code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
lowerCAmelCase_ = get_tests_dir("fixtures")
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> List[str]:
# A mock response for an HTTP head request to emulate server down
snake_case = mock.Mock()
snake_case = 500
snake_case = {}
snake_case = HTTPError
snake_case = {}
# Download this model to make sure it's in the cache.
snake_case = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request', return_value=lowercase_ ) as mock_head:
snake_case = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' )
# This check we did call the fake head request
mock_head.assert_called()
def _lowerCamelCase ( self ) -> int:
# This test is for deprecated behavior and can be removed in v5
snake_case = WavaVecaFeatureExtractor.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' )
@is_staging_test
class lowerCamelCase ( unittest.TestCase ):
@classmethod
def _lowerCamelCase ( cls ) -> Union[str, Any]:
snake_case = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def _lowerCamelCase ( cls ) -> Optional[int]:
try:
delete_repo(token=cls._token, repo_id='test-feature-extractor' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-feature-extractor-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-feature-extractor' )
except HTTPError:
pass
def _lowerCamelCase ( self ) -> Dict:
snake_case = WavaVecaFeatureExtractor.from_pretrained(lowercase_ )
feature_extractor.push_to_hub('test-feature-extractor', use_auth_token=self._token )
snake_case = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) )
# Reset repo
delete_repo(token=self._token, repo_id='test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowercase_, repo_id='test-feature-extractor', push_to_hub=lowercase_, use_auth_token=self._token )
snake_case = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) )
def _lowerCamelCase ( self ) -> Tuple:
snake_case = WavaVecaFeatureExtractor.from_pretrained(lowercase_ )
feature_extractor.push_to_hub('valid_org/test-feature-extractor', use_auth_token=self._token )
snake_case = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-feature-extractor' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
lowercase_, repo_id='valid_org/test-feature-extractor-org', push_to_hub=lowercase_, use_auth_token=self._token )
snake_case = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) )
def _lowerCamelCase ( self ) -> Any:
CustomFeatureExtractor.register_for_auto_class()
snake_case = CustomFeatureExtractor.from_pretrained(lowercase_ )
feature_extractor.push_to_hub('test-dynamic-feature-extractor', use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map, {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'}, )
snake_case = AutoFeatureExtractor.from_pretrained(
F'''{USER}/test-dynamic-feature-extractor''', trust_remote_code=lowercase_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__, 'CustomFeatureExtractor' )
| 332 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class lowerCamelCase :
def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> Dict:
snake_case = parent
snake_case = batch_size
snake_case = seq_length
snake_case = is_training
snake_case = use_token_type_ids
snake_case = use_labels
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = type_sequence_label_size
snake_case = initializer_range
snake_case = num_labels
snake_case = num_choices
snake_case = scope
snake_case = self.vocab_size - 1
def _lowerCamelCase ( self ) -> int:
snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
snake_case = None
if self.use_token_type_ids:
snake_case = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
snake_case = None
snake_case = None
snake_case = None
if self.use_labels:
snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size )
snake_case = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
snake_case = ids_tensor([self.batch_size], self.num_choices )
snake_case = OpenAIGPTConfig(
vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, )
snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> int:
snake_case = OpenAIGPTModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case = model(lowercase_, token_type_ids=lowercase_, head_mask=lowercase_ )
snake_case = model(lowercase_, token_type_ids=lowercase_ )
snake_case = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> Optional[int]:
snake_case = OpenAIGPTLMHeadModel(lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case = model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> List[Any]:
snake_case = OpenAIGPTDoubleHeadsModel(lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case = model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ )
self.parent.assertEqual(result.loss.shape, () )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> int:
snake_case = self.num_labels
snake_case = OpenAIGPTForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size )
snake_case = model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self ) -> List[str]:
snake_case = self.prepare_config_and_inputs()
(
(
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) ,
) = config_and_inputs
snake_case = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
snake_case_ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
snake_case_ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
snake_case_ = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Union[str, Any]:
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_=False ) -> Union[str, Any]:
snake_case = super()._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
snake_case = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=lowercase_, )
snake_case = inputs_dict['labels']
snake_case = inputs_dict['labels']
snake_case = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=lowercase_, )
snake_case = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=lowercase_ )
return inputs_dict
def _lowerCamelCase ( self ) -> int:
snake_case = OpenAIGPTModelTester(self )
snake_case = ConfigTester(self, config_class=lowercase_, n_embd=37 )
def _lowerCamelCase ( self ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*lowercase_ )
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*lowercase_ )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*lowercase_ )
def _lowerCamelCase ( self ) -> List[str]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ )
@slow
def _lowerCamelCase ( self ) -> List[str]:
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case = OpenAIGPTModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self ) -> str:
snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(lowercase_ )
snake_case = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=lowercase_ ) # the president is
snake_case = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
snake_case = model.generate(lowercase_, do_sample=lowercase_ )
self.assertListEqual(output_ids[0].tolist(), lowercase_ )
| 332 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''data2vec-text'''
def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> str:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 1 |
'''simple docstring'''
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def __magic_name__ ( A ) -> tuple:
return (data["data"], data["target"])
def __magic_name__ ( A , A ) -> XGBClassifier:
snake_case = XGBClassifier()
classifier.fit(A , A )
return classifier
def __magic_name__ ( ) -> None:
snake_case = load_iris()
snake_case , snake_case = data_handling(A )
snake_case , snake_case , snake_case , snake_case = train_test_split(
A , A , test_size=0.25 )
snake_case = iris['target_names']
# Create an XGBoost Classifier from the training data
snake_case = xgboost(A , A )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
A , A , A , display_labels=A , cmap='Blues' , normalize='true' , )
plt.title('Normalized Confusion Matrix - IRIS Dataset' )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 | 1 |
'''simple docstring'''
from math import factorial
lowerCAmelCase_ = {str(d): factorial(d) for d in range(1_0)}
def __magic_name__ ( A ) -> int:
return sum(DIGIT_FACTORIAL[d] for d in str(A ) )
def __magic_name__ ( ) -> int:
snake_case = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , A ) if sum_of_digit_factorial(A ) == i )
if __name__ == "__main__":
print(f"{solution() = }")
| 332 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class lowerCamelCase :
snake_case_ = 42
snake_case_ = 42
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[str]:
snake_case = [[] for _ in range(lowercase_ )]
snake_case = size
def __getitem__( self, lowercase_ ) -> Iterator[Edge]:
return iter(self._graph[vertex] )
@property
def _lowerCamelCase ( self ) -> Union[str, Any]:
return self._size
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Optional[int]:
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(lowercase_, lowercase_ ) )
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> int | None:
snake_case = deque([start_vertex] )
snake_case = [None] * self.size
snake_case = 0
while queue:
snake_case = queue.popleft()
snake_case = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
snake_case = current_distance + edge.weight
snake_case = distances[edge.destination_vertex]
if (
isinstance(lowercase_, lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
snake_case = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
snake_case_ = IFInpaintingSuperResolutionPipeline
snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} )
snake_case_ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def _lowerCamelCase ( self ) -> Any:
return self._get_superresolution_dummy_components()
def _lowerCamelCase ( self, lowercase_, lowercase_=0 ) -> Optional[int]:
if str(lowercase_ ).startswith('mps' ):
snake_case = torch.manual_seed(lowercase_ )
else:
snake_case = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
snake_case = floats_tensor((1, 3, 16, 16), rng=random.Random(lowercase_ ) ).to(lowercase_ )
snake_case = floats_tensor((1, 3, 32, 32), rng=random.Random(lowercase_ ) ).to(lowercase_ )
snake_case = floats_tensor((1, 3, 32, 32), rng=random.Random(lowercase_ ) ).to(lowercase_ )
snake_case = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'original_image': original_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', )
def _lowerCamelCase ( self ) -> Optional[Any]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def _lowerCamelCase ( self ) -> Optional[Any]:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' )
def _lowerCamelCase ( self ) -> Tuple:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def _lowerCamelCase ( self ) -> Union[str, Any]:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def _lowerCamelCase ( self ) -> Dict:
self._test_save_load_local()
def _lowerCamelCase ( self ) -> Optional[int]:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2, )
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0 for i in range(n + 1 )]
snake_case = 1
snake_case = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , A ):
snake_case = 1
snake_case = 0
for i in range(A ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f"{solution() = }")
| 332 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 | 1 |
'''simple docstring'''
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class lowerCamelCase ( unittest.TestCase ):
snake_case_ = JukeboxTokenizer
snake_case_ = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def _lowerCamelCase ( self ) -> str:
import torch
snake_case = JukeboxTokenizer.from_pretrained('openai/jukebox-1b-lyrics' )
snake_case = tokenizer(**self.metas )['input_ids']
# fmt: off
snake_case = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2] ) )
@require_torch
def _lowerCamelCase ( self ) -> Optional[int]:
import torch
snake_case = JukeboxTokenizer.from_pretrained('openai/jukebox-5b-lyrics' )
snake_case = tokenizer(**self.metas )['input_ids']
# fmt: off
snake_case = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0], EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1], EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2], EXPECTED_OUTPUT[2] ) )
| 332 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"nielsr/canine-s": 2_0_4_8,
}
# Unicode defines 1,114,112 total “codepoints”
lowerCAmelCase_ = 1_1_1_4_1_1_2
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
lowerCAmelCase_ = 0
lowerCAmelCase_ = 0xE000
lowerCAmelCase_ = 0xE001
lowerCAmelCase_ = 0xE002
lowerCAmelCase_ = 0xE003
lowerCAmelCase_ = 0xE004
# Maps special codepoints to human-readable names.
lowerCAmelCase_ = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
lowerCAmelCase_ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self, lowercase_=chr(lowercase_ ), lowercase_=chr(lowercase_ ), lowercase_=chr(lowercase_ ), lowercase_=chr(lowercase_ ), lowercase_=chr(lowercase_ ), lowercase_=chr(lowercase_ ), lowercase_=False, lowercase_=2048, **lowercase_, ) -> List[Any]:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else bos_token
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else eos_token
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else sep_token
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else cls_token
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else mask_token
super().__init__(
bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, model_max_length=lowercase_, **lowercase_, )
# Creates a mapping for looking up the IDs of special symbols.
snake_case = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
snake_case = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
snake_case = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
snake_case = UNICODE_VOCAB_SIZE
snake_case = len(self._special_codepoints )
@property
def _lowerCamelCase ( self ) -> int:
return self._unicode_vocab_size
def _lowerCamelCase ( self, lowercase_ ) -> List[str]:
return list(lowercase_ )
def _lowerCamelCase ( self, lowercase_ ) -> int:
try:
return ord(lowercase_ )
except TypeError:
raise ValueError(F'''invalid token: \'{token}\'''' )
def _lowerCamelCase ( self, lowercase_ ) -> str:
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(lowercase_ )
except TypeError:
raise ValueError(F'''invalid id: {index}''' )
def _lowerCamelCase ( self, lowercase_ ) -> Tuple:
return "".join(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
snake_case = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_, token_ids_a=lowercase_, already_has_special_tokens=lowercase_ )
snake_case = [1] + ([0] * len(lowercase_ )) + [1]
if token_ids_a is not None:
result += ([0] * len(lowercase_ )) + [1]
return result
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
snake_case = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple:
return ()
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 | 1 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
lowerCAmelCase_ = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def __magic_name__ ( A ) -> List[str]:
snake_case = {}
with open(A , 'r' ) as file:
for line_number, line in enumerate(A ):
snake_case = line.strip()
if line:
snake_case = line.split()
snake_case = line_number
snake_case = words[0]
snake_case = value
return result
def __magic_name__ ( A , A , A , A , A ) -> Any:
for attribute in key.split('.' ):
snake_case = getattr(A , A )
snake_case = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(A ):
snake_case = PARAM_MAPPING[full_name.split('.' )[-1]]
snake_case = 'param'
if weight_type is not None and weight_type != "param":
snake_case = getattr(A , A ).shape
elif weight_type is not None and weight_type == "param":
snake_case = hf_pointer
for attribute in hf_param_name.split('.' ):
snake_case = getattr(A , A )
snake_case = shape_pointer.shape
# let's reduce dimension
snake_case = value[0]
else:
snake_case = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
snake_case = value
elif weight_type == "weight_g":
snake_case = value
elif weight_type == "weight_v":
snake_case = value
elif weight_type == "bias":
snake_case = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
snake_case = getattr(A , A )
snake_case = value
else:
snake_case = value
logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def __magic_name__ ( A , A , A , A , A ) -> int:
snake_case = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(A ):
snake_case = PARAM_MAPPING[full_name.split('.' )[-1]]
snake_case = 'param'
if weight_type is not None and weight_type != "param":
snake_case = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
snake_case = '.'.join([key, hf_param_name] )
else:
snake_case = key
snake_case = value if 'lm_head' in full_key else value[0]
lowerCAmelCase_ = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def __magic_name__ ( A , A , A=None , A=None ) -> List[Any]:
snake_case = False
for key, mapped_key in MAPPING.items():
snake_case = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
snake_case = True
if "*" in mapped_key:
snake_case = name.split(A )[0].split('.' )[-2]
snake_case = mapped_key.replace('*' , A )
if "weight_g" in name:
snake_case = 'weight_g'
elif "weight_v" in name:
snake_case = 'weight_v'
elif "bias" in name:
snake_case = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
snake_case = 'weight'
else:
snake_case = None
if hf_dict is not None:
rename_dict(A , A , A , A , A )
else:
set_recursively(A , A , A , A , A )
return is_used
return is_used
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = []
snake_case = fairseq_model.state_dict()
snake_case = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
snake_case = False
if "conv_layers" in name:
load_conv_layer(
A , A , A , A , hf_model.config.feat_extract_norm == 'group' , )
snake_case = True
else:
snake_case = load_wavaveca_layer(A , A , A )
if not is_used:
unused_weights.append(A )
logger.warning(F'''Unused weights: {unused_weights}''' )
def __magic_name__ ( A , A , A , A , A ) -> Tuple:
snake_case = full_name.split('conv_layers.' )[-1]
snake_case = name.split('.' )
snake_case = int(items[0] )
snake_case = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
snake_case = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
snake_case = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(A )
@torch.no_grad()
def __magic_name__ ( A , A , A=None , A=None , A=True , A=False ) -> Tuple:
if config_path is not None:
snake_case = WavaVecaConfig.from_pretrained(A )
else:
snake_case = WavaVecaConfig()
if is_seq_class:
snake_case = read_txt_into_dict(A )
snake_case = idalabel
snake_case = WavaVecaForSequenceClassification(A )
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A , return_attention_mask=A , )
feature_extractor.save_pretrained(A )
elif is_finetuned:
if dict_path:
snake_case = Dictionary.load(A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
snake_case = target_dict.pad_index
snake_case = target_dict.bos_index
snake_case = target_dict.eos_index
snake_case = len(target_dict.symbols )
snake_case = os.path.join(A , 'vocab.json' )
if not os.path.isdir(A ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(A ) )
return
os.makedirs(A , exist_ok=A )
snake_case = target_dict.indices
# fairseq has the <pad> and <s> switched
snake_case = 0
snake_case = 1
with open(A , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(A , A )
snake_case = WavaVecaCTCTokenizer(
A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=A , )
snake_case = True if config.feat_extract_norm == 'layer' else False
snake_case = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=A , return_attention_mask=A , )
snake_case = WavaVecaProcessor(feature_extractor=A , tokenizer=A )
processor.save_pretrained(A )
snake_case = WavaVecaForCTC(A )
else:
snake_case = WavaVecaForPreTraining(A )
if is_finetuned or is_seq_class:
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
snake_case = argparse.Namespace(task='audio_pretraining' )
snake_case = fairseq.tasks.setup_task(A )
snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A )
snake_case = model[0].eval()
recursively_load_weights(A , A , not is_finetuned )
hf_wavavec.save_pretrained(A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
lowerCAmelCase_ = parser.parse_args()
lowerCAmelCase_ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 332 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 1 |
'''simple docstring'''
lowerCAmelCase_ = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase_ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase_ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 332 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A = 3 , A = 7 , A = 1_0_0_0_0_0_0 ) -> int:
snake_case = 0
snake_case = 1
for current_denominator in range(1 , limit + 1 ):
snake_case = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
snake_case = current_numerator
snake_case = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
| 332 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ['''pixel_values''']
def __init__( self, lowercase_ = True, lowercase_ = None, lowercase_ = PIL.Image.BICUBIC, lowercase_ = True, lowercase_ = None, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = True, lowercase_ = None, lowercase_ = None, **lowercase_, ) -> None:
super().__init__(**lowercase_ )
snake_case = size if size is not None else {'height': 256, 'width': 256}
snake_case = get_size_dict(lowercase_ )
snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224}
snake_case = get_size_dict(lowercase_, param_name='crop_size' )
snake_case = do_resize
snake_case = size
snake_case = resample
snake_case = do_center_crop
snake_case = crop_size
snake_case = do_rescale
snake_case = rescale_factor
snake_case = do_normalize
snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = PIL.Image.BICUBIC, lowercase_ = None, **lowercase_, ) -> np.ndarray:
snake_case = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return resize(
lowercase_, size=(size['height'], size['width']), resample=lowercase_, data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray:
snake_case = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(lowercase_, size=(size['height'], size['width']), data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> int:
return rescale(lowercase_, scale=lowercase_, data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray:
return normalize(lowercase_, mean=lowercase_, std=lowercase_, data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_=None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = ChannelDimension.FIRST, **lowercase_, ) -> PIL.Image.Image:
snake_case = do_resize if do_resize is not None else self.do_resize
snake_case = resample if resample is not None else self.resample
snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop
snake_case = do_rescale if do_rescale is not None else self.do_rescale
snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case = do_normalize if do_normalize is not None else self.do_normalize
snake_case = image_mean if image_mean is not None else self.image_mean
snake_case = image_std if image_std is not None else self.image_std
snake_case = size if size is not None else self.size
snake_case = get_size_dict(lowercase_ )
snake_case = crop_size if crop_size is not None else self.crop_size
snake_case = get_size_dict(lowercase_, param_name='crop_size' )
snake_case = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
snake_case = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
snake_case = [self.resize(image=lowercase_, size=lowercase_, resample=lowercase_ ) for image in images]
if do_center_crop:
snake_case = [self.center_crop(image=lowercase_, size=lowercase_ ) for image in images]
if do_rescale:
snake_case = [self.rescale(image=lowercase_, scale=lowercase_ ) for image in images]
if do_normalize:
snake_case = [self.normalize(image=lowercase_, mean=lowercase_, std=lowercase_ ) for image in images]
snake_case = [to_channel_dimension_format(lowercase_, lowercase_ ) for image in images]
snake_case = {'pixel_values': images}
return BatchFeature(data=lowercase_, tensor_type=lowercase_ )
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 | 1 |
'''simple docstring'''
import math
import random
def __magic_name__ ( A , A = False ) -> float:
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
lowerCAmelCase_ = 0.02
def __magic_name__ ( A , A ) -> float:
snake_case = float(2 * (random.randint(1 , 1_0_0 )) - 1 )
for _ in range(A ):
# Forward propagation
snake_case = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
snake_case = (expected / 1_0_0) - layer_a
# Error delta
snake_case = layer_1_error * sigmoid_function(A , A )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 1_0_0
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ = int(input("Expected value: "))
lowerCAmelCase_ = int(input("Number of propagations: "))
print(forward_propagation(expected, number_propagations))
| 332 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 1 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
lowerCAmelCase_ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
lowerCAmelCase_ = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n"
lowerCAmelCase_ = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types() ), reference_urls=[
'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html'
], )
def _lowerCamelCase ( self ) -> Dict:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value('float' ) ),
"references": datasets.Sequence(datasets.Value('float' ) ),
}
else:
return {
"predictions": datasets.Value('float' ),
"references": datasets.Value('float' ),
}
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_=None, lowercase_="uniform_average", lowercase_=True ) -> List[Any]:
snake_case = mean_squared_error(
lowercase_, lowercase_, sample_weight=lowercase_, multioutput=lowercase_, squared=lowercase_ )
return {"mse": mse}
| 332 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''ibert'''
def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=False, lowercase_="none", **lowercase_, ) -> str:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = quant_mode
snake_case = force_dequant
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 1 |
'''simple docstring'''
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__)
class lowerCamelCase ( folder_based_builder.FolderBasedBuilderConfig ):
snake_case_ = None
snake_case_ = None
class lowerCamelCase ( folder_based_builder.FolderBasedBuilder ):
snake_case_ = datasets.Audio()
snake_case_ = '''audio'''
snake_case_ = AudioFolderConfig
snake_case_ = 42 # definition at the bottom of the script
snake_case_ = AudioClassification(audio_column='''audio''' , label_column='''label''' )
lowerCAmelCase_ = [
".aiff",
".au",
".avr",
".caf",
".flac",
".htk",
".svx",
".mat4",
".mat5",
".mpc2k",
".ogg",
".paf",
".pvf",
".raw",
".rf64",
".sd2",
".sds",
".ircam",
".voc",
".w64",
".wav",
".nist",
".wavex",
".wve",
".xi",
".mp3",
".opus",
]
lowerCAmelCase_ = AUDIO_EXTENSIONS
| 332 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 1 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class lowerCamelCase ( __lowerCAmelCase ):
def _lowerCamelCase ( self, lowercase_=None, lowercase_=None, lowercase_=None, **lowercase_ ) -> List[str]:
if tokenize_kwargs is None:
snake_case = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
snake_case = truncation
snake_case = tokenize_kwargs
snake_case = {}
if return_tensors is not None:
snake_case = return_tensors
return preprocess_params, {}, postprocess_params
def _lowerCamelCase ( self, lowercase_, **lowercase_ ) -> Dict[str, GenericTensor]:
snake_case = self.framework
snake_case = self.tokenizer(lowercase_, return_tensors=lowercase_, **lowercase_ )
return model_inputs
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = self.model(**lowercase_ )
return model_outputs
def _lowerCamelCase ( self, lowercase_, lowercase_=False ) -> Tuple:
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *lowercase_, **lowercase_ ) -> List[Any]:
return super().__call__(*lowercase_, **lowercase_ )
| 332 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 1 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 1 |
'''simple docstring'''
from manim import *
class lowerCamelCase ( __lowerCAmelCase ):
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = Rectangle(height=0.5, width=0.5 )
snake_case = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 )
snake_case = [mem.copy() for i in range(6 )]
snake_case = [mem.copy() for i in range(6 )]
snake_case = VGroup(*lowercase_ ).arrange(lowercase_, buff=0 )
snake_case = VGroup(*lowercase_ ).arrange(lowercase_, buff=0 )
snake_case = VGroup(lowercase_, lowercase_ ).arrange(lowercase_, buff=0 )
snake_case = Text('CPU', font_size=24 )
snake_case = Group(lowercase_, lowercase_ ).arrange(lowercase_, buff=0.5, aligned_edge=lowercase_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowercase_ )
snake_case = [mem.copy() for i in range(1 )]
snake_case = VGroup(*lowercase_ ).arrange(lowercase_, buff=0 )
snake_case = Text('GPU', font_size=24 )
snake_case = Group(lowercase_, lowercase_ ).arrange(lowercase_, buff=0.5, aligned_edge=lowercase_ )
gpu.align_to(lowercase_, lowercase_ )
gpu.set_x(gpu.get_x() - 1 )
self.add(lowercase_ )
snake_case = [mem.copy() for i in range(6 )]
snake_case = VGroup(*lowercase_ ).arrange(lowercase_, buff=0 )
snake_case = Text('Model', font_size=24 )
snake_case = Group(lowercase_, lowercase_ ).arrange(lowercase_, buff=0.5, aligned_edge=lowercase_ )
model.move_to([3, -1.0, 0] )
self.play(
Create(lowercase_, run_time=1 ), Create(lowercase_, run_time=1 ), Create(lowercase_, run_time=1 ), )
snake_case = MarkupText(
F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=24, )
snake_case = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
snake_case = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(lowercase_, run_time=2.5 ), Write(lowercase_ ), Write(lowercase_ ) )
self.add(lowercase_ )
snake_case = []
snake_case = []
snake_case = []
for i, rect in enumerate(lowercase_ ):
snake_case = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(lowercase_, opacity=0.7 )
cpu_target.move_to(lowercase_ )
cpu_target.generate_target()
snake_case = 0.46 / 4
snake_case = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=lowercase_ )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target, direction=lowercase_, buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target, direction=lowercase_, buff=0.0 )
cpu_targs.append(lowercase_ )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowercase_ ) )
second_animations.append(MoveToTarget(lowercase_, run_time=1.5 ) )
self.play(*lowercase_ )
self.play(*lowercase_ )
self.wait()
| 332 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class lowerCamelCase ( __lowerCAmelCase ):
@staticmethod
@abstractmethod
def _lowerCamelCase ( lowercase_ ) -> Tuple:
raise NotImplementedError()
@abstractmethod
def _lowerCamelCase ( self ) -> Optional[Any]:
raise NotImplementedError()
| 332 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 1 |
'''simple docstring'''
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 332 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import PIL
import torch
from torchvision import transforms
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
lowerCAmelCase_ = transforms.Compose(
[
transforms.Resize((2_5_6, 2_5_6)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __magic_name__ ( A ) -> Tuple:
if isinstance(A , torch.Tensor ):
return image
elif isinstance(A , PIL.Image.Image ):
snake_case = [image]
snake_case = [trans(img.convert('RGB' ) ) for img in image]
snake_case = torch.stack(A )
return image
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, lowercase_, lowercase_ ) -> Optional[int]:
super().__init__()
# make sure scheduler can always be converted to DDIM
snake_case = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowercase_, scheduler=lowercase_ )
def _lowerCamelCase ( self, lowercase_ ) -> Dict:
if strength < 0 or strength > 1:
raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Any:
# get the original timestep using init_timestep
snake_case = min(int(num_inference_steps * strength ), lowercase_ )
snake_case = max(num_inference_steps - init_timestep, 0 )
snake_case = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_=None ) -> Union[str, Any]:
if not isinstance(lowercase_, (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}''' )
snake_case = image.to(device=lowercase_, dtype=lowercase_ )
if isinstance(lowercase_, lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
snake_case = init_latents.shape
snake_case = randn_tensor(lowercase_, generator=lowercase_, device=lowercase_, dtype=lowercase_ )
# get latents
print('add noise to latents at timestep', lowercase_ )
snake_case = self.scheduler.add_noise(lowercase_, lowercase_, lowercase_ )
snake_case = init_latents
return latents
@torch.no_grad()
def __call__( self, lowercase_ = None, lowercase_ = 0.8, lowercase_ = 1, lowercase_ = None, lowercase_ = 0.0, lowercase_ = 50, lowercase_ = None, lowercase_ = "pil", lowercase_ = True, ) -> Union[ImagePipelineOutput, Tuple]:
self.check_inputs(lowercase_ )
# 2. Preprocess image
snake_case = preprocess(lowercase_ )
# 3. set timesteps
self.scheduler.set_timesteps(lowercase_, device=self.device )
snake_case , snake_case = self.get_timesteps(lowercase_, lowercase_, self.device )
snake_case = timesteps[:1].repeat(lowercase_ )
# 4. Prepare latent variables
snake_case = self.prepare_latents(lowercase_, lowercase_, lowercase_, self.unet.dtype, self.device, lowercase_ )
snake_case = latents
# 5. Denoising loop
for t in self.progress_bar(lowercase_ ):
# 1. predict noise model_output
snake_case = self.unet(lowercase_, lowercase_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
snake_case = self.scheduler.step(
lowercase_, lowercase_, lowercase_, eta=lowercase_, use_clipped_model_output=lowercase_, generator=lowercase_, ).prev_sample
snake_case = (image / 2 + 0.5).clamp(0, 1 )
snake_case = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
snake_case = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image, latent_timestep.item())
return ImagePipelineOutput(images=lowercase_ )
| 332 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 1 |
'''simple docstring'''
from collections import defaultdict
def __magic_name__ ( A , A ) -> bool:
snake_case = first_str.lower().strip()
snake_case = second_str.lower().strip()
# Remove whitespace
snake_case = first_str.replace(' ' , '' )
snake_case = second_str.replace(' ' , '' )
# Strings of different lengths are not anagrams
if len(A ) != len(A ):
return False
# Default values for count should be 0
snake_case = defaultdict(A )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(A ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
lowerCAmelCase_ = input("Enter the first string ").strip()
lowerCAmelCase_ = input("Enter the second string ").strip()
lowerCAmelCase_ = check_anagrams(input_a, input_b)
print(f"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
| 332 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 1 |
'''simple docstring'''
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class lowerCamelCase :
def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=False, lowercase_=True, lowercase_=False, lowercase_=True, lowercase_=33, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> Dict:
snake_case = parent
snake_case = batch_size
snake_case = seq_length
snake_case = is_training
snake_case = use_input_mask
snake_case = use_token_type_ids
snake_case = use_labels
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = type_sequence_label_size
snake_case = initializer_range
snake_case = num_labels
snake_case = num_choices
snake_case = scope
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
snake_case = None
if self.use_input_mask:
snake_case = random_attention_mask([self.batch_size, self.seq_length] )
snake_case = None
snake_case = None
snake_case = None
if self.use_labels:
snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size )
snake_case = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
snake_case = ids_tensor([self.batch_size], self.num_choices )
snake_case = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCamelCase ( self ) -> Optional[int]:
return EsmConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> List[str]:
snake_case = EsmModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case = model(lowercase_, attention_mask=lowercase_ )
snake_case = model(lowercase_ )
snake_case = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> str:
snake_case = EsmForMaskedLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case = model(lowercase_, attention_mask=lowercase_, labels=lowercase_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Union[str, Any]:
snake_case = self.num_labels
snake_case = EsmForTokenClassification(config=lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case = model(lowercase_, attention_mask=lowercase_, labels=lowercase_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.prepare_config_and_inputs()
(
(
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) , (
snake_case
) ,
) = config_and_inputs
snake_case = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
snake_case_ = False
snake_case_ = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = ()
snake_case_ = (
{
'''feature-extraction''': EsmModel,
'''fill-mask''': EsmForMaskedLM,
'''text-classification''': EsmForSequenceClassification,
'''token-classification''': EsmForTokenClassification,
'''zero-shot''': EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = True
def _lowerCamelCase ( self ) -> str:
snake_case = EsmModelTester(self )
snake_case = ConfigTester(self, config_class=lowercase_, hidden_size=37 )
def _lowerCamelCase ( self ) -> str:
self.config_tester.run_common_tests()
def _lowerCamelCase ( self ) -> List[str]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case = type
self.model_tester.create_and_check_model(*lowercase_ )
def _lowerCamelCase ( self ) -> int:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowercase_ )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowercase_ )
@slow
def _lowerCamelCase ( self ) -> Dict:
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case = EsmModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.model_tester.prepare_config_and_inputs()[0]
snake_case = EsmEmbeddings(config=lowercase_ )
snake_case = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
snake_case = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
snake_case = create_position_ids_from_input_ids(lowercase_, model.padding_idx )
self.assertEqual(position_ids.shape, expected_positions.shape )
self.assertTrue(torch.all(torch.eq(lowercase_, lowercase_ ) ) )
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = self.model_tester.prepare_config_and_inputs()[0]
snake_case = EsmEmbeddings(config=lowercase_ )
snake_case = torch.empty(2, 4, 30 )
snake_case = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
snake_case = torch.as_tensor([expected_single_positions, expected_single_positions] )
snake_case = embeddings.create_position_ids_from_inputs_embeds(lowercase_ )
self.assertEqual(position_ids.shape, expected_positions.shape )
self.assertTrue(torch.all(torch.eq(lowercase_, lowercase_ ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def _lowerCamelCase ( self ) -> Tuple:
pass
@unittest.skip('Esm does not support embedding resizing' )
def _lowerCamelCase ( self ) -> Union[str, Any]:
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def _lowerCamelCase ( self ) -> Any:
pass
@require_torch
class lowerCamelCase ( __lowerCAmelCase ):
@slow
def _lowerCamelCase ( self ) -> str:
with torch.no_grad():
snake_case = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
snake_case = torch.tensor([[0, 1, 2, 3, 4, 5]] )
snake_case = model(lowercase_ )[0]
snake_case = 33
snake_case = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape, lowercase_ )
snake_case = torch.tensor(
[[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3], lowercase_, atol=1E-4 ) )
@slow
def _lowerCamelCase ( self ) -> Optional[int]:
with torch.no_grad():
snake_case = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
snake_case = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
snake_case = model(lowercase_ )[0]
# compare the actual values for a slice.
snake_case = torch.tensor(
[[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3], lowercase_, atol=1E-4 ) )
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
lowerCAmelCase_ = logging.get_logger(__name__)
def __magic_name__ ( A , A , A ) -> Tuple:
snake_case = WavaVecaForSequenceClassification.from_pretrained(A , config=A )
snake_case = downstream_dict['projector.weight']
snake_case = downstream_dict['projector.bias']
snake_case = downstream_dict['model.post_net.linear.weight']
snake_case = downstream_dict['model.post_net.linear.bias']
return model
def __magic_name__ ( A , A , A ) -> str:
snake_case = WavaVecaForAudioFrameClassification.from_pretrained(A , config=A )
snake_case = downstream_dict['model.linear.weight']
snake_case = downstream_dict['model.linear.bias']
return model
def __magic_name__ ( A , A , A ) -> int:
snake_case = WavaVecaForXVector.from_pretrained(A , config=A )
snake_case = downstream_dict['connector.weight']
snake_case = downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
snake_case = downstream_dict[
F'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
snake_case = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
snake_case = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
snake_case = downstream_dict['objective.W']
return model
@torch.no_grad()
def __magic_name__ ( A , A , A , A ) -> Optional[int]:
snake_case = torch.load(A , map_location='cpu' )
snake_case = checkpoint['Downstream']
snake_case = WavaVecaConfig.from_pretrained(A )
snake_case = WavaVecaFeatureExtractor.from_pretrained(
A , return_attention_mask=A , do_normalize=A )
snake_case = hf_config.architectures[0]
if arch.endswith('ForSequenceClassification' ):
snake_case = convert_classification(A , A , A )
elif arch.endswith('ForAudioFrameClassification' ):
snake_case = convert_diarization(A , A , A )
elif arch.endswith('ForXVector' ):
snake_case = convert_xvector(A , A , A )
else:
raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
snake_case = checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(A )
hf_model.save_pretrained(A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
lowerCAmelCase_ = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 332 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A ) -> list[int]:
snake_case = len(A )
for i in range(A ):
for j in range(i + 1 , A ):
if numbers[j] < numbers[i]:
snake_case , snake_case = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip()
lowerCAmelCase_ = [int(item) for item in user_input.split(",")]
print(exchange_sort(unsorted))
| 332 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
class lowerCamelCase :
def __init__( self, lowercase_ = 0 ) -> Optional[int]:
snake_case = key
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> list[str]:
assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ )
snake_case = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(lowercase_ ) ^ key ) for ch in content]
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> list[str]:
assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ )
snake_case = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(lowercase_ ) ^ key ) for ch in content]
def _lowerCamelCase ( self, lowercase_, lowercase_ = 0 ) -> str:
assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ )
snake_case = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
snake_case = ''
for ch in content:
ans += chr(ord(lowercase_ ) ^ key )
return ans
def _lowerCamelCase ( self, lowercase_, lowercase_ = 0 ) -> str:
assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ )
snake_case = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
snake_case = ''
for ch in content:
ans += chr(ord(lowercase_ ) ^ key )
return ans
def _lowerCamelCase ( self, lowercase_, lowercase_ = 0 ) -> bool:
assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ )
try:
with open(lowercase_ ) as fin, open('encrypt.out', 'w+' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(lowercase_, lowercase_ ) )
except OSError:
return False
return True
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> bool:
assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ )
try:
with open(lowercase_ ) as fin, open('decrypt.out', 'w+' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(lowercase_, lowercase_ ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split()
snake_case = dict(zip(lowercase_, range(len(lowercase_ ) ) ) )
snake_case = {
'unk_token': '<unk>',
'bos_token': '<s>',
'eos_token': '</s>',
}
snake_case = {
'feature_size': 1,
'padding_value': 0.0,
'sampling_rate': 16000,
'return_attention_mask': False,
'do_normalize': True,
}
snake_case = tempfile.mkdtemp()
snake_case = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] )
snake_case = os.path.join(self.tmpdirname, lowercase_ )
with open(self.vocab_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(lowercase_ ) + '\n' )
with open(self.feature_extraction_file, 'w', encoding='utf-8' ) as fp:
fp.write(json.dumps(lowercase_ ) + '\n' )
# load decoder from hub
snake_case = 'hf-internal-testing/ngram-beam-search-decoder'
def _lowerCamelCase ( self, **lowercase_ ) -> List[Any]:
snake_case = self.add_kwargs_tokens_map.copy()
kwargs.update(lowercase_ )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname, **lowercase_ )
def _lowerCamelCase ( self, **lowercase_ ) -> Optional[Any]:
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname, **lowercase_ )
def _lowerCamelCase ( self, **lowercase_ ) -> List[str]:
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name, **lowercase_ )
def _lowerCamelCase ( self ) -> Tuple:
shutil.rmtree(self.tmpdirname )
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = self.get_tokenizer()
snake_case = self.get_feature_extractor()
snake_case = self.get_decoder()
snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ )
processor.save_pretrained(self.tmpdirname )
snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer, lowercase_ )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor, lowercase_ )
# decoder
self.assertEqual(processor.decoder._alphabet.labels, decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set, decoder.model_container[decoder._model_key]._unigram_set, )
self.assertIsInstance(processor.decoder, lowercase_ )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
snake_case = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname, alpha=5.0, beta=3.0, score_boundary=-7.0, unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha, 5.0 )
self.assertEqual(processor.language_model.beta, 3.0 )
self.assertEqual(processor.language_model.score_boundary, -7.0 )
self.assertEqual(processor.language_model.unk_score_offset, 3 )
def _lowerCamelCase ( self ) -> int:
snake_case = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['xx'] )
with self.assertRaisesRegex(lowercase_, 'include' ):
WavaVecaProcessorWithLM(
tokenizer=lowercase_, feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() )
def _lowerCamelCase ( self ) -> int:
snake_case = self.get_feature_extractor()
snake_case = self.get_tokenizer()
snake_case = self.get_decoder()
snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ )
snake_case = floats_list((3, 1000) )
snake_case = feature_extractor(lowercase_, return_tensors='np' )
snake_case = processor(lowercase_, return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 )
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = self.get_feature_extractor()
snake_case = self.get_tokenizer()
snake_case = self.get_decoder()
snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ )
snake_case = 'This is a test string'
snake_case = processor(text=lowercase_ )
snake_case = tokenizer(lowercase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key] )
def _lowerCamelCase ( self, lowercase_=(2, 10, 16), lowercase_=77 ) -> List[str]:
np.random.seed(lowercase_ )
return np.random.rand(*lowercase_ )
def _lowerCamelCase ( self ) -> Dict:
snake_case = self.get_feature_extractor()
snake_case = self.get_tokenizer()
snake_case = self.get_decoder()
snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ )
snake_case = self._get_dummy_logits(shape=(10, 16), seed=13 )
snake_case = processor.decode(lowercase_ )
snake_case = decoder.decode_beams(lowercase_ )[0]
self.assertEqual(decoded_decoder[0], decoded_processor.text )
self.assertEqual('</s> <s> </s>', decoded_processor.text )
self.assertEqual(decoded_decoder[-2], decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1], decoded_processor.lm_score )
@parameterized.expand([[None], ['fork'], ['spawn']] )
def _lowerCamelCase ( self, lowercase_ ) -> Tuple:
snake_case = self.get_feature_extractor()
snake_case = self.get_tokenizer()
snake_case = self.get_decoder()
snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ )
snake_case = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
snake_case = processor.batch_decode(lowercase_ )
else:
with get_context(lowercase_ ).Pool() as pool:
snake_case = processor.batch_decode(lowercase_, lowercase_ )
snake_case = list(lowercase_ )
with get_context('fork' ).Pool() as p:
snake_case = decoder.decode_beams_batch(lowercase_, lowercase_ )
snake_case , snake_case , snake_case = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(lowercase_, decoded_processor.text )
self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'], decoded_processor.text )
self.assertListEqual(lowercase_, decoded_processor.logit_score )
self.assertListEqual(lowercase_, decoded_processor.lm_score )
def _lowerCamelCase ( self ) -> Tuple:
snake_case = self.get_feature_extractor()
snake_case = self.get_tokenizer()
snake_case = self.get_decoder()
snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ )
snake_case = self._get_dummy_logits()
snake_case = 15
snake_case = -20.0
snake_case = -4.0
snake_case = processor.batch_decode(
lowercase_, beam_width=lowercase_, beam_prune_logp=lowercase_, token_min_logp=lowercase_, )
snake_case = decoded_processor_out.text
snake_case = list(lowercase_ )
with get_context('fork' ).Pool() as pool:
snake_case = decoder.decode_beams_batch(
lowercase_, lowercase_, beam_width=lowercase_, beam_prune_logp=lowercase_, token_min_logp=lowercase_, )
snake_case = [d[0][0] for d in decoded_decoder_out]
snake_case = [d[0][2] for d in decoded_decoder_out]
snake_case = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(lowercase_, lowercase_ )
self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'], lowercase_ )
self.assertTrue(np.array_equal(lowercase_, decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447], lowercase_, atol=1E-3 ) )
self.assertTrue(np.array_equal(lowercase_, decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9_474], lowercase_, atol=1E-3 ) )
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = self.get_feature_extractor()
snake_case = self.get_tokenizer()
snake_case = self.get_decoder()
snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ )
snake_case = self._get_dummy_logits()
snake_case = 2.0
snake_case = 5.0
snake_case = -20.0
snake_case = True
snake_case = processor.batch_decode(
lowercase_, alpha=lowercase_, beta=lowercase_, unk_score_offset=lowercase_, lm_score_boundary=lowercase_, )
snake_case = decoded_processor_out.text
snake_case = list(lowercase_ )
decoder.reset_params(
alpha=lowercase_, beta=lowercase_, unk_score_offset=lowercase_, lm_score_boundary=lowercase_, )
with get_context('fork' ).Pool() as pool:
snake_case = decoder.decode_beams_batch(
lowercase_, lowercase_, )
snake_case = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(lowercase_, lowercase_ )
self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'], lowercase_ )
snake_case = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha, 2.0 )
self.assertEqual(lm_model.beta, 5.0 )
self.assertEqual(lm_model.unk_score_offset, -20.0 )
self.assertEqual(lm_model.score_boundary, lowercase_ )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
snake_case = processor.decoder.model_container[processor.decoder._model_key]
snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute()
snake_case = os.listdir(lowercase_ )
snake_case = ['alphabet.json', 'language_model']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(lowercase_, lowercase_ )
def _lowerCamelCase ( self ) -> List[str]:
snake_case = snapshot_download('hf-internal-testing/processor_with_lm' )
snake_case = WavaVecaProcessorWithLM.from_pretrained(lowercase_ )
snake_case = processor.decoder.model_container[processor.decoder._model_key]
snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute()
snake_case = os.listdir(lowercase_ )
snake_case = os.listdir(lowercase_ )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(lowercase_, lowercase_ )
def _lowerCamelCase ( self ) -> Tuple:
snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' )
snake_case = floats_list((3, 1000) )
snake_case = processor_wavaveca(lowercase_, return_tensors='np' )
snake_case = processor_auto(lowercase_, return_tensors='np' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum(), input_auto[key].sum(), delta=1E-2 )
snake_case = self._get_dummy_logits()
snake_case = processor_wavaveca.batch_decode(lowercase_ )
snake_case = processor_auto.batch_decode(lowercase_ )
self.assertListEqual(decoded_wavaveca.text, decoded_auto.text )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.get_feature_extractor()
snake_case = self.get_tokenizer()
snake_case = self.get_decoder()
snake_case = WavaVecaProcessorWithLM(tokenizer=lowercase_, feature_extractor=lowercase_, decoder=lowercase_ )
self.assertListEqual(
processor.model_input_names, feature_extractor.model_input_names, msg='`processor` and `feature_extractor` model input names do not match', )
@staticmethod
def _lowerCamelCase ( lowercase_, lowercase_ ) -> Dict:
snake_case = [d[key] for d in offsets]
return retrieved_list
def _lowerCamelCase ( self ) -> List[str]:
snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
snake_case = self._get_dummy_logits()[0]
snake_case = processor.decode(lowercase_, output_word_offsets=lowercase_ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ), 4 )
self.assertTrue('text' in outputs )
self.assertTrue('word_offsets' in outputs )
self.assertTrue(isinstance(lowercase_, lowercase_ ) )
self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'], 'word' ) ), outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'], 'word' ), ['<s>', '<s>', '</s>'] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'], 'start_offset' ), [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'], 'end_offset' ), [1, 3, 5] )
def _lowerCamelCase ( self ) -> str:
snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
snake_case = self._get_dummy_logits()
snake_case = processor.batch_decode(lowercase_, output_word_offsets=lowercase_ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ), 4 )
self.assertTrue('text' in outputs )
self.assertTrue('word_offsets' in outputs )
self.assertTrue(isinstance(lowercase_, lowercase_ ) )
self.assertListEqual(
[' '.join(self.get_from_offsets(lowercase_, 'word' ) ) for o in outputs['word_offsets']], outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0], 'word' ), ['<s>', '<s>', '</s>'] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0], 'start_offset' ), [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0], 'end_offset' ), [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def _lowerCamelCase ( self ) -> int:
import torch
snake_case = load_dataset('common_voice', 'en', split='train', streaming=lowercase_ )
snake_case = ds.cast_column('audio', datasets.Audio(sampling_rate=16000 ) )
snake_case = iter(lowercase_ )
snake_case = next(lowercase_ )
snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' )
snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
snake_case = processor(sample['audio']['array'], return_tensors='pt' ).input_values
with torch.no_grad():
snake_case = model(lowercase_ ).logits.cpu().numpy()
snake_case = processor.decode(logits[0], output_word_offsets=lowercase_ )
snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
snake_case = [
{
'start_time': d['start_offset'] * time_offset,
'end_time': d['end_offset'] * time_offset,
'word': d['word'],
}
for d in output['word_offsets']
]
snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'
# output words
self.assertEqual(' '.join(self.get_from_offsets(lowercase_, 'word' ) ), lowercase_ )
self.assertEqual(' '.join(self.get_from_offsets(lowercase_, 'word' ) ), output.text )
# output times
snake_case = torch.tensor(self.get_from_offsets(lowercase_, 'start_time' ) )
snake_case = torch.tensor(self.get_from_offsets(lowercase_, 'end_time' ) )
# fmt: off
snake_case = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] )
snake_case = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(lowercase_, lowercase_, atol=0.01 ) )
self.assertTrue(torch.allclose(lowercase_, lowercase_, atol=0.01 ) )
| 332 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A ) -> float:
snake_case = sorted(numsa + numsa )
snake_case , snake_case = divmod(len(A ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ = [float(x) for x in input("Enter the elements of first array: ").split()]
lowerCAmelCase_ = [float(x) for x in input("Enter the elements of second array: ").split()]
print(f"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
| 332 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 | 1 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 | 1 |
'''simple docstring'''
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
lowerCAmelCase_ = ["text", "image", "audio"]
def __magic_name__ ( A ) -> Optional[int]:
snake_case = []
for input_type in input_types:
if input_type == "text":
inputs.append('Text input' )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_1_2, 5_1_2) ) )
elif input_type == "audio":
inputs.append(torch.ones(3_0_0_0 ) )
elif isinstance(A , A ):
inputs.append(create_inputs(A ) )
else:
raise ValueError(F'''Invalid type requested: {input_type}''' )
return inputs
def __magic_name__ ( A ) -> int:
snake_case = []
for output in outputs:
if isinstance(A , (str, AgentText) ):
output_types.append('text' )
elif isinstance(A , (Image.Image, AgentImage) ):
output_types.append('image' )
elif isinstance(A , (torch.Tensor, AgentAudio) ):
output_types.append('audio' )
else:
raise ValueError(F'''Invalid output: {output}''' )
return output_types
@is_tool_test
class lowerCamelCase :
def _lowerCamelCase ( self ) -> Any:
self.assertTrue(hasattr(self.tool, 'inputs' ) )
self.assertTrue(hasattr(self.tool, 'outputs' ) )
snake_case = self.tool.inputs
for _input in inputs:
if isinstance(_input, lowercase_ ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
snake_case = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def _lowerCamelCase ( self ) -> List[str]:
snake_case = create_inputs(self.tool.inputs )
snake_case = self.tool(*lowercase_ )
# There is a single output
if len(self.tool.outputs ) == 1:
snake_case = [outputs]
self.assertListEqual(output_types(lowercase_ ), self.tool.outputs )
def _lowerCamelCase ( self ) -> Optional[int]:
self.assertTrue(hasattr(self.tool, 'description' ) )
self.assertTrue(hasattr(self.tool, 'default_checkpoint' ) )
self.assertTrue(self.tool.description.startswith('This is a tool that' ) )
def _lowerCamelCase ( self ) -> Any:
snake_case = create_inputs(self.tool.inputs )
snake_case = self.tool(*lowercase_ )
if not isinstance(lowercase_, lowercase_ ):
snake_case = [outputs]
self.assertEqual(len(lowercase_ ), len(self.tool.outputs ) )
for output, output_type in zip(lowercase_, self.tool.outputs ):
snake_case = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(lowercase_, lowercase_ ) )
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = create_inputs(self.tool.inputs )
snake_case = []
for _input, input_type in zip(lowercase_, self.tool.inputs ):
if isinstance(lowercase_, lowercase_ ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
snake_case = self.tool(*lowercase_ )
if not isinstance(lowercase_, lowercase_ ):
snake_case = [outputs]
self.assertEqual(len(lowercase_ ), len(self.tool.outputs ) )
| 332 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
class lowerCamelCase :
def __init__( self, lowercase_, lowercase_ ) -> str:
snake_case , snake_case = text, pattern
snake_case , snake_case = len(lowercase_ ), len(lowercase_ )
def _lowerCamelCase ( self, lowercase_ ) -> int:
for i in range(self.patLen - 1, -1, -1 ):
if char == self.pattern[i]:
return i
return -1
def _lowerCamelCase ( self, lowercase_ ) -> int:
for i in range(self.patLen - 1, -1, -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def _lowerCamelCase ( self ) -> list[int]:
# searches pattern in text and returns index positions
snake_case = []
for i in range(self.textLen - self.patLen + 1 ):
snake_case = self.mismatch_in_text(lowercase_ )
if mismatch_index == -1:
positions.append(lowercase_ )
else:
snake_case = self.match_in_pattern(self.text[mismatch_index] )
snake_case = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
lowerCAmelCase_ = "ABAABA"
lowerCAmelCase_ = "AB"
lowerCAmelCase_ = BoyerMooreSearch(text, pattern)
lowerCAmelCase_ = bms.bad_character_heuristic()
if len(positions) == 0:
print("No match found")
else:
print("Pattern found in following positions: ")
print(positions)
| 332 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__lowerCAmelCase )
class lowerCamelCase ( __lowerCAmelCase ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
snake_case_ = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
snake_case_ = Features({'''text''': Value('''string''' )} )
snake_case_ = Features({'''labels''': ClassLabel} )
snake_case_ = "text"
snake_case_ = "labels"
def _lowerCamelCase ( self, lowercase_ ) -> Tuple:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column], lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
snake_case = copy.deepcopy(self )
snake_case = self.label_schema.copy()
snake_case = features[self.label_column]
snake_case = label_schema
return task_template
@property
def _lowerCamelCase ( self ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 332 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self, lowercase_, lowercase_=7, lowercase_=3, lowercase_=10, lowercase_=18, lowercase_=30, lowercase_=400, lowercase_=True, lowercase_=None, lowercase_=True, lowercase_=[0.5, 0.5, 0.5], lowercase_=[0.5, 0.5, 0.5], lowercase_=None, ) -> List[Any]:
snake_case = size if size is not None else {'shortest_edge': 18}
snake_case = crop_size if crop_size is not None else {'height': 18, 'width': 18}
snake_case = parent
snake_case = batch_size
snake_case = num_channels
snake_case = num_frames
snake_case = image_size
snake_case = min_resolution
snake_case = max_resolution
snake_case = do_resize
snake_case = size
snake_case = do_normalize
snake_case = image_mean
snake_case = image_std
snake_case = crop_size
def _lowerCamelCase ( self ) -> Any:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = VivitImageProcessor if is_vision_available() else None
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = VivitImageProcessingTester(self )
@property
def _lowerCamelCase ( self ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCamelCase ( self ) -> Any:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_, 'image_mean' ) )
self.assertTrue(hasattr(lowercase_, 'image_std' ) )
self.assertTrue(hasattr(lowercase_, 'do_normalize' ) )
self.assertTrue(hasattr(lowercase_, 'do_resize' ) )
self.assertTrue(hasattr(lowercase_, 'do_center_crop' ) )
self.assertTrue(hasattr(lowercase_, 'size' ) )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'shortest_edge': 18} )
self.assertEqual(image_processor.crop_size, {'height': 18, 'width': 18} )
snake_case = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84 )
self.assertEqual(image_processor.size, {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size, {'height': 84, 'width': 84} )
def _lowerCamelCase ( self ) -> Optional[Any]:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
snake_case = prepare_video_inputs(self.image_processor_tester, equal_resolution=lowercase_ )
for video in video_inputs:
self.assertIsInstance(lowercase_, lowercase_ )
self.assertIsInstance(video[0], Image.Image )
# Test not batched input
snake_case = image_processing(video_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
snake_case = image_processing(lowercase_, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
def _lowerCamelCase ( self ) -> int:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_video_inputs(self.image_processor_tester, equal_resolution=lowercase_, numpify=lowercase_ )
for video in video_inputs:
self.assertIsInstance(lowercase_, lowercase_ )
self.assertIsInstance(video[0], np.ndarray )
# Test not batched input
snake_case = image_processing(video_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
snake_case = image_processing(lowercase_, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
def _lowerCamelCase ( self ) -> str:
# Initialize image_processing
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_video_inputs(self.image_processor_tester, equal_resolution=lowercase_, torchify=lowercase_ )
for video in video_inputs:
self.assertIsInstance(lowercase_, lowercase_ )
self.assertIsInstance(video[0], torch.Tensor )
# Test not batched input
snake_case = image_processing(video_inputs[0], return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
# Test batched
snake_case = image_processing(lowercase_, return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_videos.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
), )
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 | 1 |
'''simple docstring'''
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
lowerCAmelCase_ = data_utils.TransfoXLTokenizer
lowerCAmelCase_ = data_utils.TransfoXLCorpus
lowerCAmelCase_ = data_utils
lowerCAmelCase_ = data_utils
def __magic_name__ ( A , A , A , A ) -> Union[str, Any]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(A , 'rb' ) as fp:
snake_case = pickle.load(A , encoding='latin1' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
snake_case = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file']
print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' )
snake_case = corpus.vocab.__dict__
torch.save(A , A )
snake_case = corpus.__dict__
corpus_dict_no_vocab.pop('vocab' , A )
snake_case = pytorch_dump_folder_path + '/' + CORPUS_NAME
print(F'''Save dataset to {pytorch_dataset_dump_path}''' )
torch.save(A , A )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
snake_case = os.path.abspath(A )
snake_case = os.path.abspath(A )
print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
snake_case = TransfoXLConfig()
else:
snake_case = TransfoXLConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = TransfoXLLMHeadModel(A )
snake_case = load_tf_weights_in_transfo_xl(A , A , A )
# Save pytorch-model
snake_case = os.path.join(A , A )
snake_case = os.path.join(A , A )
print(F'''Save PyTorch model to {os.path.abspath(A )}''' )
torch.save(model.state_dict() , A )
print(F'''Save configuration file to {os.path.abspath(A )}''' )
with open(A , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--tf_checkpoint_path",
default="",
type=str,
help="An optional path to a TensorFlow checkpoint path to be converted.",
)
parser.add_argument(
"--transfo_xl_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--transfo_xl_dataset_file",
default="",
type=str,
help="An optional dataset file to be converted in a vocabulary.",
)
lowerCAmelCase_ = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 332 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 1 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ['''image_processor''', '''tokenizer''']
snake_case_ = '''LayoutLMv3ImageProcessor'''
snake_case_ = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''')
def __init__( self, lowercase_=None, lowercase_=None, **lowercase_ ) -> Optional[Any]:
snake_case = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', lowercase_, )
snake_case = kwargs.pop('feature_extractor' )
snake_case = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(lowercase_, lowercase_ )
def __call__( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = True, lowercase_ = False, lowercase_ = None, lowercase_ = None, lowercase_ = 0, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = False, lowercase_ = False, lowercase_ = False, lowercase_ = False, lowercase_ = True, lowercase_ = None, **lowercase_, ) -> BatchEncoding:
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
# first, apply the image processor
snake_case = self.image_processor(images=lowercase_, return_tensors=lowercase_ )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(lowercase_, lowercase_ ):
snake_case = [text] # add batch dimension (as the image processor always adds a batch dimension)
snake_case = features['words']
snake_case = self.tokenizer(
text=text if text is not None else features['words'], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features['boxes'], word_labels=lowercase_, add_special_tokens=lowercase_, padding=lowercase_, truncation=lowercase_, max_length=lowercase_, stride=lowercase_, pad_to_multiple_of=lowercase_, return_token_type_ids=lowercase_, return_attention_mask=lowercase_, return_overflowing_tokens=lowercase_, return_special_tokens_mask=lowercase_, return_offsets_mapping=lowercase_, return_length=lowercase_, verbose=lowercase_, return_tensors=lowercase_, **lowercase_, )
# add pixel values
snake_case = features.pop('pixel_values' )
if return_overflowing_tokens is True:
snake_case = self.get_overflowing_images(lowercase_, encoded_inputs['overflow_to_sample_mapping'] )
snake_case = images
return encoded_inputs
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]:
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
snake_case = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
F''' {len(lowercase_ )} and {len(lowercase_ )}''' )
return images_with_overflow
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Any:
return self.tokenizer.batch_decode(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> List[str]:
return self.tokenizer.decode(*lowercase_, **lowercase_ )
@property
def _lowerCamelCase ( self ) -> Dict:
return ["input_ids", "bbox", "attention_mask", "pixel_values"]
@property
def _lowerCamelCase ( self ) -> Optional[int]:
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', lowercase_, )
return self.image_processor_class
@property
def _lowerCamelCase ( self ) -> Optional[int]:
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.', lowercase_, )
return self.image_processor
| 332 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 1 |
'''simple docstring'''
import argparse
import copy
def __magic_name__ ( A ) -> Any:
snake_case = {}
with open(A ) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
snake_case = []
_list.append([line.split()[1], line.split()[2]] )
snake_case = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]] )
if line.split()[1] not in dict_of_neighbours:
snake_case = []
_list.append([line.split()[0], line.split()[2]] )
snake_case = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]] )
return dict_of_neighbours
def __magic_name__ ( A , A ) -> Union[str, Any]:
with open(A ) as f:
snake_case = f.read(1 )
snake_case = start_node
snake_case = []
snake_case = start_node
snake_case = 0
while visiting not in first_solution:
snake_case = 1_0_0_0_0
for k in dict_of_neighbours[visiting]:
if int(k[1] ) < int(A ) and k[0] not in first_solution:
snake_case = k[1]
snake_case = k[0]
first_solution.append(A )
snake_case = distance_of_first_solution + int(A )
snake_case = best_node
first_solution.append(A )
snake_case = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
snake_case = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1] )
- 1_0_0_0_0
)
return first_solution, distance_of_first_solution
def __magic_name__ ( A , A ) -> Any:
snake_case = []
for n in solution[1:-1]:
snake_case = solution.index(A )
for kn in solution[1:-1]:
snake_case = solution.index(A )
if n == kn:
continue
snake_case = copy.deepcopy(A )
snake_case = kn
snake_case = n
snake_case = 0
for k in _tmp[:-1]:
snake_case = _tmp[_tmp.index(A ) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
snake_case = distance + int(i[1] )
_tmp.append(A )
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp )
snake_case = len(neighborhood_of_solution[0] ) - 1
neighborhood_of_solution.sort(key=lambda A : x[index_of_last_item_in_the_list] )
return neighborhood_of_solution
def __magic_name__ ( A , A , A , A , A ) -> str:
snake_case = 1
snake_case = first_solution
snake_case = []
snake_case = distance_of_first_solution
snake_case = solution
while count <= iters:
snake_case = find_neighborhood(A , A )
snake_case = 0
snake_case = neighborhood[index_of_best_solution]
snake_case = len(A ) - 1
snake_case = False
while not found:
snake_case = 0
while i < len(A ):
if best_solution[i] != solution[i]:
snake_case = best_solution[i]
snake_case = solution[i]
break
snake_case = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node] )
snake_case = True
snake_case = best_solution[:-1]
snake_case = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
snake_case = cost
snake_case = solution
else:
snake_case = index_of_best_solution + 1
snake_case = neighborhood[index_of_best_solution]
if len(A ) >= size:
tabu_list.pop(0 )
snake_case = count + 1
return best_solution_ever, best_cost
def __magic_name__ ( A=None ) -> int:
snake_case = generate_neighbours(args.File )
snake_case , snake_case = generate_first_solution(
args.File , A )
snake_case , snake_case = tabu_search(
A , A , A , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser(description="Tabu Search")
parser.add_argument(
"-f",
"--File",
type=str,
help="Path to the file containing the data",
required=True,
)
parser.add_argument(
"-i",
"--Iterations",
type=int,
help="How many iterations the algorithm should perform",
required=True,
)
parser.add_argument(
"-s", "--Size", type=int, help="Size of the tabu list", required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 332 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
lowerCAmelCase_ = TypeVar("KT")
lowerCAmelCase_ = TypeVar("VT")
class lowerCamelCase ( Generic[KT, VT] ):
def __init__( self, lowercase_ = "root", lowercase_ = None ) -> Optional[int]:
snake_case = key
snake_case = value
snake_case = []
def __repr__( self ) -> str:
return F'''Node({self.key}: {self.value})'''
@property
def _lowerCamelCase ( self ) -> int:
return len(self.forward )
class lowerCamelCase ( Generic[KT, VT] ):
def __init__( self, lowercase_ = 0.5, lowercase_ = 16 ) -> Any:
snake_case = Node[KT, VT]()
snake_case = 0
snake_case = p
snake_case = max_level
def __str__( self ) -> str:
snake_case = list(self )
if len(lowercase_ ) == 0:
return F'''SkipList(level={self.level})'''
snake_case = max((len(str(lowercase_ ) ) for item in items), default=4 )
snake_case = max(lowercase_, 4 ) + 4
snake_case = self.head
snake_case = []
snake_case = node.forward.copy()
lines.append(F'''[{node.key}]'''.ljust(lowercase_, '-' ) + '* ' * len(lowercase_ ) )
lines.append(' ' * label_size + '| ' * len(lowercase_ ) )
while len(node.forward ) != 0:
snake_case = node.forward[0]
lines.append(
F'''[{node.key}]'''.ljust(lowercase_, '-' )
+ ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) )
lines.append(' ' * label_size + '| ' * len(lowercase_ ) )
snake_case = node.forward
lines.append('None'.ljust(lowercase_ ) + '* ' * len(lowercase_ ) )
return F'''SkipList(level={self.level})\n''' + "\n".join(lowercase_ )
def __iter__( self ) -> Optional[int]:
snake_case = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
snake_case = node.forward[0]
def _lowerCamelCase ( self ) -> int:
snake_case = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def _lowerCamelCase ( self, lowercase_ ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]:
snake_case = []
snake_case = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
snake_case = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(lowercase_ )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]:
snake_case , snake_case = self._locate_node(lowercase_ )
if node is not None:
for i, update_node in enumerate(lowercase_ ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
snake_case = node.forward[i]
else:
snake_case = update_node.forward[:i]
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]:
snake_case , snake_case = self._locate_node(lowercase_ )
if node is not None:
snake_case = value
else:
snake_case = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1, lowercase_ ):
update_vector.append(self.head )
snake_case = level
snake_case = Node(lowercase_, lowercase_ )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(lowercase_ )
else:
snake_case = new_node
def _lowerCamelCase ( self, lowercase_ ) -> VT | None:
snake_case , snake_case = self._locate_node(lowercase_ )
if node is not None:
return node.value
return None
def __magic_name__ ( ) -> str:
snake_case = SkipList()
skip_list.insert('Key1' , 3 )
skip_list.insert('Key2' , 1_2 )
skip_list.insert('Key3' , 4_1 )
skip_list.insert('Key4' , -1_9 )
snake_case = skip_list.head
snake_case = {}
while node.level != 0:
snake_case = node.forward[0]
snake_case = node.value
assert len(A ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 1_2
assert all_values["Key3"] == 4_1
assert all_values["Key4"] == -1_9
def __magic_name__ ( ) -> Optional[int]:
snake_case = SkipList()
skip_list.insert('Key1' , 1_0 )
skip_list.insert('Key1' , 1_2 )
skip_list.insert('Key5' , 7 )
skip_list.insert('Key7' , 1_0 )
skip_list.insert('Key10' , 5 )
skip_list.insert('Key7' , 7 )
skip_list.insert('Key5' , 5 )
skip_list.insert('Key10' , 1_0 )
snake_case = skip_list.head
snake_case = {}
while node.level != 0:
snake_case = node.forward[0]
snake_case = node.value
if len(A ) != 4:
print()
assert len(A ) == 4
assert all_values["Key1"] == 1_2
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 1_0
def __magic_name__ ( ) -> Dict:
snake_case = SkipList()
assert skip_list.find('Some key' ) is None
def __magic_name__ ( ) -> int:
snake_case = SkipList()
skip_list.insert('Key2' , 2_0 )
assert skip_list.find('Key2' ) == 2_0
skip_list.insert('Some Key' , 1_0 )
skip_list.insert('Key2' , 8 )
skip_list.insert('V' , 1_3 )
assert skip_list.find('Y' ) is None
assert skip_list.find('Key2' ) == 8
assert skip_list.find('Some Key' ) == 1_0
assert skip_list.find('V' ) == 1_3
def __magic_name__ ( ) -> Dict:
snake_case = SkipList()
skip_list.delete('Some key' )
assert len(skip_list.head.forward ) == 0
def __magic_name__ ( ) -> List[str]:
snake_case = SkipList()
skip_list.insert('Key1' , 1_2 )
skip_list.insert('V' , 1_3 )
skip_list.insert('X' , 1_4 )
skip_list.insert('Key2' , 1_5 )
skip_list.delete('V' )
skip_list.delete('Key2' )
assert skip_list.find('V' ) is None
assert skip_list.find('Key2' ) is None
def __magic_name__ ( ) -> Optional[Any]:
snake_case = SkipList()
skip_list.insert('Key1' , 1_2 )
skip_list.insert('V' , 1_3 )
skip_list.insert('X' , 1_4 )
skip_list.insert('Key2' , 1_5 )
skip_list.delete('V' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) == 1_4
assert skip_list.find('Key1' ) == 1_2
assert skip_list.find('Key2' ) == 1_5
skip_list.delete('X' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) == 1_2
assert skip_list.find('Key2' ) == 1_5
skip_list.delete('Key1' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) is None
assert skip_list.find('Key2' ) == 1_5
skip_list.delete('Key2' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) is None
assert skip_list.find('Key2' ) is None
def __magic_name__ ( ) -> Optional[Any]:
snake_case = SkipList()
skip_list.insert('Key1' , 1_2 )
skip_list.insert('V' , 1_3 )
skip_list.insert('X' , 1_4_2 )
skip_list.insert('Key2' , 1_5 )
skip_list.delete('X' )
def traverse_keys(A ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(A )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def __magic_name__ ( ) -> Optional[Any]:
def is_sorted(A ):
return all(next_item >= item for item, next_item in zip(A , lst[1:] ) )
snake_case = SkipList()
for i in range(1_0 ):
skip_list.insert(A , A )
assert is_sorted(list(A ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(A ) )
skip_list.insert(-1_2 , -1_2 )
skip_list.insert(7_7 , 7_7 )
assert is_sorted(list(A ) )
def __magic_name__ ( ) -> Dict:
for _ in range(1_0_0 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def __magic_name__ ( ) -> Dict:
snake_case = SkipList()
skip_list.insert(2 , '2' )
skip_list.insert(4 , '4' )
skip_list.insert(6 , '4' )
skip_list.insert(4 , '5' )
skip_list.insert(8 , '4' )
skip_list.insert(9 , '4' )
skip_list.delete(4 )
print(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 332 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 1 |
'''simple docstring'''
import operator
def __magic_name__ ( A , A = False , A = None ) -> list:
snake_case = operator.lt if reverse else operator.gt
snake_case = solution or []
if not arr:
return solution
snake_case = [arr.pop(0 )]
for i, item in enumerate(A ):
if _operator(A , sublist[-1] ):
sublist.append(A )
arr.pop(A )
# merging sublist into solution list
if not solution:
solution.extend(A )
else:
while sublist:
snake_case = sublist.pop(0 )
for i, xx in enumerate(A ):
if not _operator(A , A ):
solution.insert(A , A )
break
else:
solution.append(A )
strand_sort(A , A , A )
return solution
if __name__ == "__main__":
assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5]
assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 1 |
'''simple docstring'''
import numpy as np
from numpy import ndarray
from scipy.optimize import Bounds, LinearConstraint, minimize
def __magic_name__ ( A ) -> float:
return np.dot(A , A )
class lowerCamelCase :
def __init__( self, *,
lowercase_ = np.inf, lowercase_ = "linear", lowercase_ = 0.0, ) -> None:
snake_case = regularization
snake_case = gamma
if kernel == "linear":
snake_case = self.__linear
elif kernel == "rbf":
if self.gamma == 0:
raise ValueError('rbf kernel requires gamma' )
if not isinstance(self.gamma, (float, int) ):
raise ValueError('gamma must be float or int' )
if not self.gamma > 0:
raise ValueError('gamma must be > 0' )
snake_case = self.__rbf
# in the future, there could be a default value like in sklearn
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
snake_case = F'''Unknown kernel: {kernel}'''
raise ValueError(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> float:
return np.dot(lowercase_, lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> float:
return np.exp(-(self.gamma * norm_squared(vectora - vectora )) )
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> None:
snake_case = observations
snake_case = classes
# using Wolfe's Dual to calculate w.
# Primal problem: minimize 1/2*norm_squared(w)
# constraint: yn(w . xn + b) >= 1
#
# With l a vector
# Dual problem: maximize sum_n(ln) -
# 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm))
# constraint: self.C >= ln >= 0
# and sum_n(ln*yn) = 0
# Then we get w using w = sum_n(ln*yn*xn)
# At the end we can get b ~= mean(yn - w . xn)
#
# Since we use kernels, we only need l_star to calculate b
# and to classify observations
((snake_case) , ) = np.shape(lowercase_ )
def to_minimize(lowercase_ ) -> float:
snake_case = 0
((snake_case) , ) = np.shape(lowercase_ )
for i in range(lowercase_ ):
for j in range(lowercase_ ):
s += (
candidate[i]
* candidate[j]
* classes[i]
* classes[j]
* self.kernel(observations[i], observations[j] )
)
return 1 / 2 * s - sum(lowercase_ )
snake_case = LinearConstraint(lowercase_, 0, 0 )
snake_case = Bounds(0, self.regularization )
snake_case = minimize(
lowercase_, np.ones(lowercase_ ), bounds=lowercase_, constraints=[ly_contraint] ).x
snake_case = l_star
# calculating mean offset of separation plane to points
snake_case = 0
for i in range(lowercase_ ):
for j in range(lowercase_ ):
s += classes[i] - classes[i] * self.optimum[i] * self.kernel(
observations[i], observations[j] )
snake_case = s / n
def _lowerCamelCase ( self, lowercase_ ) -> int:
snake_case = sum(
self.optimum[n]
* self.classes[n]
* self.kernel(self.observations[n], lowercase_ )
for n in range(len(self.classes ) ) )
return 1 if s + self.offset >= 0 else -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''microsoft/speecht5_tts'''
snake_case_ = (
'''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the '''
'''text to read (in English) and returns a waveform object containing the sound.'''
)
snake_case_ = '''text_reader'''
snake_case_ = SpeechTaProcessor
snake_case_ = SpeechTaForTextToSpeech
snake_case_ = SpeechTaHifiGan
snake_case_ = ['''text''']
snake_case_ = ['''audio''']
def _lowerCamelCase ( self ) -> List[Any]:
if self.post_processor is None:
snake_case = 'microsoft/speecht5_hifigan'
super().setup()
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = self.pre_processor(text=lowercase_, return_tensors='pt', truncation=lowercase_ )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' )
snake_case = load_dataset('Matthijs/cmu-arctic-xvectors', split='validation' )
snake_case = torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def _lowerCamelCase ( self, lowercase_ ) -> Any:
with torch.no_grad():
return self.model.generate_speech(**lowercase_ )
def _lowerCamelCase ( self, lowercase_ ) -> Tuple:
with torch.no_grad():
return self.post_processor(lowercase_ ).cpu().detach()
| 332 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = ShapEPipeline
snake_case_ = ['''prompt''']
snake_case_ = ['''prompt''']
snake_case_ = [
'''num_images_per_prompt''',
'''num_inference_steps''',
'''generator''',
'''latents''',
'''guidance_scale''',
'''frame_size''',
'''output_type''',
'''return_dict''',
]
snake_case_ = False
@property
def _lowerCamelCase ( self ) -> List[str]:
return 32
@property
def _lowerCamelCase ( self ) -> List[str]:
return 32
@property
def _lowerCamelCase ( self ) -> int:
return self.time_input_dim * 4
@property
def _lowerCamelCase ( self ) -> List[str]:
return 8
@property
def _lowerCamelCase ( self ) -> Dict:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModelWithProjection(lowercase_ )
@property
def _lowerCamelCase ( self ) -> List[str]:
torch.manual_seed(0 )
snake_case = {
'num_attention_heads': 2,
'attention_head_dim': 16,
'embedding_dim': self.time_input_dim,
'num_embeddings': 32,
'embedding_proj_dim': self.text_embedder_hidden_size,
'time_embed_dim': self.time_embed_dim,
'num_layers': 1,
'clip_embed_dim': self.time_input_dim * 2,
'additional_embeddings': 0,
'time_embed_act_fn': 'gelu',
'norm_in_type': 'layer',
'encoder_hid_proj_type': None,
'added_emb_type': None,
}
snake_case = PriorTransformer(**lowercase_ )
return model
@property
def _lowerCamelCase ( self ) -> List[str]:
torch.manual_seed(0 )
snake_case = {
'param_shapes': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'd_latent': self.time_input_dim,
'd_hidden': self.renderer_dim,
'n_output': 12,
'background': (
0.1,
0.1,
0.1,
),
}
snake_case = ShapERenderer(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Any:
snake_case = self.dummy_prior
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_renderer
snake_case = HeunDiscreteScheduler(
beta_schedule='exp', num_train_timesteps=1024, prediction_type='sample', use_karras_sigmas=lowercase_, clip_sample=lowercase_, clip_sample_range=1.0, )
snake_case = {
'prior': prior,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'renderer': renderer,
'scheduler': scheduler,
}
return components
def _lowerCamelCase ( self, lowercase_, lowercase_=0 ) -> str:
if str(lowercase_ ).startswith('mps' ):
snake_case = torch.manual_seed(lowercase_ )
else:
snake_case = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
snake_case = {
'prompt': 'horse',
'generator': generator,
'num_inference_steps': 1,
'frame_size': 32,
'output_type': 'np',
}
return inputs
def _lowerCamelCase ( self ) -> str:
snake_case = 'cpu'
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**lowercase_ )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = pipe(**self.get_dummy_inputs(lowercase_ ) )
snake_case = output.images[0]
snake_case = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
snake_case = np.array(
[
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> int:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = torch_device == 'cpu'
snake_case = True
self._test_inference_batch_single_identical(
batch_size=2, test_max_difference=lowercase_, relax_max_difference=lowercase_, )
def _lowerCamelCase ( self ) -> Tuple:
snake_case = self.get_dummy_components()
snake_case = self.pipeline_class(**lowercase_ )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 1
snake_case = 2
snake_case = self.get_dummy_inputs(lowercase_ )
for key in inputs.keys():
if key in self.batch_params:
snake_case = batch_size * [inputs[key]]
snake_case = pipe(**lowercase_, num_images_per_prompt=lowercase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/shap_e/test_shap_e_np_out.npy' )
snake_case = ShapEPipeline.from_pretrained('openai/shap-e' )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
'a shark', generator=lowercase_, guidance_scale=15.0, num_inference_steps=64, frame_size=64, output_type='np', ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowercase_, lowercase_ )
| 332 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 1 |
'''simple docstring'''
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ = logging.get_logger(__name__)
def __magic_name__ ( A ) -> Optional[Any]:
snake_case = SwinConfig.from_pretrained(
'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
snake_case = MaskFormerConfig(backbone_config=A )
snake_case = 'huggingface/label-files'
if "ade20k-full" in model_name:
# this should be ok
snake_case = 8_4_7
snake_case = 'maskformer-ade20k-full-id2label.json'
elif "ade" in model_name:
# this should be ok
snake_case = 1_5_0
snake_case = 'ade20k-id2label.json'
elif "coco-stuff" in model_name:
# this should be ok
snake_case = 1_7_1
snake_case = 'maskformer-coco-stuff-id2label.json'
elif "coco" in model_name:
# TODO
snake_case = 1_3_3
snake_case = 'coco-panoptic-id2label.json'
elif "cityscapes" in model_name:
# this should be ok
snake_case = 1_9
snake_case = 'cityscapes-id2label.json'
elif "vistas" in model_name:
# this should be ok
snake_case = 6_5
snake_case = 'mapillary-vistas-id2label.json'
snake_case = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
return config
def __magic_name__ ( A ) -> Dict:
snake_case = []
# stem
# fmt: off
rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') )
rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') )
# heads on top
rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') )
rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') )
rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') )
for i in range(3 ):
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = dct.pop(A )
snake_case = val
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
snake_case = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
snake_case = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
snake_case = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case = in_proj_weight[:dim, :]
snake_case = in_proj_bias[: dim]
snake_case = in_proj_weight[
dim : dim * 2, :
]
snake_case = in_proj_bias[
dim : dim * 2
]
snake_case = in_proj_weight[
-dim :, :
]
snake_case = in_proj_bias[-dim :]
# fmt: on
def __magic_name__ ( A , A ) -> int:
# fmt: off
snake_case = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case = in_proj_weight[: hidden_size, :]
snake_case = in_proj_bias[:config.hidden_size]
snake_case = in_proj_weight[hidden_size : hidden_size * 2, :]
snake_case = in_proj_bias[hidden_size : hidden_size * 2]
snake_case = in_proj_weight[-hidden_size :, :]
snake_case = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case = in_proj_weight[: hidden_size, :]
snake_case = in_proj_bias[:config.hidden_size]
snake_case = in_proj_weight[hidden_size : hidden_size * 2, :]
snake_case = in_proj_bias[hidden_size : hidden_size * 2]
snake_case = in_proj_weight[-hidden_size :, :]
snake_case = in_proj_bias[-hidden_size :]
# fmt: on
def __magic_name__ ( ) -> torch.Tensor:
snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg'
snake_case = Image.open(requests.get(A , stream=A ).raw )
return im
@torch.no_grad()
def __magic_name__ ( A , A , A , A = False ) -> Tuple:
snake_case = get_maskformer_config(A )
# load original state_dict
with open(A , 'rb' ) as f:
snake_case = pickle.load(A )
snake_case = data['model']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
snake_case = create_rename_keys(A )
for src, dest in rename_keys:
rename_key(A , A , A )
read_in_swin_q_k_v(A , config.backbone_config )
read_in_decoder_q_k_v(A , A )
# update to torch tensors
for key, value in state_dict.items():
snake_case = torch.from_numpy(A )
# load 🤗 model
snake_case = MaskFormerForInstanceSegmentation(A )
model.eval()
for name, param in model.named_parameters():
print(A , param.shape )
snake_case , snake_case = model.load_state_dict(A , strict=A )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(A ) == 0, F'''Unexpected keys: {unexpected_keys}'''
# verify results
snake_case = prepare_img()
if "vistas" in model_name:
snake_case = 6_5
elif "cityscapes" in model_name:
snake_case = 6_5_5_3_5
else:
snake_case = 2_5_5
snake_case = True if 'ade' in model_name else False
snake_case = MaskFormerImageProcessor(ignore_index=A , reduce_labels=A )
snake_case = image_processor(A , return_tensors='pt' )
snake_case = model(**A )
print('Logits:' , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
snake_case = torch.tensor(
[[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , A , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(A ).mkdir(exist_ok=A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
if push_to_hub:
print('Pushing model and image processor to the hub...' )
model.push_to_hub(F'''nielsr/{model_name}''' )
image_processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="maskformer-swin-tiny-ade",
type=str,
help=("Name of the MaskFormer model you'd like to convert",),
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl",
type=str,
help="Path to the original state dict (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase_ = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 332 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self, lowercase_ ) -> Any:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'], model_result['ss'] ):
snake_case = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(lowercase_ )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], eager_mode=lowercase_, multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Any:
snake_case = 'sgugger/tiny-distilbert-classification'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, only_pretrain_model=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> List[str]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Any:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], eager_mode=lowercase_, multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_, [config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_, [config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Any:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowerCamelCase ( self ) -> Dict:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_, [config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'patrickvonplaten/t5-tiny-random'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_, configs=[config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0, 'Cannot do xla on CPU.' )
def _lowerCamelCase ( self ) -> str:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], use_xla=lowercase_, multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Dict:
snake_case = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], inference=lowercase_, save_to_csv=lowercase_, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(lowercase_, 'inf_time.csv' ), inference_memory_csv_file=os.path.join(lowercase_, 'inf_mem.csv' ), env_info_csv_file=os.path.join(lowercase_, 'env.csv' ), multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
benchmark.run()
self.assertTrue(Path(os.path.join(lowercase_, 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase_, 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase_, 'env.csv' ) ).exists() )
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(lowercase_ ):
self.assertTrue(hasattr(lowercase_, 'sequential' ) )
self.assertTrue(hasattr(lowercase_, 'cumulative' ) )
self.assertTrue(hasattr(lowercase_, 'current' ) )
self.assertTrue(hasattr(lowercase_, 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(lowercase_, 'log.txt' ), log_print=lowercase_, trace_memory_line_by_line=lowercase_, eager_mode=lowercase_, multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(lowercase_, 'log.txt' ) ).exists() )
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class lowerCamelCase :
snake_case_ = 42
snake_case_ = None
snake_case_ = None
lowerCAmelCase_ = namedtuple("CoinsDistribResult", "moves excess")
def __magic_name__ ( A ) -> int:
if root is None:
return 0
# Validation
def count_nodes(A ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(A ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(A ) != count_coins(A ):
raise ValueError('The nodes number should be same as the number of coins' )
# Main calculation
def get_distrib(A ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
snake_case , snake_case = get_distrib(node.left )
snake_case , snake_case = get_distrib(node.right )
snake_case = 1 - left_distrib_excess
snake_case = 1 - right_distrib_excess
snake_case = (
left_distrib_moves
+ right_distrib_moves
+ abs(A )
+ abs(A )
)
snake_case = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(A , A )
return get_distrib(A )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCamelCase ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self ) -> Dict:
snake_case = XLMRobertaModel.from_pretrained('xlm-roberta-base' )
snake_case = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
snake_case = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim
snake_case = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case = model(lowercase_ )['last_hidden_state'].detach()
self.assertEqual(output.shape, lowercase_ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], lowercase_, atol=1E-3 ) )
@slow
def _lowerCamelCase ( self ) -> int:
snake_case = XLMRobertaModel.from_pretrained('xlm-roberta-large' )
snake_case = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
snake_case = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim
snake_case = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
snake_case = model(lowercase_ )['last_hidden_state'].detach()
self.assertEqual(output.shape, lowercase_ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], lowercase_, atol=1E-3 ) )
| 332 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 | 1 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
lowerCAmelCase_ = logging.get_logger(__name__)
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__( self, **lowercase_ ) -> Optional[Any]:
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
snake_case = deprecated_arg[3:]
snake_case = not kwargs.pop(lowercase_ )
logger.warning(
F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or'''
F''' {positive_arg}={kwargs[positive_arg]}''' )
snake_case = kwargs.pop('tpu_name', self.tpu_name )
snake_case = kwargs.pop('device_idx', self.device_idx )
snake_case = kwargs.pop('eager_mode', self.eager_mode )
snake_case = kwargs.pop('use_xla', self.use_xla )
super().__init__(**lowercase_ )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Name of TPU'''} , )
snake_case_ = field(
default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , )
snake_case_ = field(default=__lowerCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={
'''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.'''
} , )
@cached_property
def _lowerCamelCase ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self, ['tf'] )
snake_case = None
if self.tpu:
try:
if self.tpu_name:
snake_case = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name )
else:
snake_case = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
snake_case = None
return tpu
@cached_property
def _lowerCamelCase ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self, ['tf'] )
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu )
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu )
snake_case = tf.distribute.TPUStrategy(self._setup_tpu )
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx], 'GPU' )
snake_case = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' )
else:
tf.config.set_visible_devices([], 'GPU' ) # disable GPU
snake_case = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' )
return strategy
@property
def _lowerCamelCase ( self ) -> bool:
requires_backends(self, ['tf'] )
return self._setup_tpu is not None
@property
def _lowerCamelCase ( self ) -> "tf.distribute.Strategy":
requires_backends(self, ['tf'] )
return self._setup_strategy
@property
def _lowerCamelCase ( self ) -> List[str]:
requires_backends(self, ['tf'] )
return tf.config.list_physical_devices('GPU' )
@property
def _lowerCamelCase ( self ) -> int:
requires_backends(self, ['tf'] )
if self.cuda:
return len(self.gpu_list )
return 0
@property
def _lowerCamelCase ( self ) -> bool:
return self.n_gpu > 0
| 332 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 | 1 |
'''simple docstring'''
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
lowerCAmelCase_ = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
lowerCAmelCase_ = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def __magic_name__ ( A ) -> List[Any]:
snake_case = numpy.dtype(numpy.uintaa ).newbyteorder('>' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=A )[0]
@deprecated(A , 'Please use tf.data to implement this functionality.' )
def __magic_name__ ( A ) -> Optional[int]:
print('Extracting' , f.name )
with gzip.GzipFile(fileobj=A ) as bytestream:
snake_case = _readaa(A )
if magic != 2_0_5_1:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) )
snake_case = _readaa(A )
snake_case = _readaa(A )
snake_case = _readaa(A )
snake_case = bytestream.read(rows * cols * num_images )
snake_case = numpy.frombuffer(A , dtype=numpy.uinta )
snake_case = data.reshape(A , A , A , 1 )
return data
@deprecated(A , 'Please use tf.one_hot on tensors.' )
def __magic_name__ ( A , A ) -> Union[str, Any]:
snake_case = labels_dense.shape[0]
snake_case = numpy.arange(A ) * num_classes
snake_case = numpy.zeros((num_labels, num_classes) )
snake_case = 1
return labels_one_hot
@deprecated(A , 'Please use tf.data to implement this functionality.' )
def __magic_name__ ( A , A=False , A=1_0 ) -> Dict:
print('Extracting' , f.name )
with gzip.GzipFile(fileobj=A ) as bytestream:
snake_case = _readaa(A )
if magic != 2_0_4_9:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) )
snake_case = _readaa(A )
snake_case = bytestream.read(A )
snake_case = numpy.frombuffer(A , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(A , A )
return labels
class lowerCamelCase :
@deprecated(
lowercase_, 'Please use alternatives such as official/mnist/_DataSet.py'
' from tensorflow/models.', )
def __init__( self, lowercase_, lowercase_, lowercase_=False, lowercase_=False, lowercase_=dtypes.floataa, lowercase_=True, lowercase_=None, ) -> Dict:
snake_case , snake_case = random_seed.get_seed(lowercase_ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
snake_case = dtypes.as_dtype(lowercase_ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype )
if fake_data:
snake_case = 10000
snake_case = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), F'''images.shape: {images.shape} labels.shape: {labels.shape}'''
snake_case = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
snake_case = images.reshape(
images.shape[0], images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
snake_case = images.astype(numpy.floataa )
snake_case = numpy.multiply(lowercase_, 1.0 / 255.0 )
snake_case = images
snake_case = labels
snake_case = 0
snake_case = 0
@property
def _lowerCamelCase ( self ) -> Dict:
return self._images
@property
def _lowerCamelCase ( self ) -> int:
return self._labels
@property
def _lowerCamelCase ( self ) -> Union[str, Any]:
return self._num_examples
@property
def _lowerCamelCase ( self ) -> List[str]:
return self._epochs_completed
def _lowerCamelCase ( self, lowercase_, lowercase_=False, lowercase_=True ) -> List[str]:
if fake_data:
snake_case = [1] * 784
snake_case = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(lowercase_ )],
[fake_label for _ in range(lowercase_ )],
)
snake_case = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
snake_case = numpy.arange(self._num_examples )
numpy.random.shuffle(lowercase_ )
snake_case = self.images[perma]
snake_case = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
snake_case = self._num_examples - start
snake_case = self._images[start : self._num_examples]
snake_case = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
snake_case = numpy.arange(self._num_examples )
numpy.random.shuffle(lowercase_ )
snake_case = self.images[perm]
snake_case = self.labels[perm]
# Start next epoch
snake_case = 0
snake_case = batch_size - rest_num_examples
snake_case = self._index_in_epoch
snake_case = self._images[start:end]
snake_case = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part), axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ),
)
else:
self._index_in_epoch += batch_size
snake_case = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(A , 'Please write your own downloading logic.' )
def __magic_name__ ( A , A , A ) -> str:
if not gfile.Exists(A ):
gfile.MakeDirs(A )
snake_case = os.path.join(A , A )
if not gfile.Exists(A ):
urllib.request.urlretrieve(A , A ) # noqa: S310
with gfile.GFile(A ) as f:
snake_case = f.size()
print('Successfully downloaded' , A , A , 'bytes.' )
return filepath
@deprecated(
A , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' )
def __magic_name__ ( A , A=False , A=False , A=dtypes.floataa , A=True , A=5_0_0_0 , A=None , A=DEFAULT_SOURCE_URL , ) -> Tuple:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=A , one_hot=A , dtype=A , seed=A )
snake_case = fake()
snake_case = fake()
snake_case = fake()
return _Datasets(train=A , validation=A , test=A )
if not source_url: # empty string check
snake_case = DEFAULT_SOURCE_URL
snake_case = 'train-images-idx3-ubyte.gz'
snake_case = 'train-labels-idx1-ubyte.gz'
snake_case = 't10k-images-idx3-ubyte.gz'
snake_case = 't10k-labels-idx1-ubyte.gz'
snake_case = _maybe_download(
A , A , source_url + train_images_file )
with gfile.Open(A , 'rb' ) as f:
snake_case = _extract_images(A )
snake_case = _maybe_download(
A , A , source_url + train_labels_file )
with gfile.Open(A , 'rb' ) as f:
snake_case = _extract_labels(A , one_hot=A )
snake_case = _maybe_download(
A , A , source_url + test_images_file )
with gfile.Open(A , 'rb' ) as f:
snake_case = _extract_images(A )
snake_case = _maybe_download(
A , A , source_url + test_labels_file )
with gfile.Open(A , 'rb' ) as f:
snake_case = _extract_labels(A , one_hot=A )
if not 0 <= validation_size <= len(A ):
snake_case = (
'Validation size should be between 0 and '
F'''{len(A )}. Received: {validation_size}.'''
)
raise ValueError(A )
snake_case = train_images[:validation_size]
snake_case = train_labels[:validation_size]
snake_case = train_images[validation_size:]
snake_case = train_labels[validation_size:]
snake_case = {'dtype': dtype, 'reshape': reshape, 'seed': seed}
snake_case = _DataSet(A , A , **A )
snake_case = _DataSet(A , A , **A )
snake_case = _DataSet(A , A , **A )
return _Datasets(train=A , validation=A , test=A )
| 332 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 | 1 |
'''simple docstring'''
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
class lowerCamelCase :
def __init__( self, lowercase_, lowercase_, lowercase_ = True, lowercase_ = False ) -> Optional[int]:
snake_case = scheduler
snake_case = optimizers if isinstance(lowercase_, (list, tuple) ) else [optimizers]
snake_case = split_batches
snake_case = step_with_optimizer
snake_case = GradientState()
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Union[str, Any]:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*lowercase_, **lowercase_ )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*lowercase_, **lowercase_ )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
snake_case = AcceleratorState().num_processes
for _ in range(lowercase_ ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler, 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*lowercase_, **lowercase_ )
else:
self.scheduler.step(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self ) -> List[Any]:
return self.scheduler.get_last_lr()
def _lowerCamelCase ( self ) -> Union[str, Any]:
return self.scheduler.state_dict()
def _lowerCamelCase ( self, lowercase_ ) -> List[str]:
self.scheduler.load_state_dict(lowercase_ )
def _lowerCamelCase ( self ) -> List[str]:
return self.scheduler.get_lr()
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> List[str]:
return self.scheduler.print_lr(*lowercase_, **lowercase_ )
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A ) -> list:
snake_case = len(A )
for i in range(1 , A ):
snake_case = collection[i]
snake_case = 0
snake_case = i - 1
while low <= high:
snake_case = (low + high) // 2
if val < collection[mid]:
snake_case = mid - 1
else:
snake_case = mid + 1
for j in range(A , A , -1 ):
snake_case = collection[j - 1]
snake_case = val
return collection
if __name__ == "__main__":
lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip()
lowerCAmelCase_ = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 332 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 1 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class lowerCamelCase :
def __init__( self, lowercase_, lowercase_=14, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=False, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=4, lowercase_=4, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=0.02, ) -> Optional[int]:
snake_case = parent
snake_case = batch_size
snake_case = seq_length
snake_case = is_training
snake_case = use_input_mask
snake_case = use_token_type_ids
snake_case = use_labels
snake_case = vocab_size
snake_case = hidden_size
snake_case = rotary_dim
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = intermediate_size
snake_case = hidden_act
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = initializer_range
snake_case = None
snake_case = vocab_size - 1
snake_case = vocab_size - 1
snake_case = vocab_size - 1
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
snake_case = None
if self.use_input_mask:
snake_case = random_attention_mask([self.batch_size, self.seq_length] )
snake_case = GPTJConfig(
vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, use_cache=lowercase_, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, rotary_dim=self.rotary_dim, )
return (config, input_ids, input_mask)
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.prepare_config_and_inputs()
snake_case , snake_case , snake_case = config_and_inputs
snake_case = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Dict:
snake_case = 20
snake_case = model_class_name(lowercase_ )
snake_case = model.init_cache(input_ids.shape[0], lowercase_ )
snake_case = jnp.ones((input_ids.shape[0], max_decoder_length), dtype='i4' )
snake_case = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) )
snake_case = model(
input_ids[:, :-1], attention_mask=lowercase_, past_key_values=lowercase_, position_ids=lowercase_, )
snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype='i4' )
snake_case = model(
input_ids[:, -1:], attention_mask=lowercase_, past_key_values=outputs_cache.past_key_values, position_ids=lowercase_, )
snake_case = model(lowercase_ )
snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Tuple:
snake_case = 20
snake_case = model_class_name(lowercase_ )
snake_case = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )], axis=-1, )
snake_case = model.init_cache(input_ids.shape[0], lowercase_ )
snake_case = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) )
snake_case = model(
input_ids[:, :-1], attention_mask=lowercase_, past_key_values=lowercase_, position_ids=lowercase_, )
snake_case = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype='i4' )
snake_case = model(
input_ids[:, -1:], past_key_values=outputs_cache.past_key_values, attention_mask=lowercase_, position_ids=lowercase_, )
snake_case = model(lowercase_, attention_mask=lowercase_ )
snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' )
@require_flax
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def _lowerCamelCase ( self ) -> Any:
snake_case = FlaxGPTJModelTester(self )
def _lowerCamelCase ( self ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowercase_, lowercase_, lowercase_, lowercase_ )
def _lowerCamelCase ( self ) -> List[str]:
for model_class_name in self.all_model_classes:
snake_case , snake_case , snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowercase_, lowercase_, lowercase_, lowercase_ )
@tooslow
def _lowerCamelCase ( self ) -> str:
snake_case = GPTaTokenizer.from_pretrained('gpt2', pad_token='<|endoftext|>', padding_side='left' )
snake_case = tokenizer(['Hello this is a long string', 'Hey'], return_tensors='np', padding=lowercase_, truncation=lowercase_ )
snake_case = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' )
snake_case = False
snake_case = model.config.eos_token_id
snake_case = jax.jit(model.generate )
snake_case = jit_generate(
inputs['input_ids'], attention_mask=inputs['attention_mask'], pad_token_id=tokenizer.pad_token_id ).sequences
snake_case = tokenizer.batch_decode(lowercase_, skip_special_tokens=lowercase_ )
snake_case = [
'Hello this is a long string of text.\n\nI\'m trying to get the text of the',
'Hey, I\'m a little late to the party. I\'m going to',
]
self.assertListEqual(lowercase_, lowercase_ )
@is_pt_flax_cross_test
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
snake_case = self._prepare_for_class(lowercase_, lowercase_ )
snake_case = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning
snake_case = getattr(lowercase_, lowercase_ )
snake_case , snake_case = pt_inputs['input_ids'].shape
snake_case = np.random.randint(0, seq_length - 1, size=(batch_size,) )
for batch_idx, start_index in enumerate(lowercase_ ):
snake_case = 0
snake_case = 1
snake_case = 0
snake_case = 1
snake_case = pt_model_class(lowercase_ ).eval()
snake_case = model_class(lowercase_, dtype=jnp.floataa )
snake_case = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowercase_ )
snake_case = fx_state
with torch.no_grad():
snake_case = pt_model(**lowercase_ ).to_tuple()
snake_case = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ), len(lowercase_ ), 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowercase_, lowercase_ ):
self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowercase_ )
snake_case = model_class.from_pretrained(lowercase_, from_pt=lowercase_ )
snake_case = fx_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(
len(lowercase_ ), len(lowercase_ ), 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(lowercase_, lowercase_ ):
self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4E-2 )
@is_pt_flax_cross_test
def _lowerCamelCase ( self ) -> Dict:
snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
snake_case = self._prepare_for_class(lowercase_, lowercase_ )
snake_case = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
snake_case = model_class.__name__[4:] # Skip the "Flax" at the beginning
snake_case = getattr(lowercase_, lowercase_ )
snake_case = pt_model_class(lowercase_ ).eval()
snake_case = model_class(lowercase_, dtype=jnp.floataa )
snake_case = load_flax_weights_in_pytorch_model(lowercase_, fx_model.params )
snake_case , snake_case = pt_inputs['input_ids'].shape
snake_case = np.random.randint(0, seq_length - 1, size=(batch_size,) )
for batch_idx, start_index in enumerate(lowercase_ ):
snake_case = 0
snake_case = 1
snake_case = 0
snake_case = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
snake_case = pt_model(**lowercase_ ).to_tuple()
snake_case = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ), len(lowercase_ ), 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowercase_, lowercase_ ):
self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowercase_ )
snake_case = pt_model_class.from_pretrained(lowercase_, from_flax=lowercase_ )
with torch.no_grad():
snake_case = pt_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(
len(lowercase_ ), len(lowercase_ ), 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(lowercase_, lowercase_ ):
self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4E-2 )
@tooslow
def _lowerCamelCase ( self ) -> List[str]:
for model_class_name in self.all_model_classes:
snake_case = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' )
snake_case = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowercase_ )
| 332 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''swinv2'''
snake_case_ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self, lowercase_=224, lowercase_=4, lowercase_=3, lowercase_=96, lowercase_=[2, 2, 6, 2], lowercase_=[3, 6, 12, 24], lowercase_=7, lowercase_=4.0, lowercase_=True, lowercase_=0.0, lowercase_=0.0, lowercase_=0.1, lowercase_="gelu", lowercase_=False, lowercase_=0.02, lowercase_=1E-5, lowercase_=32, **lowercase_, ) -> Dict:
super().__init__(**lowercase_ )
snake_case = image_size
snake_case = patch_size
snake_case = num_channels
snake_case = embed_dim
snake_case = depths
snake_case = len(lowercase_ )
snake_case = num_heads
snake_case = window_size
snake_case = mlp_ratio
snake_case = qkv_bias
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = drop_path_rate
snake_case = hidden_act
snake_case = use_absolute_embeddings
snake_case = layer_norm_eps
snake_case = initializer_range
snake_case = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
snake_case = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
snake_case = (0, 0, 0, 0)
| 332 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 | 1 |
'''simple docstring'''
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase_ = {
"facebook/mask2former-swin-small-coco-instance": (
"https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''mask2former'''
snake_case_ = ['''swin''']
snake_case_ = {'''hidden_size''': '''hidden_dim'''}
def __init__( self, lowercase_ = None, lowercase_ = 256, lowercase_ = 256, lowercase_ = 256, lowercase_ = 1024, lowercase_ = "relu", lowercase_ = 6, lowercase_ = 10, lowercase_ = 8, lowercase_ = 0.0, lowercase_ = 2048, lowercase_ = False, lowercase_ = False, lowercase_ = 4, lowercase_ = 255, lowercase_ = 100, lowercase_ = 0.1, lowercase_ = 2.0, lowercase_ = 5.0, lowercase_ = 5.0, lowercase_ = 12544, lowercase_ = 3.0, lowercase_ = 0.75, lowercase_ = 0.02, lowercase_ = 1.0, lowercase_ = True, lowercase_ = [4, 8, 16, 32], lowercase_ = None, **lowercase_, ) -> int:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
snake_case = CONFIG_MAPPING['swin'](
image_size=224, in_channels=3, patch_size=4, embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.3, use_absolute_embeddings=lowercase_, out_features=['stage1', 'stage2', 'stage3', 'stage4'], )
if isinstance(lowercase_, lowercase_ ):
snake_case = backbone_config.pop('model_type' )
snake_case = CONFIG_MAPPING[backbone_model_type]
snake_case = config_class.from_dict(lowercase_ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '''
F'''Supported model types: {",".join(self.backbones_supported )}''' )
snake_case = backbone_config
snake_case = feature_size
snake_case = mask_feature_size
snake_case = hidden_dim
snake_case = encoder_feedforward_dim
snake_case = activation_function
snake_case = encoder_layers
snake_case = decoder_layers
snake_case = num_attention_heads
snake_case = dropout
snake_case = dim_feedforward
snake_case = pre_norm
snake_case = enforce_input_projection
snake_case = common_stride
snake_case = ignore_value
snake_case = num_queries
snake_case = no_object_weight
snake_case = class_weight
snake_case = mask_weight
snake_case = dice_weight
snake_case = train_num_points
snake_case = oversample_ratio
snake_case = importance_sample_ratio
snake_case = init_std
snake_case = init_xavier_std
snake_case = use_auxiliary_loss
snake_case = feature_strides
snake_case = output_auxiliary_logits
snake_case = decoder_layers
super().__init__(**lowercase_ )
@classmethod
def _lowerCamelCase ( cls, lowercase_, **lowercase_ ) -> str:
return cls(
backbone_config=lowercase_, **lowercase_, )
def _lowerCamelCase ( self ) -> Dict[str, any]:
snake_case = copy.deepcopy(self.__dict__ )
snake_case = self.backbone_config.to_dict()
snake_case = self.__class__.model_type
return output
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A , A ) -> float:
if mass < 0:
raise ValueError('The mass of a body cannot be negative' )
return 0.5 * mass * abs(A ) * abs(A )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 1 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def __magic_name__ ( A , A = "cpu" , A = None ) -> None:
snake_case = torch.load(A , map_location=A )
for k, v in tqdm(state_dict.items() ):
if not isinstance(A , torch.Tensor ):
raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' )
snake_case = v.half()
if save_path is None: # overwrite src_path
snake_case = src_path
torch.save(A , A )
if __name__ == "__main__":
fire.Fire(convert)
| 332 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class lowerCamelCase :
def __init__( self, lowercase_, lowercase_, lowercase_ = 0 ) -> None:
snake_case , snake_case = row, column
snake_case = [[default_value for c in range(lowercase_ )] for r in range(lowercase_ )]
def __str__( self ) -> str:
snake_case = F'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
snake_case = 0
for row_vector in self.array:
for obj in row_vector:
snake_case = max(lowercase_, len(str(lowercase_ ) ) )
snake_case = F'''%{max_element_length}s'''
# Make string and return
def single_line(lowercase_ ) -> str:
nonlocal string_format_identifier
snake_case = '['
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(lowercase_ ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
return str(self )
def _lowerCamelCase ( self, lowercase_ ) -> bool:
if not (isinstance(lowercase_, (list, tuple) ) and len(lowercase_ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self, lowercase_ ) -> Any:
assert self.validate_indicies(lowercase_ )
return self.array[loc[0]][loc[1]]
def __setitem__( self, lowercase_, lowercase_ ) -> None:
assert self.validate_indicies(lowercase_ )
snake_case = value
def __add__( self, lowercase_ ) -> Matrix:
assert isinstance(lowercase_, lowercase_ )
assert self.row == another.row and self.column == another.column
# Add
snake_case = Matrix(self.row, self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
snake_case = Matrix(self.row, self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case = -self[r, c]
return result
def __sub__( self, lowercase_ ) -> Matrix:
return self + (-another)
def __mul__( self, lowercase_ ) -> Matrix:
if isinstance(lowercase_, (int, float) ): # Scalar multiplication
snake_case = Matrix(self.row, self.column )
for r in range(self.row ):
for c in range(self.column ):
snake_case = self[r, c] * another
return result
elif isinstance(lowercase_, lowercase_ ): # Matrix multiplication
assert self.column == another.row
snake_case = Matrix(self.row, another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
snake_case = F'''Unsupported type given for another ({type(lowercase_ )})'''
raise TypeError(lowercase_ )
def _lowerCamelCase ( self ) -> Matrix:
snake_case = Matrix(self.column, self.row )
for r in range(self.row ):
for c in range(self.column ):
snake_case = self[r, c]
return result
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Any:
assert isinstance(lowercase_, lowercase_ ) and isinstance(lowercase_, lowercase_ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
snake_case = v.transpose()
snake_case = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def __magic_name__ ( ) -> None:
# a^(-1)
snake_case = Matrix(3 , 3 , 0 )
for i in range(3 ):
snake_case = 1
print(F'''a^(-1) is {ainv}''' )
# u, v
snake_case = Matrix(3 , 1 , 0 )
snake_case , snake_case , snake_case = 1, 2, -3
snake_case = Matrix(3 , 1 , 0 )
snake_case , snake_case , snake_case = 4, -2, 5
print(F'''u is {u}''' )
print(F'''v is {v}''' )
print(F'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(A , A )}''' )
def __magic_name__ ( ) -> None:
import doctest
doctest.testmod()
testa()
| 332 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 1 |
'''simple docstring'''
class lowerCamelCase :
def __init__( self, lowercase_ ) -> None:
snake_case = set_counts
snake_case = max(lowercase_ )
snake_case = len(lowercase_ )
snake_case = [1] * num_sets
snake_case = list(range(lowercase_ ) )
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> bool:
snake_case = self.get_parent(lowercase_ )
snake_case = self.get_parent(lowercase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
snake_case = 0
snake_case = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
snake_case = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
snake_case = 0
snake_case = src_parent
snake_case = self.set_counts[src_parent]
snake_case = max(self.max_set, lowercase_ )
return True
def _lowerCamelCase ( self, lowercase_ ) -> int:
if self.parents[disj_set] == disj_set:
return disj_set
snake_case = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 332 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 1 |
'''simple docstring'''
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny model through reduction of a normal pre-trained model, but keeping the
# full vocab, merges file, and thus also resulting in a larger model due to a large vocab size.
# This gives ~3MB in total for all files.
#
# If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated
#
#
# It will be used then as "stas/tiny-wmt19-en-de"
# Build
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
lowerCAmelCase_ = "facebook/wmt19-en-de"
lowerCAmelCase_ = FSMTTokenizer.from_pretrained(mname)
# get the correct vocab sizes, etc. from the master model
lowerCAmelCase_ = FSMTConfig.from_pretrained(mname)
config.update(
dict(
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
)
lowerCAmelCase_ = FSMTForConditionalGeneration(config)
print(f"num of params {tiny_model.num_parameters()}")
# Test
lowerCAmelCase_ = tokenizer(["Making tiny model"], return_tensors="pt")
lowerCAmelCase_ = tiny_model(**batch)
print("test output:", len(outputs.logits[0]))
# Save
lowerCAmelCase_ = "tiny-wmt19-en-de"
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(f"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-de
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 1 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def __magic_name__ ( A ) -> Union[str, Any]:
snake_case , snake_case = image.size
snake_case , snake_case = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32
snake_case = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] )
snake_case = np.array(A ).astype(np.floataa ) / 255.0
snake_case = image[None].transpose(0 , 3 , 1 , 2 )
snake_case = torch.from_numpy(A )
return 2.0 * image - 1.0
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, lowercase_, lowercase_, lowercase_, ) -> Dict:
super().__init__()
self.register_modules(vqvae=lowercase_, unet=lowercase_, scheduler=lowercase_ )
@torch.no_grad()
def __call__( self, lowercase_ = None, lowercase_ = 1, lowercase_ = 100, lowercase_ = 0.0, lowercase_ = None, lowercase_ = "pil", lowercase_ = True, ) -> Union[Tuple, ImagePipelineOutput]:
if isinstance(lowercase_, PIL.Image.Image ):
snake_case = 1
elif isinstance(lowercase_, torch.Tensor ):
snake_case = image.shape[0]
else:
raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowercase_ )}''' )
if isinstance(lowercase_, PIL.Image.Image ):
snake_case = preprocess(lowercase_ )
snake_case , snake_case = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
snake_case = (batch_size, self.unet.config.in_channels // 2, height, width)
snake_case = next(self.unet.parameters() ).dtype
snake_case = randn_tensor(lowercase_, generator=lowercase_, device=self.device, dtype=lowercase_ )
snake_case = image.to(device=self.device, dtype=lowercase_ )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(lowercase_, device=self.device )
snake_case = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
snake_case = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
snake_case = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
snake_case = {}
if accepts_eta:
snake_case = eta
for t in self.progress_bar(lowercase_ ):
# concat latents and low resolution image in the channel dimension.
snake_case = torch.cat([latents, image], dim=1 )
snake_case = self.scheduler.scale_model_input(lowercase_, lowercase_ )
# predict the noise residual
snake_case = self.unet(lowercase_, lowercase_ ).sample
# compute the previous noisy sample x_t -> x_t-1
snake_case = self.scheduler.step(lowercase_, lowercase_, lowercase_, **lowercase_ ).prev_sample
# decode the image latents with the VQVAE
snake_case = self.vqvae.decode(lowercase_ ).sample
snake_case = torch.clamp(lowercase_, -1.0, 1.0 )
snake_case = image / 2 + 0.5
snake_case = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
snake_case = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 332 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A ) -> int:
snake_case = 0
while num > 0:
digit_sum += num % 1_0
num //= 1_0
return digit_sum
def __magic_name__ ( A = 1_0_0 ) -> int:
snake_case = 1
snake_case = 2
for i in range(2 , max_n + 1 ):
snake_case = pre_numerator
snake_case = 2 * i // 3 if i % 3 == 0 else 1
snake_case = cur_numerator
snake_case = e_cont * pre_numerator + temp
return sum_digits(A )
if __name__ == "__main__":
print(f"{solution() = }")
| 332 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 1 |
'''simple docstring'''
import os
def __magic_name__ ( ) -> Tuple:
with open(os.path.dirname(A ) + '/p022_names.txt' ) as file:
snake_case = str(file.readlines()[0] )
snake_case = names.replace('"' , '' ).split(',' )
names.sort()
snake_case = 0
snake_case = 0
for i, name in enumerate(A ):
for letter in name:
name_score += ord(A ) - 6_4
total_score += (i + 1) * name_score
snake_case = 0
return total_score
if __name__ == "__main__":
print(solution())
| 332 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 1 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A ) -> list:
if any(not isinstance(A , A ) or x < 0 for x in sequence ):
raise TypeError('Sequence must be list of non-negative integers' )
for _ in range(len(A ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(A , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 | 1 |
'''simple docstring'''
import math
def __magic_name__ ( A , A ) -> List[str]:
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.logaa(A )
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError('This should never happen' )
if __name__ == "__main__": # Main function
# Read two numbers from input and typecast them to int using map function.
# Here x is the base and y is the power.
lowerCAmelCase_ = "Enter the base and the power separated by a comma: "
lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(","))
lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(","))
# We find the log of each number, using the function res(), which takes two
# arguments.
lowerCAmelCase_ = res(xa, ya)
lowerCAmelCase_ = res(xa, ya)
# We check for the largest number
if resa > resa:
print("Largest number is", xa, "^", ya)
elif resa > resa:
print("Largest number is", xa, "^", ya)
else:
print("Both are equal")
| 332 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 | 1 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __magic_name__ ( A ) -> Any:
snake_case = filter(lambda A : p.requires_grad , model.parameters() )
snake_case = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_ = logging.getLogger(__name__)
def __magic_name__ ( A , A ) -> Optional[Any]:
if metric == "rouge2":
snake_case = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
snake_case = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
snake_case = '{val_avg_em:.4f}-{step_count}'
else:
raise NotImplementedError(
F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
' function.' )
snake_case = ModelCheckpoint(
dirpath=A , filename=A , monitor=F'''val_{metric}''' , mode='max' , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def __magic_name__ ( A , A ) -> int:
return EarlyStopping(
monitor=F'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=A , verbose=A , )
class lowerCamelCase ( pl.Callback ):
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> List[str]:
snake_case = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(lowercase_ )
@rank_zero_only
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
snake_case = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
snake_case = Path(pl_module.hparams.output_dir )
if type_path == "test":
snake_case = od / 'test_results.txt'
snake_case = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
snake_case = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
snake_case = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=lowercase_ )
generations_file.parent.mkdir(exist_ok=lowercase_ )
with open(lowercase_, 'a+' ) as writer:
for key in sorted(lowercase_ ):
if key in ["log", "progress_bar", "preds"]:
continue
snake_case = metrics[key]
if isinstance(lowercase_, torch.Tensor ):
snake_case = val.item()
snake_case = F'''{key}: {val:.6f}\n'''
writer.write(lowercase_ )
if not save_generations:
return
if "preds" in metrics:
snake_case = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(lowercase_ )
@rank_zero_only
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> str:
try:
snake_case = pl_module.model.model.num_parameters()
except AttributeError:
snake_case = pl_module.model.num_parameters()
snake_case = count_trainable_parameters(lowercase_ )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> int:
save_json(pl_module.metrics, pl_module.metrics_save_path )
return self._write_logs(lowercase_, lowercase_, 'test' )
@rank_zero_only
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> int:
save_json(pl_module.metrics, pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 332 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 | 1 |
'''simple docstring'''
lowerCAmelCase_ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase_ = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase_ = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 | 1 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ['''image_processor''', '''tokenizer''']
snake_case_ = '''FlavaImageProcessor'''
snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self, lowercase_=None, lowercase_=None, **lowercase_ ) -> str:
snake_case = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.', lowercase_, )
snake_case = kwargs.pop('feature_extractor' )
snake_case = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(lowercase_, lowercase_ )
snake_case = self.image_processor
def __call__( self, lowercase_ = None, lowercase_ = None, lowercase_ = True, lowercase_ = False, lowercase_ = False, lowercase_ = None, lowercase_ = 0, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = False, lowercase_ = False, lowercase_ = False, lowercase_ = False, lowercase_ = True, lowercase_ = None, **lowercase_, ) -> List[Any]:
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
snake_case = self.tokenizer(
text=lowercase_, add_special_tokens=lowercase_, padding=lowercase_, truncation=lowercase_, max_length=lowercase_, stride=lowercase_, pad_to_multiple_of=lowercase_, return_token_type_ids=lowercase_, return_attention_mask=lowercase_, return_overflowing_tokens=lowercase_, return_special_tokens_mask=lowercase_, return_offsets_mapping=lowercase_, return_length=lowercase_, verbose=lowercase_, return_tensors=lowercase_, **lowercase_, )
if images is not None:
snake_case = self.image_processor(
lowercase_, return_image_mask=lowercase_, return_codebook_pixels=lowercase_, return_tensors=lowercase_, **lowercase_, )
if text is not None and images is not None:
encoding.update(lowercase_ )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase_ ), tensor_type=lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Tuple:
return self.tokenizer.batch_decode(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Optional[Any]:
return self.tokenizer.decode(*lowercase_, **lowercase_ )
@property
def _lowerCamelCase ( self ) -> Any:
snake_case = self.tokenizer.model_input_names
snake_case = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def _lowerCamelCase ( self ) -> Optional[int]:
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', lowercase_, )
return self.image_processor_class
@property
def _lowerCamelCase ( self ) -> int:
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.', lowercase_, )
return self.image_processor
| 332 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowerCAmelCase_ = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class lowerCamelCase ( unittest.TestCase ):
def __init__( self, lowercase_, lowercase_=7, lowercase_=3, lowercase_=18, lowercase_=30, lowercase_=400, lowercase_=None, lowercase_=True, lowercase_=True, lowercase_=None, ) -> List[Any]:
snake_case = size if size is not None else {'height': 20, 'width': 20}
snake_case = parent
snake_case = batch_size
snake_case = num_channels
snake_case = image_size
snake_case = min_resolution
snake_case = max_resolution
snake_case = size
snake_case = do_normalize
snake_case = do_convert_rgb
snake_case = [512, 1024, 2048, 4096]
snake_case = patch_size if patch_size is not None else {'height': 16, 'width': 16}
def _lowerCamelCase ( self ) -> int:
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCamelCase ( self ) -> Any:
snake_case = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'
snake_case = Image.open(requests.get(lowercase_, stream=lowercase_ ).raw ).convert('RGB' )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = PixaStructImageProcessor if is_vision_available() else None
def _lowerCamelCase ( self ) -> List[str]:
snake_case = PixaStructImageProcessingTester(self )
@property
def _lowerCamelCase ( self ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_, 'do_normalize' ) )
self.assertTrue(hasattr(lowercase_, 'do_convert_rgb' ) )
def _lowerCamelCase ( self ) -> Any:
snake_case = self.image_processor_tester.prepare_dummy_image()
snake_case = self.image_processing_class(**self.image_processor_dict )
snake_case = 2048
snake_case = image_processor(lowercase_, return_tensors='pt', max_patches=lowercase_ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_606 ), atol=1E-3, rtol=1E-3 ) )
def _lowerCamelCase ( self ) -> int:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_, Image.Image )
# Test not batched input
snake_case = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case = image_processor(
image_inputs[0], return_tensors='pt', max_patches=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
snake_case = image_processor(
lowercase_, return_tensors='pt', max_patches=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
def _lowerCamelCase ( self ) -> Any:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_, Image.Image )
# Test not batched input
snake_case = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
snake_case = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowercase_ ):
snake_case = image_processor(
image_inputs[0], return_tensors='pt', max_patches=lowercase_ ).flattened_patches
snake_case = 'Hello'
snake_case = image_processor(
image_inputs[0], return_tensors='pt', max_patches=lowercase_, header_text=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
snake_case = image_processor(
lowercase_, return_tensors='pt', max_patches=lowercase_, header_text=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
def _lowerCamelCase ( self ) -> int:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_, numpify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_, np.ndarray )
snake_case = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case = image_processor(
image_inputs[0], return_tensors='pt', max_patches=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
snake_case = image_processor(
lowercase_, return_tensors='pt', max_patches=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
def _lowerCamelCase ( self ) -> Any:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_, torchify=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_, torch.Tensor )
# Test not batched input
snake_case = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case = image_processor(
image_inputs[0], return_tensors='pt', max_patches=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
snake_case = image_processor(
lowercase_, return_tensors='pt', max_patches=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ):
snake_case_ = PixaStructImageProcessor if is_vision_available() else None
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = PixaStructImageProcessingTester(self, num_channels=4 )
snake_case = 3
@property
def _lowerCamelCase ( self ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCamelCase ( self ) -> List[str]:
snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_, 'do_normalize' ) )
self.assertTrue(hasattr(lowercase_, 'do_convert_rgb' ) )
def _lowerCamelCase ( self ) -> Any:
# Initialize image_processor
snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase_ )
for image in image_inputs:
self.assertIsInstance(lowercase_, Image.Image )
# Test not batched input
snake_case = (
(self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width'])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case = image_processor(
image_inputs[0], return_tensors='pt', max_patches=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (1, max_patch, expected_hidden_dim), )
# Test batched
snake_case = image_processor(
lowercase_, return_tensors='pt', max_patches=lowercase_ ).flattened_patches
self.assertEqual(
encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
| 332 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 1 |
'''simple docstring'''
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1_3_3_7 , num_examples=4_2 )} ),
SplitDict({'train': SplitInfo()} ),
] , )
def __magic_name__ ( A ) -> Optional[int]:
snake_case = split_dict._to_yaml_list()
assert len(A ) == len(A )
snake_case = SplitDict._from_yaml_list(A )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
snake_case = None
# the split name of split_dict takes over the name of the split info object
snake_case = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=A ), SplitInfo(dataset_name='my_dataset' )] )
def __magic_name__ ( A ) -> int:
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
snake_case = asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 332 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''torch''', '''scipy''']
def __init__( self, *lowercase_, **lowercase_ ) -> Any:
requires_backends(self, ['torch', 'scipy'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]:
requires_backends(cls, ['torch', 'scipy'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]:
requires_backends(cls, ['torch', 'scipy'] )
| 332 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 | 1 |
'''simple docstring'''
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
lowerCAmelCase_ = Lock()
def __magic_name__ ( A , A , A , A , A , A , A ) -> Any:
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 1_0 ):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(A )
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
snake_case = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
snake_case = min(A , A )
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(A )
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
snake_case = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
snake_case = max(A , A )
# after all swaps are performed, send the values back to main
result_pipe[1].send(A )
def __magic_name__ ( A ) -> str:
snake_case = []
snake_case = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe() )
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) )
snake_case = temp_rs
snake_case = temp_rr
for i in range(1 , len(A ) - 1 ):
snake_case = Pipe()
snake_case = Pipe()
process_array_.append(
Process(
target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) )
snake_case = temp_rs
snake_case = temp_rr
process_array_.append(
Process(
target=A , args=(
len(A ) - 1,
arr[len(A ) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(A ) - 1],
) , ) )
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(A ) ):
snake_case = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def __magic_name__ ( ) -> Tuple:
snake_case = list(range(1_0 , 0 , -1 ) )
print('Initial List' )
print(*A )
snake_case = odd_even_transposition(A )
print('Sorted List\n' )
print(*A )
if __name__ == "__main__":
main()
| 332 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 1 |
'''simple docstring'''
import warnings
warnings.warn(
"memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: "
"`from accelerate import find_executable_batch_size` to avoid this warning.",
FutureWarning,
)
| 332 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
lowerCAmelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["SpeechEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxSpeechEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 1 |
'''simple docstring'''
from torch import nn
def __magic_name__ ( A ) -> int:
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F'''Unsupported activation function: {act_fn}''' )
| 332 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 1 |
'''simple docstring'''
import math
def __magic_name__ ( A , A ) -> int:
snake_case = len(A )
snake_case = int(math.floor(math.sqrt(A ) ) )
snake_case = 0
while arr[min(A , A ) - 1] < x:
snake_case = step
step += int(math.floor(math.sqrt(A ) ) )
if prev >= n:
return -1
while arr[prev] < x:
snake_case = prev + 1
if prev == min(A , A ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip()
lowerCAmelCase_ = [int(item) for item in user_input.split(",")]
lowerCAmelCase_ = int(input("Enter the number to be searched:\n"))
lowerCAmelCase_ = jump_search(arr, x)
if res == -1:
print("Number not found!")
else:
print(f"Number {x} is at index {res}")
| 332 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
lowerCAmelCase_ = TypeVar("T")
class lowerCamelCase ( Generic[T] ):
def __init__( self, lowercase_ ) -> Optional[int]:
snake_case = data
snake_case = None
def __str__( self ) -> str:
return F'''{self.data}'''
class lowerCamelCase ( Generic[T] ):
def __init__( self ) -> None:
snake_case = None
def __iter__( self ) -> Iterator[T]:
snake_case = self.top
while node:
yield node.data
snake_case = node.next
def __str__( self ) -> str:
return "->".join([str(lowercase_ ) for item in self] )
def __len__( self ) -> int:
return len(tuple(iter(self ) ) )
def _lowerCamelCase ( self ) -> bool:
return self.top is None
def _lowerCamelCase ( self, lowercase_ ) -> None:
snake_case = Node(lowercase_ )
if not self.is_empty():
snake_case = self.top
snake_case = node
def _lowerCamelCase ( self ) -> T:
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top, lowercase_ )
snake_case = self.top
snake_case = self.top.next
return pop_node.data
def _lowerCamelCase ( self ) -> T:
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def _lowerCamelCase ( self ) -> None:
snake_case = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 332 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 1 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> None:
create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] )
def __magic_name__ ( A , A , A , A , ) -> None:
if index == len(A ):
print(A )
return
for i in range(len(A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
snake_case = True
create_state_space_tree(A , A , index + 1 , A )
current_sequence.pop()
snake_case = False
lowerCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowerCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 332 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
try:
snake_case = int(A )
except (TypeError, ValueError):
raise TypeError('Parameter n must be int or castable to int.' )
if n <= 0:
raise ValueError('Parameter n must be greater than or equal to one.' )
snake_case = 1
snake_case = 2
while i * i <= n:
while n % i == 0:
snake_case = i
n //= i
i += 1
if n > 1:
snake_case = n
return int(A )
if __name__ == "__main__":
print(f"{solution() = }")
| 332 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 1 |
'''simple docstring'''
from typing import Any
def __magic_name__ ( A ) -> list[Any]:
if not input_list:
return []
snake_case = [input_list.count(A ) for value in input_list]
snake_case = max(A ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(A ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 332 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 1 |
'''simple docstring'''
def __magic_name__ ( A , A , A , A ) -> Any:
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
snake_case = mf_knapsack(i - 1 , A , A , A )
else:
snake_case = max(
mf_knapsack(i - 1 , A , A , A ) , mf_knapsack(i - 1 , A , A , j - wt[i - 1] ) + val[i - 1] , )
snake_case = val
return f[i][j]
def __magic_name__ ( A , A , A , A ) -> Tuple:
snake_case = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
snake_case = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
snake_case = dp[i - 1][w_]
return dp[n][w_], dp
def __magic_name__ ( A , A , A ) -> List[Any]:
if not (isinstance(A , (list, tuple) ) and isinstance(A , (list, tuple) )):
raise ValueError(
'Both the weights and values vectors must be either lists or tuples' )
snake_case = len(A )
if num_items != len(A ):
snake_case = (
'The number of weights must be the same as the number of values.\n'
F'''But got {num_items} weights and {len(A )} values'''
)
raise ValueError(A )
for i in range(A ):
if not isinstance(wt[i] , A ):
snake_case = (
'All weights must be integers but got weight of '
F'''type {type(wt[i] )} at index {i}'''
)
raise TypeError(A )
snake_case , snake_case = knapsack(A , A , A , A )
snake_case = set()
_construct_solution(A , A , A , A , A )
return optimal_val, example_optional_set
def __magic_name__ ( A , A , A , A , A ) -> Optional[int]:
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(A , A , i - 1 , A , A )
else:
optimal_set.add(A )
_construct_solution(A , A , i - 1 , j - wt[i - 1] , A )
if __name__ == "__main__":
lowerCAmelCase_ = [3, 2, 4, 4]
lowerCAmelCase_ = [4, 3, 2, 3]
lowerCAmelCase_ = 4
lowerCAmelCase_ = 6
lowerCAmelCase_ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
lowerCAmelCase_ , lowerCAmelCase_ = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
lowerCAmelCase_ , lowerCAmelCase_ = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 332 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 1 |
'''simple docstring'''
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Any:
snake_case = mock.Mock()
snake_case = 500
snake_case = {}
snake_case = HTTPError
snake_case = {}
# Download this model to make sure it's in the cache.
snake_case = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request', return_value=__a ) as mock_head:
snake_case = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def _lowerCamelCase ( self ) -> List[str]:
snake_case = mock.Mock()
snake_case = 500
snake_case = {}
snake_case = HTTPError
snake_case = {}
# Download this model to make sure it's in the cache.
snake_case = GPTaTokenizerFast.from_pretrained('gpt2' )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('requests.Session.request', return_value=__a ) as mock_head:
snake_case = GPTaTokenizerFast.from_pretrained('gpt2' )
# This check we did call the fake head request
mock_head.assert_called()
def _lowerCamelCase ( self ) -> str:
# This test is for deprecated behavior and can be removed in v5
try:
snake_case = tempfile.mktemp()
with open(__a, 'wb' ) as f:
http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model', __a )
snake_case = AlbertTokenizer.from_pretrained(__a )
finally:
os.remove(__a )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile('tokenizer.json' ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open('tokenizer.json', 'wb' ) as f:
http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json', __a )
snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size, 1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove('tokenizer.json' )
def _lowerCamelCase ( self ) -> Any:
snake_case = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' )
@is_staging_test
class lowerCamelCase ( unittest.TestCase ):
snake_case_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou''']
@classmethod
def _lowerCamelCase ( cls ) -> Dict:
snake_case = TOKEN
HfFolder.save_token(__a )
@classmethod
def _lowerCamelCase ( cls ) -> Dict:
try:
delete_repo(token=cls._token, repo_id='test-tokenizer' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='valid_org/test-tokenizer-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id='test-dynamic-tokenizer' )
except HTTPError:
pass
def _lowerCamelCase ( self ) -> Tuple:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__a, 'vocab.txt' )
with open(__a, 'w', encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
snake_case = BertTokenizer(__a )
tokenizer.push_to_hub('test-tokenizer', use_auth_token=self._token )
snake_case = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
# Reset repo
delete_repo(token=self._token, repo_id='test-tokenizer' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__a, repo_id='test-tokenizer', push_to_hub=__a, use_auth_token=self._token )
snake_case = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
def _lowerCamelCase ( self ) -> List[str]:
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__a, 'vocab.txt' )
with open(__a, 'w', encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
snake_case = BertTokenizer(__a )
tokenizer.push_to_hub('valid_org/test-tokenizer-org', use_auth_token=self._token )
snake_case = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
# Reset repo
delete_repo(token=self._token, repo_id='valid_org/test-tokenizer-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
__a, repo_id='valid_org/test-tokenizer-org', push_to_hub=__a, use_auth_token=self._token )
snake_case = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
@require_tokenizers
def _lowerCamelCase ( self ) -> Any:
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__a, 'vocab.txt' )
with open(__a, 'w', encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
snake_case = CustomTokenizer(__a )
# No fast custom tokenizer
tokenizer.push_to_hub('test-dynamic-tokenizer', use_auth_token=self._token )
snake_case = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=__a )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__, 'CustomTokenizer' )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = os.path.join(__a, 'vocab.txt' )
with open(__a, 'w', encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) )
snake_case = BertTokenizerFast.from_pretrained(__a )
bert_tokenizer.save_pretrained(__a )
snake_case = CustomTokenizerFast.from_pretrained(__a )
tokenizer.push_to_hub('test-dynamic-tokenizer', use_auth_token=self._token )
snake_case = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=__a )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__, 'CustomTokenizerFast' )
snake_case = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''', use_fast=__a, trust_remote_code=__a )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__, 'CustomTokenizer' )
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = Trie()
trie.add('Hello 友達' )
self.assertEqual(trie.data, {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} )
trie.add('Hello' )
trie.data
self.assertEqual(trie.data, {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} )
def _lowerCamelCase ( self ) -> List[str]:
snake_case = Trie()
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ), ['[CLS] This is a extra_id_100'] )
trie.add('[CLS]' )
trie.add('extra_id_1' )
trie.add('extra_id_100' )
self.assertEqual(trie.split('[CLS] This is a extra_id_100' ), ['[CLS]', ' This is a ', 'extra_id_100'] )
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = Trie()
trie.add('A' )
self.assertEqual(trie.split('ABC' ), ['A', 'BC'] )
self.assertEqual(trie.split('BCA' ), ['BC', 'A'] )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = Trie()
trie.add('TOKEN]' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ), ['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = Trie()
trie.add('A' )
trie.add('P' )
trie.add('[SPECIAL_TOKEN]' )
self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ), ['This is something ', '[SPECIAL_TOKEN]'] )
def _lowerCamelCase ( self ) -> Union[str, Any]:
snake_case = Trie()
trie.add('AB' )
trie.add('B' )
trie.add('C' )
self.assertEqual(trie.split('ABC' ), ['AB', 'C'] )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = Trie()
trie.add('ABC' )
trie.add('B' )
trie.add('CD' )
self.assertEqual(trie.split('ABCD' ), ['ABC', 'D'] )
def _lowerCamelCase ( self ) -> Optional[int]:
snake_case = Trie()
snake_case = trie.cut_text('ABC', [0, 0, 2, 1, 2, 3] )
self.assertEqual(__a, ['AB', 'C'] )
| 350 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A , A , A ) -> int | float:
if len(A ) == 0:
raise ValueError('find_max() arg is an empty sequence' )
if (
left >= len(A )
or left < -len(A )
or right >= len(A )
or right < -len(A )
):
raise IndexError('list index out of range' )
if left == right:
return nums[left]
snake_case = (left + right) >> 1 # the middle
snake_case = find_max(A , A , A ) # find max in range[left, mid]
snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 332 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
lowerCAmelCase_ = {
"albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json",
"albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json",
"albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json",
"albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json",
"albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json",
"albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json",
"albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json",
"albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json",
}
class lowerCamelCase ( A__ ):
snake_case_ = "albert"
def __init__( self, lowercase_=30000, lowercase_=128, lowercase_=4096, lowercase_=12, lowercase_=1, lowercase_=64, lowercase_=16384, lowercase_=1, lowercase_="gelu_new", lowercase_=0, lowercase_=0, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=0.1, lowercase_="absolute", lowercase_=0, lowercase_=2, lowercase_=3, **lowercase_, ) -> str:
super().__init__(pad_token_id=__A, bos_token_id=__A, eos_token_id=__A, **__A )
snake_case = vocab_size
snake_case = embedding_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_hidden_groups
snake_case = num_attention_heads
snake_case = inner_group_num
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = classifier_dropout_prob
snake_case = position_embedding_type
class lowerCamelCase ( A__ ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
snake_case = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 351 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ):
@register_to_config
def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str:
super().__init__()
# pass init params to Encoder
snake_case = Encoder(
in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, )
snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ )
snake_case = nn.Convad(lowercase_, lowercase_, 1 )
# pass init params to Decoder
snake_case = Decoder(
in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput:
snake_case = self.encoder(lowercase_ )
snake_case = self.quant_conv(lowercase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowercase_ )
@apply_forward_hook
def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
# also go through quantization layer
if not force_not_quantize:
snake_case , snake_case , snake_case = self.quantize(lowercase_ )
else:
snake_case = h
snake_case = self.post_quant_conv(lowercase_ )
snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]:
snake_case = sample
snake_case = self.encode(lowercase_ ).latents
snake_case = self.decode(lowercase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowercase_ )
| 332 | 0 |
'''simple docstring'''
def __magic_name__ ( A ) -> bool:
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("Program to check whether a number is a Perfect number or not...")
lowerCAmelCase_ = int(input("Enter number: ").strip())
print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
| 352 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the largest integer less than b_estimate
snake_case = 42
# the triangle number corresponding to b_floor
snake_case = 42
# the triangle number corresponding to b_ceil
snake_case = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 332 | 0 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowerCAmelCase_ = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"text-classification",
"language-modeling",
"summarization",
"token-classification",
"question-answering",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase_ = logging.getLogger()
def __magic_name__ ( ) -> Any:
snake_case = argparse.ArgumentParser()
parser.add_argument('-f' )
snake_case = parser.parse_args()
return args.f
def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Optional[Any]:
snake_case = os.path.join(__lowerCAmelCase , F'''{split}_results.json''' )
if os.path.exists(__lowerCAmelCase ):
with open(__lowerCAmelCase , 'r' ) as f:
return json.load(__lowerCAmelCase )
raise ValueError(F'''can\'t find {path}''' )
lowerCAmelCase_ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class lowerCamelCase ( A__ ):
def _lowerCamelCase ( self ) -> Dict:
snake_case = self.get_auto_remove_tmp_dir()
snake_case = F'''
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
'''.split()
with patch.object(__snake_case, 'argv', __snake_case ):
run_flax_glue.main()
snake_case = get_results(__snake_case )
self.assertGreaterEqual(result['eval_accuracy'], 0.75 )
@slow
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = self.get_auto_remove_tmp_dir()
snake_case = F'''
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
'''.split()
with patch.object(__snake_case, 'argv', __snake_case ):
run_clm_flax.main()
snake_case = get_results(__snake_case )
self.assertLess(result['eval_perplexity'], 100 )
@slow
def _lowerCamelCase ( self ) -> Tuple:
snake_case = self.get_auto_remove_tmp_dir()
snake_case = F'''
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
'''.split()
with patch.object(__snake_case, 'argv', __snake_case ):
run_summarization_flax.main()
snake_case = get_results(__snake_case, split='test' )
self.assertGreaterEqual(result['test_rouge1'], 10 )
self.assertGreaterEqual(result['test_rouge2'], 2 )
self.assertGreaterEqual(result['test_rougeL'], 7 )
self.assertGreaterEqual(result['test_rougeLsum'], 7 )
@slow
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = self.get_auto_remove_tmp_dir()
snake_case = F'''
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
'''.split()
with patch.object(__snake_case, 'argv', __snake_case ):
run_mlm_flax.main()
snake_case = get_results(__snake_case )
self.assertLess(result['eval_perplexity'], 42 )
@slow
def _lowerCamelCase ( self ) -> Any:
snake_case = self.get_auto_remove_tmp_dir()
snake_case = F'''
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
'''.split()
with patch.object(__snake_case, 'argv', __snake_case ):
run_ta_mlm_flax.main()
snake_case = get_results(__snake_case )
self.assertGreaterEqual(result['eval_accuracy'], 0.42 )
@slow
def _lowerCamelCase ( self ) -> Union[str, Any]:
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
snake_case = 7 if get_gpu_count() > 1 else 2
snake_case = self.get_auto_remove_tmp_dir()
snake_case = F'''
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
'''.split()
with patch.object(__snake_case, 'argv', __snake_case ):
run_flax_ner.main()
snake_case = get_results(__snake_case )
self.assertGreaterEqual(result['eval_accuracy'], 0.75 )
self.assertGreaterEqual(result['eval_f1'], 0.3 )
@slow
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = self.get_auto_remove_tmp_dir()
snake_case = F'''
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
'''.split()
with patch.object(__snake_case, 'argv', __snake_case ):
run_qa.main()
snake_case = get_results(__snake_case )
self.assertGreaterEqual(result['eval_f1'], 30 )
self.assertGreaterEqual(result['eval_exact'], 30 )
| 353 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase_ = {
"configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"],
"processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["VisionTextDualEncoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"]
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 332 | 0 |
'''simple docstring'''
import heapq
def __magic_name__ ( A ) -> set[int]:
snake_case = []
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowerCamelCase__ , [-1 * len(lowerCamelCase__ ), (key, value)] )
# chosen_vertices = set of chosen vertices
snake_case = set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
snake_case = heapq.heappop(lowerCamelCase__ )[1][0]
chosen_vertices.add(lowerCamelCase__ )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
snake_case = elem[1][1].index(lowerCamelCase__ )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowerCamelCase__ )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
| 354 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 332 | 0 |
from __future__ import annotations
import math
def __magic_name__ ( A ) -> Union[str, Any]:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCAmelCase_ = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def __magic_name__ ( A ) -> List[str]:
if not isinstance(__a , __a ):
raise ValueError('n must be an integer' )
if n <= 0:
raise ValueError('n must be >= 0' )
snake_case = []
for num in range(len(__a ) ):
snake_case = 0
while 2 * i * i <= odd_composites[num]:
snake_case = odd_composites[num] - 2 * i * i
if is_prime(__a ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(__a ) == n:
return list_nums
return []
def __magic_name__ ( ) -> Any:
return compute_nums(1 )[0]
if __name__ == "__main__":
print(f"{solution() = }")
| 355 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def __magic_name__ ( A , A , A ) -> Any:
# Initialise PyTorch model
snake_case = BertConfig.from_json_file(A )
print(F'''Building PyTorch model from configuration: {config}''' )
snake_case = BertForPreTraining(A )
# Load weights from tf checkpoint
load_tf_weights_in_bert(A , A , A )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , A )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 332 | 0 |
'''simple docstring'''
def __magic_name__ ( A , A ) -> str:
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
snake_case = str(bin(__snake_case ) )[2:] # remove the leading "0b"
snake_case = str(bin(__snake_case ) )[2:] # remove the leading "0b"
snake_case = max(len(__snake_case ) , len(__snake_case ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(__snake_case ) , b_binary.zfill(__snake_case ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356 |
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( A ) -> list:
if len(A ) == 0:
return []
snake_case , snake_case = min(A ), max(A )
snake_case = int(max_value - min_value ) + 1
snake_case = [[] for _ in range(A )]
for i in my_list:
buckets[int(i - min_value )].append(A )
return [v for bucket in buckets for v in sorted(A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
| 332 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def __magic_name__ ( A , A ) -> float:
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__A , __A ) ) )
def __magic_name__ ( A , A ) -> list[list[list[float] | float]]:
if dataset.ndim != value_array.ndim:
snake_case = (
'Wrong input data\'s dimensions... '
F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(__A )
try:
if dataset.shape[1] != value_array.shape[1]:
snake_case = (
'Wrong input data\'s shape... '
F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(__A )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('Wrong shape' )
if dataset.dtype != value_array.dtype:
snake_case = (
'Input data have different datatype... '
F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(__A )
snake_case = []
for value in value_array:
snake_case = euclidean(__A , dataset[0] )
snake_case = dataset[0].tolist()
for dataset_value in dataset[1:]:
snake_case = euclidean(__A , __A )
if dist > temp_dist:
snake_case = temp_dist
snake_case = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def __magic_name__ ( A , A ) -> float:
return np.dot(__A , __A ) / (norm(__A ) * norm(__A ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 332 | 0 |
'''simple docstring'''
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def __magic_name__ ( A , A , A , A , A=True , A="pt" ) -> Any:
snake_case = {"""add_prefix_space""": True} if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and not line.startswith(' ' ) else {}
snake_case = padding_side
return tokenizer(
[line] , max_length=lowerCamelCase_ , padding='max_length' if pad_to_max_length else None , truncation=lowerCamelCase_ , return_tensors=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , **lowerCamelCase_ , )
def __magic_name__ ( A , A , A=None , ) -> str:
snake_case = input_ids.ne(lowerCamelCase_ ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class lowerCamelCase ( lowercase__ ):
def __init__( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_="train", lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="", ) -> int:
super().__init__()
snake_case = Path(_UpperCamelCase ).joinpath(type_path + '.source' )
snake_case = Path(_UpperCamelCase ).joinpath(type_path + '.target' )
snake_case = self.get_char_lens(self.src_file )
snake_case = max_source_length
snake_case = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
snake_case = tokenizer
snake_case = prefix
if n_obs is not None:
snake_case = self.src_lens[:n_obs]
snake_case = src_lang
snake_case = tgt_lang
def __len__( self ) -> Optional[Any]:
return len(self.src_lens )
def __getitem__( self, lowercase_ ) -> List[str]:
snake_case = index + 1 # linecache starts at 1
snake_case = self.prefix + linecache.getline(str(self.src_file ), _UpperCamelCase ).rstrip('\n' )
snake_case = linecache.getline(str(self.tgt_file ), _UpperCamelCase ).rstrip('\n' )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer, _UpperCamelCase ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
snake_case = (
self.tokenizer.question_encoder if isinstance(self.tokenizer, _UpperCamelCase ) else self.tokenizer
)
snake_case = self.tokenizer.generator if isinstance(self.tokenizer, _UpperCamelCase ) else self.tokenizer
snake_case = encode_line(_UpperCamelCase, _UpperCamelCase, self.max_source_length, 'right' )
snake_case = encode_line(_UpperCamelCase, _UpperCamelCase, self.max_target_length, 'right' )
snake_case = source_inputs["""input_ids"""].squeeze()
snake_case = target_inputs["""input_ids"""].squeeze()
snake_case = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def _lowerCamelCase ( lowercase_ ) -> Optional[Any]:
return [len(_UpperCamelCase ) for x in Path(_UpperCamelCase ).open().readlines()]
def _lowerCamelCase ( self, lowercase_ ) -> int:
snake_case = torch.stack([x['input_ids'] for x in batch] )
snake_case = torch.stack([x['attention_mask'] for x in batch] )
snake_case = torch.stack([x['decoder_input_ids'] for x in batch] )
snake_case = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer, _UpperCamelCase )
else self.tokenizer.pad_token_id
)
snake_case = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer, _UpperCamelCase )
else self.tokenizer.pad_token_id
)
snake_case = trim_batch(_UpperCamelCase, _UpperCamelCase )
snake_case = trim_batch(_UpperCamelCase, _UpperCamelCase, attention_mask=_UpperCamelCase )
snake_case = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
lowerCAmelCase_ = getLogger(__name__)
def __magic_name__ ( A ) -> Tuple:
return list(itertools.chain.from_iterable(lowerCamelCase_ ) )
def __magic_name__ ( A ) -> str:
snake_case = get_git_info()
save_json(lowerCamelCase_ , os.path.join(lowerCamelCase_ , 'git_log.json' ) )
def __magic_name__ ( A , A , A=4 , **A ) -> int:
with open(lowerCamelCase_ , 'w' ) as f:
json.dump(lowerCamelCase_ , lowerCamelCase_ , indent=lowerCamelCase_ , **lowerCamelCase_ )
def __magic_name__ ( A ) -> Dict:
with open(lowerCamelCase_ ) as f:
return json.load(lowerCamelCase_ )
def __magic_name__ ( ) -> List[Any]:
snake_case = git.Repo(search_parent_directories=lowerCamelCase_ )
snake_case = {
"""repo_id""": str(lowerCamelCase_ ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
"""hostname""": str(socket.gethostname() ),
}
return repo_infos
def __magic_name__ ( A , A ) -> str:
return list(map(lowerCamelCase_ , lowerCamelCase_ ) )
def __magic_name__ ( A , A ) -> Tuple:
with open(lowerCamelCase_ , 'wb' ) as f:
return pickle.dump(lowerCamelCase_ , lowerCamelCase_ )
def __magic_name__ ( A ) -> str:
def remove_articles(A ):
return re.sub(R'\b(a|an|the)\b' , ' ' , lowerCamelCase_ )
def white_space_fix(A ):
return " ".join(text.split() )
def remove_punc(A ):
snake_case = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(A ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) )
def __magic_name__ ( A , A ) -> int:
snake_case = normalize_answer(lowerCamelCase_ ).split()
snake_case = normalize_answer(lowerCamelCase_ ).split()
snake_case = Counter(lowerCamelCase_ ) & Counter(lowerCamelCase_ )
snake_case = sum(common.values() )
if num_same == 0:
return 0
snake_case = 1.0 * num_same / len(lowerCamelCase_ )
snake_case = 1.0 * num_same / len(lowerCamelCase_ )
snake_case = (2 * precision * recall) / (precision + recall)
return fa
def __magic_name__ ( A , A ) -> Optional[int]:
return normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ )
def __magic_name__ ( A , A ) -> Any:
assert len(lowerCamelCase_ ) == len(lowerCamelCase_ )
snake_case = 0
for hypo, pred in zip(lowerCamelCase_ , lowerCamelCase_ ):
em += exact_match_score(lowerCamelCase_ , lowerCamelCase_ )
if len(lowerCamelCase_ ) > 0:
em /= len(lowerCamelCase_ )
return {"em": em}
def __magic_name__ ( A ) -> List[Any]:
return model_prefix.startswith('rag' )
def __magic_name__ ( A , A , A ) -> Optional[Any]:
snake_case = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
snake_case = """dropout_rate"""
for p in extra_params:
if getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
if not hasattr(lowerCamelCase_ , lowerCamelCase_ ) and not hasattr(lowerCamelCase_ , equivalent_param[p] ):
logger.info('config doesn\'t have a `{}` attribute'.format(lowerCamelCase_ ) )
delattr(lowerCamelCase_ , lowerCamelCase_ )
continue
snake_case = p if hasattr(lowerCamelCase_ , lowerCamelCase_ ) else equivalent_param[p]
setattr(lowerCamelCase_ , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) )
delattr(lowerCamelCase_ , lowerCamelCase_ )
return hparams, config
| 358 |
'''simple docstring'''
import pytest
lowerCAmelCase_ = "__dummy_dataset1__"
lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def __magic_name__ ( ) -> List[Any]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __magic_name__ ( ) -> Union[str, Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __magic_name__ ( A , A , A ) -> Optional[int]:
snake_case = dataset_loading_script_name
snake_case = tmp_path / 'datasets' / script_name
script_dir.mkdir(parents=A )
snake_case = script_dir / F'''{script_name}.py'''
with open(A , 'w' ) as f:
f.write(A )
return str(A )
| 332 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.