) - self.position, 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(lowercase_ )] for number in range(10 )] ) def _lowerCamelCase ( self ) -> Tuple: snake_case = int(chr(self.current_selection ) ) snake_case = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP, -movement ) elif self.position < index: self.move_direction(Direction.DOWN, lowercase_ ) else: return else: return def _lowerCamelCase ( self, lowercase_ = 0 ) -> Union[str, Any]: if self.prompt: linebreak() forceWrite(self.prompt, '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter', '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter', '\n' ) snake_case = default_choice for i in range(len(self.choices ) ): self.print_choice(lowercase_ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position, 'UP' ) with cursor.hide(): while True: if in_colab: try: snake_case = int(builtins.input() ) except ValueError: snake_case = default_choice else: snake_case = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1, 'UP' ) clear_line() self.write_choice(lowercase_, '\n' ) return choice
332
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") lowerCAmelCase_ = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) lowerCAmelCase_ = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) lowerCAmelCase_ = BeautifulSoup(res.text, "html.parser") lowerCAmelCase_ = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"https://google.com{link.get('href')}")
332
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
1
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, **lowercase_ ) -> Tuple: super().__init__(**lowercase_ ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self, lowercase_, **lowercase_ ) -> List[str]: return super().__call__(lowercase_, **lowercase_ ) def _lowerCamelCase ( self, **lowercase_ ) -> Tuple: snake_case = {} if "candidate_labels" in kwargs: snake_case = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: snake_case = kwargs['hypothesis_template'] return preprocess_params, {}, {} def _lowerCamelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a sound of {}." ) -> Union[str, Any]: if isinstance(lowercase_, lowercase_ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png snake_case = requests.get(lowercase_ ).content else: with open(lowercase_, 'rb' ) as f: snake_case = f.read() if isinstance(lowercase_, lowercase_ ): snake_case = ffmpeg_read(lowercase_, self.feature_extractor.sampling_rate ) if not isinstance(lowercase_, np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) snake_case = self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='pt' ) snake_case = candidate_labels snake_case = [hypothesis_template.format(lowercase_ ) for x in candidate_labels] snake_case = self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ ) snake_case = [text_inputs] return inputs def _lowerCamelCase ( self, lowercase_ ) -> Dict: snake_case = model_inputs.pop('candidate_labels' ) snake_case = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0], lowercase_ ): snake_case = text_inputs[0] else: # Batching case. snake_case = text_inputs[0][0] snake_case = self.model(**lowercase_, **lowercase_ ) snake_case = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def _lowerCamelCase ( self, lowercase_ ) -> Tuple: snake_case = model_outputs.pop('candidate_labels' ) snake_case = model_outputs['logits'][0] if self.framework == "pt": snake_case = logits.softmax(dim=0 ) snake_case = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) snake_case = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] ) ] return result
332
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
1