code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( A_ ): snake_case_ = ["input_features", "attention_mask"] def __init__( self, lowercase_=80, lowercase_=16000, lowercase_=80, lowercase_=0.0, lowercase_=True, lowercase_=True, lowercase_=True, **lowercase_, ) -> int: super().__init__(feature_size=snake_case__, sampling_rate=snake_case__, padding_value=snake_case__, **snake_case__ ) snake_case = num_mel_bins snake_case = do_ceptral_normalize snake_case = normalize_means snake_case = normalize_vars snake_case = True def _lowerCamelCase ( self, lowercase_, ) -> np.ndarray: snake_case = waveform * (2**15) # Kaldi compliance: 16-bit signed integers snake_case = torch.from_numpy(snake_case__ ).unsqueeze(0 ) snake_case = ta_kaldi.fbank(snake_case__, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _lowerCamelCase ( lowercase_, lowercase_, lowercase_ = True, lowercase_ = True, lowercase_ = 0.0, ) -> np.ndarray: if normalize_means: snake_case = x[:input_length].mean(axis=0 ) snake_case = np.subtract(snake_case__, snake_case__ ) if normalize_vars: snake_case = x[:input_length].std(axis=0 ) snake_case = np.divide(snake_case__, snake_case__ ) if input_length < x.shape[0]: snake_case = padding_value # make sure array is in float32 snake_case = x.astype(np.floataa ) return x def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[np.ndarray]: snake_case = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(snake_case__, snake_case__, self.normalize_means, self.normalize_vars, self.padding_value ) for x, n in zip(snake_case__, snake_case__ ) ] def __call__( self, lowercase_, lowercase_ = False, lowercase_ = None, lowercase_ = False, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, **lowercase_, ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) snake_case = isinstance(snake_case__, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) snake_case = is_batched_numpy or ( isinstance(snake_case__, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: snake_case = [np.asarray(snake_case__, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case__, np.ndarray ): snake_case = np.asarray(snake_case__, dtype=np.floataa ) elif isinstance(snake_case__, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case = [raw_speech] # extract fbank features snake_case = [self._extract_fbank_features(snake_case__ ) for waveform in raw_speech] # convert into correct format for padding snake_case = BatchFeature({'input_features': features} ) snake_case = self.pad( snake_case__, padding=snake_case__, max_length=snake_case__, truncation=snake_case__, pad_to_multiple_of=snake_case__, return_attention_mask=snake_case__, **snake_case__, ) # make sure list is in array format snake_case = padded_inputs.get('input_features' ) if isinstance(input_features[0], snake_case__ ): snake_case = [np.asarray(snake_case__, dtype=np.floataa ) for feature in input_features] snake_case = padded_inputs.get('attention_mask' ) if attention_mask is not None: snake_case = [np.asarray(snake_case__, dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: snake_case = ( np.array(snake_case__, dtype=np.intaa ) if self._get_padding_strategies(snake_case__, max_length=snake_case__ ) is not PaddingStrategy.DO_NOT_PAD else None ) snake_case = self.normalize( padded_inputs['input_features'], attention_mask=snake_case__ ) if return_tensors is not None: snake_case = padded_inputs.convert_to_tensors(snake_case__ ) return padded_inputs
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): snake_case_ = MvpTokenizer snake_case_ = MvpTokenizerFast snake_case_ = True snake_case_ = filter_roberta_detectors def _lowerCamelCase ( self ) -> str: super().setUp() snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] snake_case = dict(zip(_a, range(len(_a ) ) ) ) snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case = {'unk_token': '<unk>'} snake_case = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) snake_case = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def _lowerCamelCase ( self, **lowercase_ ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **_a ) def _lowerCamelCase ( self, **lowercase_ ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **_a ) def _lowerCamelCase ( self, lowercase_ ) -> Any: return "lower newer", "lower newer" @cached_property def _lowerCamelCase ( self ) -> List[Any]: return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def _lowerCamelCase ( self ) -> List[str]: return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def _lowerCamelCase ( self ) -> List[Any]: snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case = tokenizer(_a, max_length=len(_a ), padding=_a, return_tensors='pt' ) self.assertIsInstance(_a, _a ) self.assertEqual((2, 9), batch.input_ids.shape ) self.assertEqual((2, 9), batch.attention_mask.shape ) snake_case = batch.input_ids.tolist()[0] self.assertListEqual(_a, _a ) # Test that special tokens are reset @require_torch def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case = tokenizer(_a, padding=_a, return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids', _a ) self.assertIn('attention_mask', _a ) self.assertNotIn('labels', _a ) self.assertNotIn('decoder_attention_mask', _a ) @require_torch def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case = tokenizer(text_target=_a, max_length=32, padding='max_length', return_tensors='pt' ) self.assertEqual(32, targets['input_ids'].shape[1] ) @require_torch def _lowerCamelCase ( self ) -> List[Any]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'], padding=_a, truncation=_a, return_tensors='pt' ) self.assertIsInstance(_a, _a ) self.assertEqual(batch.input_ids.shape, (2, 1024) ) @require_torch def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = ['A long paragraph for summarization.'] snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case = tokenizer(_a, text_target=_a, return_tensors='pt' ) snake_case = inputs['input_ids'] snake_case = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _lowerCamelCase ( self ) -> Dict: pass def _lowerCamelCase ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case = self.rust_tokenizer_class.from_pretrained(_a, **_a ) snake_case = self.tokenizer_class.from_pretrained(_a, **_a ) snake_case = 'A, <mask> AllenNLP sentence.' snake_case = tokenizer_r.encode_plus(_a, add_special_tokens=_a, return_token_type_ids=_a ) snake_case = tokenizer_p.encode_plus(_a, add_special_tokens=_a, return_token_type_ids=_a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _a, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _a, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example lowerCAmelCase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowerCAmelCase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __magic_name__ ( A ) -> Any: snake_case = [] for i in range(len(lowercase__ ) ): snake_case = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours snake_case = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(lowercase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(lowercase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(lowercase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. snake_case = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(lowercase__ ) return next_generation def __magic_name__ ( A , A ) -> Union[str, Any]: snake_case = [] for _ in range(lowercase__ ): # Create output image snake_case = Image.new('RGB' , (len(cells[0] ), len(lowercase__ )) ) snake_case = img.load() # Save cells to image for x in range(len(lowercase__ ) ): for y in range(len(cells[0] ) ): snake_case = 2_5_5 - cells[y][x] * 2_5_5 snake_case = (colour, colour, colour) # Save image images.append(lowercase__ ) snake_case = new_generation(lowercase__ ) return images if __name__ == "__main__": lowerCAmelCase_ = generate_images(GLIDER, 1_6) images[0].save("out.gif", save_all=True, append_images=images[1:])
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __magic_name__ ( A ) -> Union[str, Any]: snake_case = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): snake_case = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): snake_case = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case = key[key.find('patch_embed' ) + len('patch_embed' )] snake_case = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(a_ )-1}''' ) if "norm" in key: snake_case = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] snake_case = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(a_ )-1}''' ) if "layer_norm1" in key: snake_case = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: snake_case = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 snake_case = key[key.find('block' ) + len('block' )] snake_case = key.replace(F'''block{idx}''' , F'''block.{int(a_ )-1}''' ) if "attn.q" in key: snake_case = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: snake_case = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: snake_case = key.replace('attn' , 'attention.self' ) if "fc1" in key: snake_case = key.replace('fc1' , 'dense1' ) if "fc2" in key: snake_case = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: snake_case = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: snake_case = key.replace('linear_fuse.conv' , 'linear_fuse' ) snake_case = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case = key[key.find('linear_c' ) + len('linear_c' )] snake_case = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(a_ )-1}''' ) if "bot_conv" in key: snake_case = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: snake_case = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: snake_case = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: snake_case = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: snake_case = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: snake_case = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: snake_case = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): snake_case = key.replace('module.last_layer_depth' , 'head.head' ) snake_case = value return new_state_dict def __magic_name__ ( A , A ) -> str: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) snake_case = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict snake_case = kv_weight[ : config.hidden_sizes[i], : ] snake_case = kv_bias[: config.hidden_sizes[i]] snake_case = kv_weight[ config.hidden_sizes[i] :, : ] snake_case = kv_bias[config.hidden_sizes[i] :] def __magic_name__ ( ) -> Any: snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case = Image.open(requests.get(a_ , stream=a_ ).raw ) return image @torch.no_grad() def __magic_name__ ( A , A , A=False , A=None ) -> Optional[int]: snake_case = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) snake_case = GLPNImageProcessor() # prepare image snake_case = prepare_img() snake_case = image_processor(images=a_ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict snake_case = torch.load(a_ , map_location=torch.device('cpu' ) ) # rename keys snake_case = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_ , a_ ) # create HuggingFace model and load state dict snake_case = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass snake_case = model(a_ ) snake_case = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: snake_case = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: snake_case = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) snake_case = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , a_ , atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=a_ , ) image_processor.push_to_hub( repo_path_or_name=Path(a_ , a_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=a_ , ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) lowerCAmelCase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' def __magic_name__ ( A , A ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' import os def __magic_name__ ( ) -> Optional[int]: with open(os.path.dirname(lowerCAmelCase__ ) + '/p022_names.txt' ) as file: snake_case = str(file.readlines()[0] ) snake_case = names.replace('\"' , '' ).split(',' ) names.sort() snake_case = 0 snake_case = 0 for i, name in enumerate(lowerCAmelCase__ ): for letter in name: name_score += ord(lowerCAmelCase__ ) - 6_4 total_score += (i + 1) * name_score snake_case = 0 return total_score if __name__ == "__main__": print(solution())
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' import math lowerCAmelCase_ = 1_0 lowerCAmelCase_ = 7 lowerCAmelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def __magic_name__ ( A = 2_0 ) -> str: snake_case = math.comb(a_ , a_ ) snake_case = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a_ ) snake_case = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(2_0))
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ChineseCLIPFeatureExtractor'] lowerCAmelCase_ = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase_ = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def __magic_name__ ( A = "mumbai" ) -> Optional[Any]: snake_case = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): snake_case = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() snake_case = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"Job {i:>2} is {job[0]} at {job[1]}")
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __magic_name__ ( A , A=0.999 , A="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case = [] for i in range(__SCREAMING_SNAKE_CASE ): snake_case = i / num_diffusion_timesteps snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__SCREAMING_SNAKE_CASE ) / alpha_bar_fn(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ) return torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ): snake_case_ = [e.name for e in KarrasDiffusionSchedulers] snake_case_ = 2 @register_to_config def __init__( self, lowercase_ = 1000, lowercase_ = 0.00_085, lowercase_ = 0.012, lowercase_ = "linear", lowercase_ = None, lowercase_ = "epsilon", lowercase_ = False, lowercase_ = False, lowercase_ = 1.0, lowercase_ = "linspace", lowercase_ = 0, ) -> Any: if trained_betas is not None: snake_case = torch.tensor(_lowerCAmelCase, dtype=torch.floataa ) elif beta_schedule == "linear": snake_case = torch.linspace(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case = ( torch.linspace(beta_start**0.5, beta_end**0.5, _lowerCAmelCase, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case = betas_for_alpha_bar(_lowerCAmelCase, alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case = betas_for_alpha_bar(_lowerCAmelCase, alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case = 1.0 - self.betas snake_case = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) snake_case = use_karras_sigmas def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: if schedule_timesteps is None: snake_case = self.timesteps snake_case = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case = 1 if len(_lowerCAmelCase ) > 1 else 0 else: snake_case = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep snake_case = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self ) -> Tuple: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self, lowercase_, lowercase_, ) -> Optional[Any]: snake_case = self.index_for_timestep(_lowerCAmelCase ) snake_case = self.sigmas[step_index] snake_case = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = None, ) -> Union[str, Any]: snake_case = num_inference_steps snake_case = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case = np.linspace(0, num_train_timesteps - 1, _lowerCAmelCase, dtype=_lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case = (np.arange(0, _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case = (np.arange(_lowerCAmelCase, 0, -step_ratio )).round().copy().astype(_lowerCAmelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case = np.log(_lowerCAmelCase ) snake_case = np.interp(_lowerCAmelCase, np.arange(0, len(_lowerCAmelCase ) ), _lowerCAmelCase ) if self.config.use_karras_sigmas: snake_case = self._convert_to_karras(in_sigmas=_lowerCAmelCase, num_inference_steps=self.num_inference_steps ) snake_case = np.array([self._sigma_to_t(_lowerCAmelCase, _lowerCAmelCase ) for sigma in sigmas] ) snake_case = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase ) snake_case = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case = torch.from_numpy(_lowerCAmelCase ) snake_case = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(_lowerCAmelCase ).startswith('mps' ): # mps does not support float64 snake_case = timesteps.to(_lowerCAmelCase, dtype=torch.floataa ) else: snake_case = timesteps.to(device=_lowerCAmelCase ) # empty dt and derivative snake_case = None snake_case = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case = defaultdict(_lowerCAmelCase ) def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Optional[int]: # get log sigma snake_case = np.log(_lowerCAmelCase ) # get distribution snake_case = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case = np.cumsum((dists >= 0), axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case = low_idx + 1 snake_case = log_sigmas[low_idx] snake_case = log_sigmas[high_idx] # interpolate sigmas snake_case = (low - log_sigma) / (low - high) snake_case = np.clip(_lowerCAmelCase, 0, 1 ) # transform interpolation to time range snake_case = (1 - w) * low_idx + w * high_idx snake_case = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]: snake_case = in_sigmas[-1].item() snake_case = in_sigmas[0].item() snake_case = 7.0 # 7.0 is the value used in the paper snake_case = np.linspace(0, 1, _lowerCAmelCase ) snake_case = sigma_min ** (1 / rho) snake_case = sigma_max ** (1 / rho) snake_case = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self ) -> Any: return self.dt is None def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ = True, ) -> Optional[Any]: snake_case = self.index_for_timestep(_lowerCAmelCase ) # advance index counter by 1 snake_case = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case = self.sigmas[step_index] snake_case = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case = self.sigmas[step_index - 1] snake_case = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case = 0 snake_case = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case = sigma_hat if self.state_in_first_order else sigma_next snake_case = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case = sigma_hat if self.state_in_first_order else sigma_next snake_case = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case = sigma_next - sigma_hat # store for 2nd order step snake_case = derivative snake_case = dt snake_case = sample else: # 2. 2nd order / Heun's method snake_case = (sample - pred_original_sample) / sigma_next snake_case = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case = self.dt snake_case = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case = None snake_case = None snake_case = None snake_case = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowerCAmelCase ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, ) -> Optional[int]: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ): # mps does not support float64 snake_case = self.timesteps.to(original_samples.device, dtype=torch.floataa ) snake_case = timesteps.to(original_samples.device, dtype=torch.floataa ) else: snake_case = self.timesteps.to(original_samples.device ) snake_case = timesteps.to(original_samples.device ) snake_case = [self.index_for_timestep(_lowerCAmelCase, _lowerCAmelCase ) for t in timesteps] snake_case = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case = sigma.unsqueeze(-1 ) snake_case = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Tuple: return self.config.num_train_timesteps
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0
import mpmath # for roots of unity import numpy as np class lowerCamelCase : def __init__( self, lowercase_=None, lowercase_=None ) -> int: # Input as list snake_case = list(poly_a or [0] )[:] snake_case = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() snake_case = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() snake_case = len(self.polyB ) # Add 0 to make lengths equal a power of 2 snake_case = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform snake_case = complex(mpmath.root(x=1, n=self.c_max_length, k=1 ) ) # The product snake_case = self.__multiply() def _lowerCamelCase ( self, lowercase_ ) -> Optional[Any]: snake_case = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(lowercase_ ) <= 1: return dft[0] # snake_case = self.c_max_length // 2 while next_ncol > 0: snake_case = [[] for i in range(lowercase_ )] snake_case = self.root**next_ncol # First half of next step snake_case = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowercase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step snake_case = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowercase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update snake_case = new_dft snake_case = next_ncol // 2 return dft[0] def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.__dft('A' ) snake_case = self.__dft('B' ) snake_case = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT snake_case = 2 while next_ncol <= self.c_max_length: snake_case = [[] for i in range(lowercase_ )] snake_case = self.root ** (next_ncol // 2) snake_case = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update snake_case = new_inverse_c next_ncol *= 2 # Unpack snake_case = [round(x[0].real, 8 ) + round(x[0].imag, 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ) -> Optional[Any]: snake_case = """A = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) snake_case = """B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) snake_case = """A*B = """ + """ + """.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( __lowercase , unittest.TestCase ): snake_case_ = CanineTokenizer snake_case_ = False def _lowerCamelCase ( self ) -> Optional[int]: super().setUp() snake_case = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self ) -> int: return CanineTokenizer.from_pretrained('google/canine-s' ) def _lowerCamelCase ( self, **lowercase_ ) -> CanineTokenizer: snake_case = self.tokenizer_class.from_pretrained(self.tmpdirname, **_a ) snake_case = 1024 return tokenizer @require_torch def _lowerCamelCase ( self ) -> List[str]: snake_case = self.canine_tokenizer snake_case = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off snake_case = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on snake_case = tokenizer(_a, padding=_a, return_tensors='pt' ) self.assertIsInstance(_a, _a ) snake_case = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_a, _a ) self.assertEqual((2, 39), batch.input_ids.shape ) self.assertEqual((2, 39), batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self ) -> str: snake_case = self.canine_tokenizer snake_case = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] snake_case = tokenizer(_a, padding=_a, return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids', _a ) self.assertIn('attention_mask', _a ) self.assertIn('token_type_ids', _a ) @require_torch def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = self.canine_tokenizer snake_case = [ 'What\'s the weater?', 'It\'s about 25 degrees.', ] snake_case = tokenizer( text_target=_a, max_length=32, padding='max_length', truncation=_a, return_tensors='pt' ) self.assertEqual(32, targets['input_ids'].shape[1] ) def _lowerCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc snake_case = tempfile.mkdtemp() snake_case = ' He is very happy, UNwant\u00E9d,running' snake_case = tokenizer.encode(_a, add_special_tokens=_a ) tokenizer.save_pretrained(_a ) snake_case = tokenizer.__class__.from_pretrained(_a ) snake_case = after_tokenizer.encode(_a, add_special_tokens=_a ) self.assertListEqual(_a, _a ) shutil.rmtree(_a ) snake_case = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc snake_case = tempfile.mkdtemp() snake_case = ' He is very happy, UNwant\u00E9d,running' snake_case = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: snake_case = chr(0Xe007 ) additional_special_tokens.append(_a ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case = tokenizer.encode(_a, add_special_tokens=_a ) tokenizer.save_pretrained(_a ) snake_case = tokenizer.__class__.from_pretrained(_a ) snake_case = after_tokenizer.encode(_a, add_special_tokens=_a ) self.assertListEqual(_a, _a ) self.assertIn(_a, after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) snake_case = tokenizer.__class__.from_pretrained(_a, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_a ) def _lowerCamelCase ( self ) -> int: snake_case = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case , snake_case = self.get_clean_sequence(_a ) # a special token for Canine can be defined as follows: snake_case = 0Xe005 snake_case = chr(_a ) tokenizer.add_special_tokens({'cls_token': special_token} ) snake_case = tokenizer.encode(_a, add_special_tokens=_a ) self.assertEqual(len(_a ), 1 ) snake_case = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=_a ) snake_case = tokenizer.encode(_a, add_special_tokens=_a ) snake_case = tokenizer.encode(_a, add_special_tokens=_a ) snake_case = tokenizer.encode(_a, add_special_tokens=_a ) self.assertEqual(_a, input_encoded + special_token_id ) snake_case = tokenizer.decode(_a, skip_special_tokens=_a ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case = chr(0Xe005 ) snake_case = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=_a ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) snake_case = tokenizer.tokenize(_a ) snake_case = tokenizer.tokenize(_a ) self.assertEqual(len(_a ), 1 ) self.assertEqual(len(_a ), 1 ) self.assertEqual(token_a[0], _a ) self.assertEqual(token_a[0], _a ) @require_tokenizers def _lowerCamelCase ( self ) -> List[str]: snake_case = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: snake_case = 0Xe006 snake_case = chr(_a ) snake_case = AddedToken(_a, lstrip=_a ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_a ) tokenizer.from_pretrained(_a ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_a ) with open(os.path.join(_a, 'special_tokens_map.json' ), encoding='utf-8' ) as json_file: snake_case = json.load(_a ) with open(os.path.join(_a, 'tokenizer_config.json' ), encoding='utf-8' ) as json_file: snake_case = json.load(_a ) # a special token for Canine can be defined as follows: snake_case = 0Xe006 snake_case = chr(_a ) snake_case = [new_token_a] snake_case = [new_token_a] with open(os.path.join(_a, 'special_tokens_map.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(_a, _a ) with open(os.path.join(_a, 'tokenizer_config.json' ), 'w', encoding='utf-8' ) as outfile: json.dump(_a, _a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case = tokenizer_class.from_pretrained(_a, extra_ids=0 ) self.assertIn(_a, tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ), ) snake_case = 0Xe007 snake_case = chr(_a ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case = [AddedToken(_a, lstrip=_a )] snake_case = tokenizer_class.from_pretrained( _a, additional_special_tokens=_a, extra_ids=0 ) self.assertIn(_a, tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a], tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self ) -> List[str]: snake_case = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case = 'hello world' if self.space_between_special_tokens: snake_case = '[CLS] hello world [SEP]' else: snake_case = input snake_case = tokenizer.encode(_a, add_special_tokens=_a ) snake_case = tokenizer.decode(_a, spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_a, [output, output.lower()] ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): snake_case = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case = 'a' snake_case = ord(_a ) for attr in attributes_list: setattr(_a, attr + '_id', _a ) self.assertEqual(getattr(_a, _a ), _a ) self.assertEqual(getattr(_a, attr + '_id' ), _a ) setattr(_a, attr + '_id', _a ) self.assertEqual(getattr(_a, _a ), _a ) self.assertEqual(getattr(_a, attr + '_id' ), _a ) setattr(_a, 'additional_special_tokens_ids', [] ) self.assertListEqual(getattr(_a, 'additional_special_tokens' ), [] ) self.assertListEqual(getattr(_a, 'additional_special_tokens_ids' ), [] ) snake_case = 0Xe006 snake_case = chr(_a ) setattr(_a, 'additional_special_tokens_ids', [additional_special_token_id] ) self.assertListEqual(getattr(_a, 'additional_special_tokens' ), [additional_special_token] ) self.assertListEqual(getattr(_a, 'additional_special_tokens_ids' ), [additional_special_token_id] ) def _lowerCamelCase ( self ) -> Any: pass def _lowerCamelCase ( self ) -> Optional[Any]: pass def _lowerCamelCase ( self ) -> List[Any]: pass def _lowerCamelCase ( self ) -> Tuple: pass def _lowerCamelCase ( self ) -> int: pass def _lowerCamelCase ( self ) -> Any: pass def _lowerCamelCase ( self ) -> Any: pass def _lowerCamelCase ( self ) -> List[str]: pass
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowerCAmelCase_ = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } lowerCAmelCase_ = "ETAOINSHRDLCUMWFGYPBVKJXQZ" lowerCAmelCase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __magic_name__ ( A ) -> Optional[Any]: snake_case = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def __magic_name__ ( A ) -> int: return x[0] def __magic_name__ ( A ) -> List[Any]: snake_case = get_letter_count(__lowerCamelCase ) snake_case = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) snake_case = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__lowerCamelCase ) snake_case = "".join(freq_to_letter[freq] ) snake_case = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase , reverse=__lowerCamelCase ) snake_case = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def __magic_name__ ( A ) -> Tuple: snake_case = get_frequency_order(__lowerCamelCase ) snake_case = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
0
'''simple docstring''' import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowerCAmelCase_ = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def __magic_name__ ( A , A=None , A=None , A=None ) -> str: snake_case = True while ask_again: snake_case = input(_snake_case ) try: if default is not None and len(_snake_case ) == 0: return default return convert_value(_snake_case ) if convert_value is not None else result except Exception: if error_message is not None: print(_snake_case ) def __magic_name__ ( A , A=[] , A=None , A=0 ) -> str: snake_case = BulletMenu(_snake_case , _snake_case ) snake_case = menu.run(default_choice=_snake_case ) return convert_value(_snake_case ) if convert_value is not None else result def __magic_name__ ( A ) -> List[str]: snake_case = int(_snake_case ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def __magic_name__ ( A ) -> Optional[int]: snake_case = int(_snake_case ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def __magic_name__ ( A ) -> Tuple: snake_case = int(_snake_case ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __magic_name__ ( A ) -> List[Any]: snake_case = int(_snake_case ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def __magic_name__ ( A ) -> Optional[int]: snake_case = int(_snake_case ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def __magic_name__ ( A ) -> Tuple: return {"yes": True, "no": False}[value.lower()] class lowerCamelCase ( argparse.RawDescriptionHelpFormatter ): def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ ) -> str: snake_case = super()._format_usage(a_, a_, a_, a_ ) snake_case = usage.replace('<command> [<args>] ', '' ) return usage
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): def __get__( self, lowercase_, lowercase_=None ) -> Optional[int]: if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) snake_case = '__cached_' + self.fget.__name__ snake_case = getattr(snake_case__, snake_case__, snake_case__ ) if cached is None: snake_case = self.fget(snake_case__ ) setattr(snake_case__, snake_case__, snake_case__ ) return cached def __magic_name__ ( UpperCamelCase_ ) -> str: snake_case = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def __magic_name__ ( UpperCamelCase_ ) -> Union[str, Any]: if is_torch_fx_proxy(_A ): return True if is_torch_available(): import torch if isinstance(_A , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_A , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_A , (jnp.ndarray, Tracer) ): return True return isinstance(_A , np.ndarray ) def __magic_name__ ( UpperCamelCase_ ) -> Any: return isinstance(_A , np.ndarray ) def __magic_name__ ( UpperCamelCase_ ) -> Union[str, Any]: return _is_numpy(_A ) def __magic_name__ ( UpperCamelCase_ ) -> Tuple: import torch return isinstance(_A , torch.Tensor ) def __magic_name__ ( UpperCamelCase_ ) -> Union[str, Any]: return False if not is_torch_available() else _is_torch(_A ) def __magic_name__ ( UpperCamelCase_ ) -> List[str]: import torch return isinstance(_A , torch.device ) def __magic_name__ ( UpperCamelCase_ ) -> Optional[Any]: return False if not is_torch_available() else _is_torch_device(_A ) def __magic_name__ ( UpperCamelCase_ ) -> Optional[int]: import torch if isinstance(_A , _A ): if hasattr(_A , _A ): snake_case = getattr(_A , _A ) else: return False return isinstance(_A , torch.dtype ) def __magic_name__ ( UpperCamelCase_ ) -> Dict: return False if not is_torch_available() else _is_torch_dtype(_A ) def __magic_name__ ( UpperCamelCase_ ) -> str: import tensorflow as tf return isinstance(_A , tf.Tensor ) def __magic_name__ ( UpperCamelCase_ ) -> Tuple: return False if not is_tf_available() else _is_tensorflow(_A ) def __magic_name__ ( UpperCamelCase_ ) -> str: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_A , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(_A ) return type(_A ) == tf.Tensor def __magic_name__ ( UpperCamelCase_ ) -> List[str]: return False if not is_tf_available() else _is_tf_symbolic_tensor(_A ) def __magic_name__ ( UpperCamelCase_ ) -> Dict: import jax.numpy as jnp # noqa: F811 return isinstance(_A , jnp.ndarray ) def __magic_name__ ( UpperCamelCase_ ) -> Optional[Any]: return False if not is_flax_available() else _is_jax(_A ) def __magic_name__ ( UpperCamelCase_ ) -> int: if isinstance(_A , (dict, UserDict) ): return {k: to_py_obj(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return [to_py_obj(_A ) for o in obj] elif is_tf_tensor(_A ): return obj.numpy().tolist() elif is_torch_tensor(_A ): return obj.detach().cpu().tolist() elif is_jax_tensor(_A ): return np.asarray(_A ).tolist() elif isinstance(_A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __magic_name__ ( UpperCamelCase_ ) -> Tuple: if isinstance(_A , (dict, UserDict) ): return {k: to_numpy(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return np.array(_A ) elif is_tf_tensor(_A ): return obj.numpy() elif is_torch_tensor(_A ): return obj.detach().cpu().numpy() elif is_jax_tensor(_A ): return np.asarray(_A ) else: return obj class lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): def _lowerCamelCase ( self ) -> str: snake_case = fields(self ) # Safety and consistency checks if not len(snake_case__ ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) snake_case = getattr(self, class_fields[0].name ) snake_case = all(getattr(self, field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(snake_case__ ): if isinstance(snake_case__, snake_case__ ): snake_case = first_field.items() snake_case = True else: try: snake_case = iter(snake_case__ ) snake_case = True except TypeError: snake_case = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(snake_case__ ): if ( not isinstance(snake_case__, (list, tuple) ) or not len(snake_case__ ) == 2 or not isinstance(element[0], snake_case__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute snake_case = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self, element[0], element[1] ) if element[1] is not None: snake_case = element[1] elif first_field is not None: snake_case = first_field else: for field in class_fields: snake_case = getattr(self, field.name ) if v is not None: snake_case = v def __delitem__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Dict: raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> Any: raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self, lowercase_ ) -> Optional[Any]: if isinstance(snake_case__, snake_case__ ): snake_case = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self, lowercase_, lowercase_ ) -> Optional[int]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(snake_case__, snake_case__ ) super().__setattr__(snake_case__, snake_case__ ) def __setitem__( self, lowercase_, lowercase_ ) -> int: super().__setitem__(snake_case__, snake_case__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(snake_case__, snake_case__ ) def _lowerCamelCase ( self ) -> Tuple: return tuple(self[k] for k in self.keys() ) class lowerCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Optional[Any]: raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): snake_case_ = '''longest''' snake_case_ = '''max_length''' snake_case_ = '''do_not_pad''' class lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): snake_case_ = '''pt''' snake_case_ = '''tf''' snake_case_ = '''np''' snake_case_ = '''jax''' class lowerCamelCase : def __init__( self, lowercase_ ) -> Optional[Any]: snake_case = context_managers snake_case = ExitStack() def __enter__( self ) -> List[Any]: for context_manager in self.context_managers: self.stack.enter_context(snake_case__ ) def __exit__( self, *lowercase_, **lowercase_ ) -> int: self.stack.__exit__(*snake_case__, **snake_case__ ) def __magic_name__ ( UpperCamelCase_ ) -> str: snake_case = infer_framework(_A ) if framework == "tf": snake_case = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case = inspect.signature(model_class.forward ) # PyTorch models else: snake_case = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __magic_name__ ( UpperCamelCase_ ) -> List[Any]: snake_case = model_class.__name__ snake_case = infer_framework(_A ) if framework == "tf": snake_case = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case = inspect.signature(model_class.forward ) # PyTorch models else: snake_case = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ = "" , UpperCamelCase_ = "." ) -> int: def _flatten_dict(UpperCamelCase_ , UpperCamelCase_="" , UpperCamelCase_="." ): for k, v in d.items(): snake_case = str(_A ) + delimiter + str(_A ) if parent_key else k if v and isinstance(_A , _A ): yield from flatten_dict(_A , _A , delimiter=_A ).items() else: yield key, v return dict(_flatten_dict(_A , _A , _A ) ) @contextmanager def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ = False ) -> List[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_=None ) -> Optional[Any]: if is_numpy_array(_A ): return np.transpose(_A , axes=_A ) elif is_torch_tensor(_A ): return array.T if axes is None else array.permute(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.transpose(_A , perm=_A ) elif is_jax_tensor(_A ): return jnp.transpose(_A , axes=_A ) else: raise ValueError(F'''Type not supported for transpose: {type(_A )}.''' ) def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: if is_numpy_array(_A ): return np.reshape(_A , _A ) elif is_torch_tensor(_A ): return array.reshape(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.reshape(_A , _A ) elif is_jax_tensor(_A ): return jnp.reshape(_A , _A ) else: raise ValueError(F'''Type not supported for reshape: {type(_A )}.''' ) def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_=None ) -> Tuple: if is_numpy_array(_A ): return np.squeeze(_A , axis=_A ) elif is_torch_tensor(_A ): return array.squeeze() if axis is None else array.squeeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.squeeze(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.squeeze(_A , axis=_A ) else: raise ValueError(F'''Type not supported for squeeze: {type(_A )}.''' ) def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: if is_numpy_array(_A ): return np.expand_dims(_A , _A ) elif is_torch_tensor(_A ): return array.unsqueeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.expand_dims(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.expand_dims(_A , axis=_A ) else: raise ValueError(F'''Type not supported for expand_dims: {type(_A )}.''' ) def __magic_name__ ( UpperCamelCase_ ) -> str: if is_numpy_array(_A ): return np.size(_A ) elif is_torch_tensor(_A ): return array.numel() elif is_tf_tensor(_A ): import tensorflow as tf return tf.size(_A ) elif is_jax_tensor(_A ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(_A )}.''' ) def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: for key, value in auto_map.items(): if isinstance(_A , (tuple, list) ): snake_case = [F'''{repo_id}--{v}''' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: snake_case = F'''{repo_id}--{value}''' return auto_map def __magic_name__ ( UpperCamelCase_ ) -> List[str]: for base_class in inspect.getmro(_A ): snake_case = base_class.__module__ snake_case = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''poolformer''' def __init__( self, lowercase_=3, lowercase_=16, lowercase_=16, lowercase_=3, lowercase_=4.0, lowercase_=[2, 2, 6, 2], lowercase_=[64, 128, 320, 512], lowercase_=[7, 3, 3, 3], lowercase_=[4, 2, 2, 2], lowercase_=[2, 1, 1, 1], lowercase_=4, lowercase_=0.0, lowercase_="gelu", lowercase_=True, lowercase_=1E-5, lowercase_=0.02, **lowercase_, ) -> Dict: snake_case = num_channels snake_case = patch_size snake_case = stride snake_case = padding snake_case = pool_size snake_case = hidden_sizes snake_case = mlp_ratio snake_case = depths snake_case = patch_sizes snake_case = strides snake_case = num_encoder_blocks snake_case = drop_path_rate snake_case = hidden_act snake_case = use_layer_scale snake_case = layer_scale_init_value snake_case = initializer_range super().__init__(**__UpperCAmelCase ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _lowerCamelCase ( self ) -> float: return 2E-3
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowerCAmelCase_ = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class lowerCamelCase ( _UpperCAmelCase ): snake_case_ = 'facebook/nllb-200-distilled-600M' snake_case_ = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case_ = 'translator' snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = LANGUAGE_CODES snake_case_ = ['text', 'text', 'text'] snake_case_ = ['text'] def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> str: if src_lang not in self.lang_to_code: raise ValueError(F'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'''{tgt_lang} is not a supported language.''' ) snake_case = self.lang_to_code[src_lang] snake_case = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( SCREAMING_SNAKE_CASE_, return_tensors='pt', src_lang=SCREAMING_SNAKE_CASE_, tgt_lang=SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase ( self, lowercase_ ) -> Dict: return self.model.generate(**SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase ( self, lowercase_ ) -> Any: return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=SCREAMING_SNAKE_CASE_ )
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowerCAmelCase_ = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class lowerCamelCase ( lowerCAmelCase_ ): snake_case_ = 'blip_2_vision_model' def __init__( self, lowercase_=1408, lowercase_=6144, lowercase_=39, lowercase_=16, lowercase_=224, lowercase_=14, lowercase_="gelu", lowercase_=0.00_001, lowercase_=0.0, lowercase_=1E-10, lowercase_=True, **lowercase_, ) -> Dict: super().__init__(**__lowerCAmelCase ) snake_case = hidden_size snake_case = intermediate_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = patch_size snake_case = image_size snake_case = initializer_range snake_case = attention_dropout snake_case = layer_norm_eps snake_case = hidden_act snake_case = qkv_bias @classmethod def _lowerCamelCase ( cls, lowercase_, **lowercase_ ) -> Dict: cls._set_token_in_kwargs(__lowerCAmelCase ) snake_case , snake_case = cls.get_config_dict(__lowerCAmelCase, **__lowerCAmelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCAmelCase, **__lowerCAmelCase ) class lowerCamelCase ( lowerCAmelCase_ ): snake_case_ = 'blip_2_qformer' def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=0.02, lowercase_=1E-12, lowercase_=0, lowercase_="absolute", lowercase_=2, lowercase_=1408, **lowercase_, ) -> str: super().__init__(pad_token_id=__lowerCAmelCase, **__lowerCAmelCase ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = cross_attention_frequency snake_case = encoder_hidden_size @classmethod def _lowerCamelCase ( cls, lowercase_, **lowercase_ ) -> List[Any]: cls._set_token_in_kwargs(__lowerCAmelCase ) snake_case , snake_case = cls.get_config_dict(__lowerCAmelCase, **__lowerCAmelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": snake_case = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls, 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__lowerCAmelCase, **__lowerCAmelCase ) class lowerCamelCase ( lowerCAmelCase_ ): snake_case_ = 'blip-2' snake_case_ = True def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_=32, **lowercase_ ) -> Any: super().__init__(**__lowerCAmelCase ) if vision_config is None: snake_case = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: snake_case = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: snake_case = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) snake_case = BlipaVisionConfig(**__lowerCAmelCase ) snake_case = BlipaQFormerConfig(**__lowerCAmelCase ) snake_case = text_config['model_type'] if 'model_type' in text_config else 'opt' snake_case = CONFIG_MAPPING[text_model_type](**__lowerCAmelCase ) snake_case = self.text_config.tie_word_embeddings snake_case = self.text_config.is_encoder_decoder snake_case = num_query_tokens snake_case = self.vision_config.hidden_size snake_case = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case = 1.0 snake_case = 0.02 @classmethod def _lowerCamelCase ( cls, lowercase_, lowercase_, lowercase_, **lowercase_, ) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **__lowerCAmelCase, ) def _lowerCamelCase ( self ) -> Tuple: snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.vision_config.to_dict() snake_case = self.qformer_config.to_dict() snake_case = self.text_config.to_dict() snake_case = self.__class__.model_type return output
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger() @dataclass class lowerCamelCase : snake_case_ = 42 snake_case_ = field(default_factory=SCREAMING_SNAKE_CASE__ ) snake_case_ = field(default_factory=SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Union[str, Any]: snake_case = len(list(m.modules() ) ) == 1 or isinstance(a_, nn.Convad ) or isinstance(a_, nn.BatchNormad ) if has_not_submodules: self.traced.append(a_ ) def __call__( self, lowercase_ ) -> Optional[Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(a_ ) [x.remove() for x in self.handles] return self @property def _lowerCamelCase ( self ) -> Optional[Any]: return list(filter(lambda lowercase_ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class lowerCamelCase : snake_case_ = 42 snake_case_ = 42 snake_case_ = 0 snake_case_ = field(default_factory=SCREAMING_SNAKE_CASE__ ) snake_case_ = field(default_factory=SCREAMING_SNAKE_CASE__ ) def __call__( self, lowercase_ ) -> Optional[Any]: snake_case = Tracker(self.dest )(a_ ).parametrized snake_case = Tracker(self.src )(a_ ).parametrized snake_case = list(filter(lambda lowercase_ : type(a_ ) not in self.src_skip, a_ ) ) snake_case = list(filter(lambda lowercase_ : type(a_ ) not in self.dest_skip, a_ ) ) if len(a_ ) != len(a_ ): raise Exception( F'''Numbers of operations are different. Source module has {len(a_ )} operations while''' F''' destination module has {len(a_ )}.''' ) for dest_m, src_m in zip(a_, a_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __magic_name__ ( A , A , A , A = True ) -> Dict: print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case = timm.create_model(_UpperCamelCase , pretrained=_UpperCamelCase ).eval() snake_case = ResNetForImageClassification(_UpperCamelCase ).eval() snake_case = ModuleTransfer(src=_UpperCamelCase , dest=_UpperCamelCase ) snake_case = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(_UpperCamelCase ) assert torch.allclose(from_model(_UpperCamelCase ) , our_model(_UpperCamelCase ).logits ), "The model logits don't match the original one." snake_case = F'''resnet{"-".join(name.split("resnet" ) )}''' print(_UpperCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_UpperCamelCase , ) # we can use the convnext one snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_UpperCamelCase , ) print(F'''Pushed {checkpoint_name}''' ) def __magic_name__ ( A , A = None , A = True ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = (1, num_labels) snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) snake_case = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = partial(_UpperCamelCase , num_labels=_UpperCamelCase , idalabel=_UpperCamelCase , labelaid=_UpperCamelCase ) snake_case = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(_UpperCamelCase , names_to_config[model_name] , _UpperCamelCase , _UpperCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> str: snake_case = tempfile.mkdtemp() snake_case = SamImageProcessor() snake_case = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self, **lowercase_ ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname, **__lowerCAmelCase ).image_processor def _lowerCamelCase ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ) -> int: snake_case = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(__lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self ) -> Any: snake_case = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case = self.get_image_processor(do_normalize=__lowerCAmelCase, padding_value=1.0 ) snake_case = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=__lowerCAmelCase, padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, __lowerCAmelCase ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__lowerCAmelCase ) snake_case = self.prepare_image_inputs() snake_case = image_processor(__lowerCAmelCase, return_tensors='np' ) snake_case = processor(images=__lowerCAmelCase, return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) @require_torch def _lowerCamelCase ( self ) -> Tuple: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__lowerCAmelCase ) snake_case = [torch.ones((1, 3, 5, 5) )] snake_case = [[1764, 2646]] snake_case = [[683, 1024]] snake_case = processor.post_process_masks(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) snake_case = processor.post_process_masks( __lowerCAmelCase, torch.tensor(__lowerCAmelCase ), torch.tensor(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) # should also work with np snake_case = [np.ones((1, 3, 5, 5) )] snake_case = processor.post_process_masks(__lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ) ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) snake_case = [[1, 0], [0, 1]] with self.assertRaises(__lowerCAmelCase ): snake_case = processor.post_process_masks(__lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ) ) @require_vision @require_tf class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Dict: snake_case = tempfile.mkdtemp() snake_case = SamImageProcessor() snake_case = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self, **lowercase_ ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname, **__lowerCAmelCase ).image_processor def _lowerCamelCase ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ) -> str: snake_case = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(__lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self ) -> str: snake_case = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case = self.get_image_processor(do_normalize=__lowerCAmelCase, padding_value=1.0 ) snake_case = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=__lowerCAmelCase, padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, __lowerCAmelCase ) def _lowerCamelCase ( self ) -> Any: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__lowerCAmelCase ) snake_case = self.prepare_image_inputs() snake_case = image_processor(__lowerCAmelCase, return_tensors='np' ) snake_case = processor(images=__lowerCAmelCase, return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) @require_tf def _lowerCamelCase ( self ) -> List[str]: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__lowerCAmelCase ) snake_case = [tf.ones((1, 3, 5, 5) )] snake_case = [[1764, 2646]] snake_case = [[683, 1024]] snake_case = processor.post_process_masks(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, return_tensors='tf' ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) snake_case = processor.post_process_masks( __lowerCAmelCase, tf.convert_to_tensor(__lowerCAmelCase ), tf.convert_to_tensor(__lowerCAmelCase ), return_tensors='tf', ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) # should also work with np snake_case = [np.ones((1, 3, 5, 5) )] snake_case = processor.post_process_masks( __lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ), return_tensors='tf' ) self.assertEqual(masks[0].shape, (1, 3, 1764, 2646) ) snake_case = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): snake_case = processor.post_process_masks( __lowerCAmelCase, np.array(__lowerCAmelCase ), np.array(__lowerCAmelCase ), return_tensors='tf' ) @require_vision @require_torchvision class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Optional[int]: snake_case = tempfile.mkdtemp() snake_case = SamImageProcessor() snake_case = SamProcessor(__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self, **lowercase_ ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname, **__lowerCAmelCase ).image_processor def _lowerCamelCase ( self ) -> Dict: shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(__lowerCAmelCase, 0, -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _lowerCamelCase ( self ) -> Tuple: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__lowerCAmelCase ) snake_case = np.random.randint(0, 2, size=(1, 3, 5, 5) ).astype(np.floataa ) snake_case = [tf.convert_to_tensor(__lowerCAmelCase )] snake_case = [torch.tensor(__lowerCAmelCase )] snake_case = [[1764, 2646]] snake_case = [[683, 1024]] snake_case = processor.post_process_masks( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, return_tensors='tf' ) snake_case = processor.post_process_masks( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = self.get_image_processor() snake_case = SamProcessor(image_processor=__lowerCAmelCase ) snake_case = self.prepare_image_inputs() snake_case = image_processor(__lowerCAmelCase, return_tensors='pt' )['pixel_values'].numpy() snake_case = processor(images=__lowerCAmelCase, return_tensors='pt' )['pixel_values'].numpy() snake_case = image_processor(__lowerCAmelCase, return_tensors='tf' )['pixel_values'].numpy() snake_case = processor(images=__lowerCAmelCase, return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(__lowerCAmelCase, __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase, __lowerCAmelCase ) ) self.assertTrue(np.allclose(__lowerCAmelCase, __lowerCAmelCase ) )
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0
'''simple docstring''' def __magic_name__ ( A = 1_0_0_0_0_0_0 ) -> int: snake_case = set(range(3 , a__ , 2 ) ) primes.add(2 ) for p in range(3 , a__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , a__ , a__ ) ) ) snake_case = [float(a__ ) for n in range(limit + 1 )] for p in primes: for n in range(a__ , limit + 1 , a__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"{solution() = }")
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __magic_name__ ( A = "" ) -> dict[str, float]: snake_case = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' snake_case = BeautifulSoup(requests.get(lowercase_ ).text , 'html.parser' ) snake_case = soup.find_all('td' , attrs='titleColumn' ) snake_case = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase_ , lowercase_ ) } def __magic_name__ ( A = "IMDb_Top_250_Movies.csv" ) -> None: snake_case = get_imdb_top_aaa_movies() with open(lowercase_ , 'w' , newline='' ) as out_file: snake_case = csv.writer(lowercase_ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCAmelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __magic_name__ ( A , A , A , A , A , A , A , A=False , ) -> List[str]: output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __magic_name__ ( A , A , A , A = False ) -> int: snake_case = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): snake_case = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: snake_case = 'cpu' snake_case = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) snake_case = Path(UpperCamelCase__ ) # TEXT ENCODER snake_case = pipeline.text_encoder.config.max_position_embeddings snake_case = pipeline.text_encoder.config.hidden_size snake_case = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET snake_case = pipeline.unet.config.in_channels snake_case = pipeline.unet.config.sample_size snake_case = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) snake_case = str(unet_path.absolute().as_posix() ) snake_case = os.path.dirname(UpperCamelCase__ ) snake_case = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER snake_case = pipeline.vae snake_case = vae_encoder.config.in_channels snake_case = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder snake_case = lambda A , A : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER snake_case = pipeline.vae snake_case = vae_decoder.config.latent_channels snake_case = vae_decoder.config.out_channels # forward only through the decoder part snake_case = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: snake_case = pipeline.safety_checker snake_case = safety_checker.config.vision_config.num_channels snake_case = safety_checker.config.vision_config.image_size snake_case = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker snake_case = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) snake_case = pipeline.feature_extractor else: snake_case = None snake_case = None snake_case = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline snake_case = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowerCAmelCase_ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __magic_name__ ( A = 8 ) -> Union[str, Any]: snake_case = ascii_letters + digits + punctuation return "".join(secrets.choice(_a ) for _ in range(_a ) ) def __magic_name__ ( A , A ) -> Tuple: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_a ) snake_case = i // 3 snake_case = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case = ( chars_incl + random(_a , quotient + remainder ) + random(_a , _a ) + random(_a , _a ) ) snake_case = list(_a ) shuffle(_a ) return "".join(_a ) # random is a generalised function for letters, characters and numbers def __magic_name__ ( A , A ) -> List[str]: return "".join(secrets.choice(_a ) for _ in range(_a ) ) def __magic_name__ ( A , A ) -> Tuple: pass # Put your code here... def __magic_name__ ( A , A ) -> Optional[int]: pass # Put your code here... def __magic_name__ ( A , A ) -> Any: pass # Put your code here... def __magic_name__ ( A , A = 8 ) -> Any: if len(_a ) < min_length: # Your Password must be at least 8 characters long return False snake_case = any(char in ascii_uppercase for char in password ) snake_case = any(char in ascii_lowercase for char in password ) snake_case = any(char in digits for char in password ) snake_case = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __magic_name__ ( ) -> Union[str, Any]: snake_case = int(input('Please indicate the max length of your password: ' ).strip() ) snake_case = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_a ) ) print( 'Alternative Password generated:' , alternative_password_generator(_a , _a ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' import os from math import logaa def __magic_name__ ( A = "base_exp.txt" ) -> Union[str, Any]: snake_case = 0 snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): snake_case = list(map(_UpperCAmelCase , line.split(',' ) ) ) if x * logaa(_UpperCAmelCase ) > largest: snake_case = x * logaa(_UpperCAmelCase ) snake_case = i + 1 return result if __name__ == "__main__": print(solution())
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( lowerCamelCase_ ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.', lowerCAmelCase__, ) super().__init__(*lowerCAmelCase__, **lowerCAmelCase__ )
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case = 'A painting of a squirrel eating a burger ' snake_case = torch.manual_seed(0 ) snake_case = pipe( prompt=__lowerCamelCase, generator=__lowerCamelCase, guidance_scale=7.5, num_inference_steps=2, output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case = generator.manual_seed(0 ) snake_case = pipe( prompt=__lowerCamelCase, generator=__lowerCamelCase, guidance_scale=7.5, num_inference_steps=2, output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _lowerCamelCase ( self ) -> int: snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion', torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case = 'A painting of a squirrel eating a burger ' snake_case = torch.manual_seed(0 ) snake_case = pipe( prompt=__lowerCamelCase, generator=__lowerCamelCase, guidance_scale=7.5, num_inference_steps=50, output_type='numpy' ).images snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
'''simple docstring''' import unittest from knapsack import knapsack as k class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: snake_case = 0 snake_case = [0] snake_case = [0] snake_case = len(_lowerCamelCase ) self.assertEqual(k.knapsack(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ), 0 ) snake_case = [60] snake_case = [10] snake_case = len(_lowerCamelCase ) self.assertEqual(k.knapsack(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ), 0 ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = 3 snake_case = [1, 2, 3] snake_case = [3, 2, 1] snake_case = len(_lowerCamelCase ) self.assertEqual(k.knapsack(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ), 5 ) def _lowerCamelCase ( self ) -> str: snake_case = 50 snake_case = [60, 100, 120] snake_case = [10, 20, 30] snake_case = len(_lowerCamelCase ) self.assertEqual(k.knapsack(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ), 220 ) if __name__ == "__main__": unittest.main()
368
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A , ) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCAmelCase_ = ["small", "medium", "large"] lowerCAmelCase_ = "lm_head.decoder.weight" lowerCAmelCase_ = "lm_head.weight" def __magic_name__ ( A , A ) -> Tuple: snake_case = torch.load(A ) snake_case = d.pop(A ) os.makedirs(A , exist_ok=A ) torch.save(A , os.path.join(A , A ) ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) lowerCAmelCase_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCAmelCase_ = os.path.join(args.dialogpt_path, f"{MODEL}_ft.pkl") lowerCAmelCase_ = f"./DialoGPT-{MODEL}" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase_ = 5_0_0_0_0 lowerCAmelCase_ = 5_0_0_0 lowerCAmelCase_ , lowerCAmelCase_ = os.path.split(__file__) lowerCAmelCase_ = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __magic_name__ ( A , A ) -> Any: for i in range(_lowerCAmelCase ): snake_case = dataset[i] @get_duration def __magic_name__ ( A , A , A ) -> Union[str, Any]: for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase ): snake_case = dataset[i : i + batch_size] @get_duration def __magic_name__ ( A , A , A ) -> Dict: with dataset.formatted_as(type=_lowerCAmelCase ): for i in range(_lowerCAmelCase ): snake_case = dataset[i] @get_duration def __magic_name__ ( A , A , A , A ) -> List[Any]: with dataset.formatted_as(type=_lowerCAmelCase ): for i in range(0 , _lowerCAmelCase , _lowerCAmelCase ): snake_case = dataset[i : i + batch_size] def __magic_name__ ( ) -> Optional[int]: snake_case = {"""num examples""": SPEED_TEST_N_EXAMPLES} snake_case = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}), ] snake_case = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_0_0_0}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) snake_case = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) snake_case = generate_example_dataset( os.path.join(_lowerCAmelCase , 'dataset.arrow' ) , _lowerCAmelCase , num_examples=_lowerCAmelCase , seq_shapes={'list': (1_0_0,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(_lowerCAmelCase ) ) snake_case = func(_lowerCAmelCase , **_lowerCAmelCase ) print('shuffling dataset' ) snake_case = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(_lowerCAmelCase ) ) snake_case = func( _lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , 'wb' ) as f: f.write(json.dumps(_lowerCAmelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
'''simple docstring''' def __magic_name__ ( A ) -> str: snake_case = len(__lowerCAmelCase ) while cur > 1: # Find the maximum number in arr snake_case = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi snake_case = arr[mi::-1] + arr[mi + 1 : len(__lowerCAmelCase )] # Reverse whole list snake_case = arr[cur - 1 :: -1] + arr[cur : len(__lowerCAmelCase )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase_ = input("Enter numbers separated by a comma:\n").strip() lowerCAmelCase_ = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __magic_name__ ( A , A , A , A , ) -> tuple[float | int, list[tuple[int, int]]]: snake_case = grid.shape snake_case = [-1, 1, 0, 0] snake_case = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] snake_case = [(0, source)], set() snake_case = np.full((rows, cols) , np.inf ) snake_case = 0 snake_case = np.empty((rows, cols) , dtype=_UpperCAmelCase ) snake_case = None while queue: (snake_case) = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: snake_case = [] while (x, y) != source: path.append((x, y) ) snake_case = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): snake_case = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: snake_case = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) snake_case = dist + 1 snake_case = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class lowerCamelCase ( lowerCAmelCase_ ): snake_case_ = """data2vec-text""" def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Union[str, Any]: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE, bos_token_id=__SCREAMING_SNAKE_CASE, eos_token_id=__SCREAMING_SNAKE_CASE, **__SCREAMING_SNAKE_CASE ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( lowerCAmelCase_ ): @property def _lowerCamelCase ( self ) -> Union[str, Any]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ = 0 ) -> int: snake_case = length or len(lowerCamelCase__ ) snake_case = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case , snake_case = list_data[i + 1], list_data[i] snake_case = True return list_data if not swapped else bubble_sort(lowerCamelCase__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bart''' snake_case_ = ['''past_key_values'''] snake_case_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self, lowercase_=50265, lowercase_=1024, lowercase_=12, lowercase_=4096, lowercase_=16, lowercase_=12, lowercase_=4096, lowercase_=16, lowercase_=0.0, lowercase_=0.0, lowercase_="gelu", lowercase_=1024, lowercase_=0.1, lowercase_=0.0, lowercase_=0.0, lowercase_=0.02, lowercase_=0.0, lowercase_=False, lowercase_=True, lowercase_=3, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_=True, lowercase_=2, lowercase_=2, **lowercase_, ) -> Optional[Any]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=_lowerCAmelCase, pad_token_id=_lowerCAmelCase, bos_token_id=_lowerCAmelCase, eos_token_id=_lowerCAmelCase, is_encoder_decoder=_lowerCAmelCase, decoder_start_token_id=_lowerCAmelCase, forced_eos_token_id=_lowerCAmelCase, **_lowerCAmelCase, ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated', _lowerCAmelCase ): snake_case = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' ) class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> str: if self.task in ["default", "seq2seq-lm"]: snake_case = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: snake_case = {0: 'batch'} snake_case = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: snake_case = {0: 'batch', 1: 'decoder_sequence'} snake_case = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase, direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: snake_case , snake_case = self.num_layers for i in range(_lowerCAmelCase ): snake_case = {0: 'batch', 2: 'past_sequence + sequence'} snake_case = {0: 'batch', 2: 'past_sequence + sequence'} else: snake_case = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _lowerCamelCase ( self ) -> Optional[int]: if self.task in ["default", "seq2seq-lm"]: snake_case = super().outputs else: snake_case = super(_lowerCAmelCase, self ).outputs if self.use_past: snake_case , snake_case = self.num_layers for i in range(_lowerCAmelCase ): snake_case = {0: 'batch', 2: 'past_sequence + sequence'} snake_case = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _lowerCamelCase ( self, lowercase_, lowercase_ = -1, lowercase_ = -1, lowercase_ = False, lowercase_ = None, ) -> Optional[Any]: snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Generate decoder inputs snake_case = seq_length if not self.use_past else 1 snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) snake_case = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} snake_case = dict(**_lowerCAmelCase, **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch snake_case , snake_case = common_inputs['input_ids'].shape snake_case = common_inputs['decoder_input_ids'].shape[1] snake_case , snake_case = self.num_attention_heads snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case = decoder_seq_length + 3 snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_lowerCAmelCase, _lowerCAmelCase )], dim=1 ) snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case , snake_case = self.num_layers snake_case = min(_lowerCAmelCase, _lowerCAmelCase ) snake_case = max(_lowerCAmelCase, _lowerCAmelCase ) - min_num_layers snake_case = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. snake_case = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_lowerCAmelCase, _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _lowerCamelCase ( self, lowercase_, lowercase_ = -1, lowercase_ = -1, lowercase_ = False, lowercase_ = None, ) -> str: snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch snake_case , snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values snake_case = seqlen + 2 snake_case , snake_case = self.num_layers snake_case , snake_case = self.num_attention_heads snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case = common_inputs['attention_mask'].dtype snake_case = torch.cat( [common_inputs['attention_mask'], torch.ones(_lowerCAmelCase, _lowerCAmelCase, dtype=_lowerCAmelCase )], dim=1 ) snake_case = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _lowerCamelCase ( self, lowercase_, lowercase_ = -1, lowercase_ = -1, lowercase_ = False, lowercase_ = None, ) -> List[str]: snake_case = compute_effective_axis_dimension( _lowerCAmelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) snake_case = compute_effective_axis_dimension( _lowerCAmelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence snake_case = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case = dict(tokenizer(_lowerCAmelCase, return_tensors=_lowerCAmelCase ) ) return common_inputs def _lowerCamelCase ( self, lowercase_, lowercase_ = -1, lowercase_ = -1, lowercase_ = False, lowercase_ = None, ) -> str: if self.task in ["default", "seq2seq-lm"]: snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase, batch_size=_lowerCAmelCase, seq_length=_lowerCAmelCase, is_pair=_lowerCAmelCase, framework=_lowerCAmelCase ) elif self.task == "causal-lm": snake_case = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase, batch_size=_lowerCAmelCase, seq_length=_lowerCAmelCase, is_pair=_lowerCAmelCase, framework=_lowerCAmelCase ) else: snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase, batch_size=_lowerCAmelCase, seq_length=_lowerCAmelCase, is_pair=_lowerCAmelCase, framework=_lowerCAmelCase ) return common_inputs def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Union[str, Any]: if self.task in ["default", "seq2seq-lm"]: snake_case = super()._flatten_past_key_values_(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) else: snake_case = super(_lowerCAmelCase, self )._flatten_past_key_values_( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
from __future__ import annotations class lowerCamelCase : def __init__( self, lowercase_ ) -> None: snake_case = data snake_case = None snake_case = None def __magic_name__ ( A ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __magic_name__ ( A ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __magic_name__ ( A ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __magic_name__ ( ) -> None: # Main function for testing. snake_case = Node(1 ) snake_case = Node(2 ) snake_case = Node(3 ) snake_case = Node(4 ) snake_case = Node(5 ) snake_case = Node(6 ) snake_case = Node(7 ) snake_case = Node(8 ) snake_case = Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print('Tree is: ' ) display(_A ) if __name__ == "__main__": main()
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = "▁" lowerCAmelCase_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } lowerCAmelCase_ = { "google/pegasus-xsum": 5_1_2, } class lowerCamelCase ( snake_case_ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PegasusTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_="<pad>", lowercase_="</s>", lowercase_="<unk>", lowercase_="<mask_2>", lowercase_="<mask_1>", lowercase_=None, lowercase_=103, **lowercase_, ) -> Optional[int]: snake_case = offset if additional_special_tokens is not None: if not isinstance(lowercase_, lowercase_ ): raise TypeError( F'''additional_special_tokens should be of type {type(lowercase_ )}, but is''' F''' {type(lowercase_ )}''' ) snake_case = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(lowercase_ ), self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) snake_case = additional_special_tokens_extended else: snake_case = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2, self.offset )] super().__init__( lowercase_, tokenizer_file=lowercase_, pad_token=lowercase_, eos_token=lowercase_, unk_token=lowercase_, mask_token=lowercase_, mask_token_sent=lowercase_, offset=lowercase_, additional_special_tokens=lowercase_, **lowercase_, ) snake_case = vocab_file snake_case = False if not self.vocab_file else True def _lowerCamelCase ( self, lowercase_ ) -> Optional[Any]: snake_case = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case = os.path.join( lowercase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file, lowercase_ ) return (out_vocab_file,)
356
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
0
'''simple docstring''' def __magic_name__ ( A ) -> List[Any]: return " ".join( ''.join(word[::-1] ) if len(A__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Dict: if gpta_config_file == "": snake_case = GPTaConfig() else: snake_case = GPTaConfig.from_json_file(_UpperCAmelCase ) snake_case = GPTaModel(_UpperCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model snake_case = pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _UpperCAmelCase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) lowerCAmelCase_ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCAmelCase_ = ["bart.large", "bart.large.mnli", "bart.large.cnn", "bart_xsum/model.pt"] lowerCAmelCase_ = {"bart.large": BartModel, "bart.large.mnli": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = " Hello world! cécé herlolip" lowerCAmelCase_ = [ ("model.classification_heads.mnli.dense.weight", "classification_head.dense.weight"), ("model.classification_heads.mnli.dense.bias", "classification_head.dense.bias"), ("model.classification_heads.mnli.out_proj.weight", "classification_head.out_proj.weight"), ("model.classification_heads.mnli.out_proj.bias", "classification_head.out_proj.bias"), ] def __magic_name__ ( A ) -> Tuple: snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def __magic_name__ ( A , A , A ) -> Any: snake_case = dct.pop(a__ ) snake_case = val def __magic_name__ ( A ) -> Any: snake_case = torch.load(a__ , map_location='cpu' ) snake_case = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def __magic_name__ ( A ) -> int: snake_case , snake_case = emb.weight.shape snake_case = nn.Linear(a__ , a__ , bias=a__ ) snake_case = emb.weight.data return lin_layer @torch.no_grad() def __magic_name__ ( A , A , A=None ) -> List[str]: if not os.path.exists(a__ ): snake_case = torch.hub.load('pytorch/fairseq' , a__ ).eval() else: snake_case = load_xsum_checkpoint(a__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: snake_case = checkpoint_path.replace('.' , '-' ) snake_case = BartConfig.from_pretrained(a__ ) snake_case = bart.encode(a__ ).unsqueeze(0 ) snake_case = BartTokenizer.from_pretrained(a__ ).encode(a__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(a__ , a__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": snake_case = bart.state_dict() remove_ignore_keys_(a__ ) snake_case = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(a__ , a__ , a__ ) snake_case = BartForSequenceClassification(a__ ).eval() model.load_state_dict(a__ ) snake_case = bart.predict('mnli' , a__ , return_logits=a__ ) snake_case = model(a__ )[0] # logits else: # no classification heads to worry about snake_case = bart.model.state_dict() remove_ignore_keys_(a__ ) snake_case = state_dict['decoder.embed_tokens.weight'] snake_case = bart.extract_features(a__ ) if hf_checkpoint_name == "facebook/bart-large": snake_case = BartModel(a__ ).eval() model.load_state_dict(a__ ) snake_case = model(a__ ).model[0] else: snake_case = BartForConditionalGeneration(a__ ).eval() # an existing summarization ckpt model.model.load_state_dict(a__ ) if hasattr(a__ , 'lm_head' ): snake_case = make_linear_from_emb(model.model.shared ) snake_case = model.model(a__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default=None, type=str, help="Which huggingface architecture to use: bart-large-xsum" ) lowerCAmelCase_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0
'''simple docstring''' def __magic_name__ ( A , A , A ) -> str: return round(float(moles / volume ) * nfactor ) def __magic_name__ ( A , A , A ) -> str: return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def __magic_name__ ( A , A , A ) -> int: return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def __magic_name__ ( A , A , A ) -> Any: return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): snake_case_ = KandinskyVaaControlnetPipeline snake_case_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] snake_case_ = ["""image_embeds""", """negative_image_embeds""", """hint"""] snake_case_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case_ = False @property def _lowerCamelCase ( self ) -> Any: return 32 @property def _lowerCamelCase ( self ) -> Union[str, Any]: return 32 @property def _lowerCamelCase ( self ) -> List[str]: return self.time_input_dim @property def _lowerCamelCase ( self ) -> str: return self.time_input_dim * 4 @property def _lowerCamelCase ( self ) -> Optional[Any]: return 100 @property def _lowerCamelCase ( self ) -> Any: torch.manual_seed(0 ) snake_case = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } snake_case = UNetaDConditionModel(**_a ) return model @property def _lowerCamelCase ( self ) -> Optional[Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = DDIMScheduler( num_train_timesteps=1000, beta_schedule='linear', beta_start=0.00_085, beta_end=0.012, clip_sample=_a, set_alpha_to_one=_a, steps_offset=1, prediction_type='epsilon', thresholding=_a, ) snake_case = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowerCamelCase ( self, lowercase_, lowercase_=0 ) -> Optional[Any]: snake_case = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(_a ) ).to(_a ) snake_case = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( _a ) # create hint snake_case = floats_tensor((1, 3, 64, 64), rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith('mps' ): snake_case = torch.manual_seed(_a ) else: snake_case = torch.Generator(device=_a ).manual_seed(_a ) snake_case = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def _lowerCamelCase ( self ) -> str: snake_case = """cpu""" snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**_a ) snake_case = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) snake_case = pipe(**self.get_dummy_inputs(_a ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(_a ), return_dict=_a, )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) snake_case = torch.from_numpy(np.array(_a ) ).float() / 255.0 snake_case = hint.permute(2, 0, 1 ).unsqueeze(0 ) snake_case = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(_a ) snake_case = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) snake_case = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) snake_case = """A robot, 4k photo""" snake_case = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case = pipe_prior( _a, generator=_a, num_inference_steps=5, negative_prompt='', ).to_tuple() snake_case = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case = pipeline( image_embeds=_a, negative_image_embeds=_a, hint=_a, generator=_a, num_inference_steps=100, output_type='np', ) snake_case = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_a, _a )
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['DPTFeatureExtractor'] lowerCAmelCase_ = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] lowerCAmelCase_ = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def __magic_name__ ( A ) -> int: snake_case = torch.load(__snake_case , map_location='cpu' ) return sd def __magic_name__ ( A , A , A=rename_keys_prefix ) -> Optional[Any]: snake_case = OrderedDict() snake_case = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue snake_case = key for name_pair in rename_keys_prefix: snake_case = new_key.replace(name_pair[0] , name_pair[1] ) snake_case = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately snake_case = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def __magic_name__ ( A , A ) -> Optional[int]: assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: snake_case = "pretraining" if "vcr" in checkpoint_path: snake_case = {"visual_embedding_dim": 5_1_2} elif "vqa_advanced" in checkpoint_path: snake_case = {"visual_embedding_dim": 2_0_4_8} elif "vqa" in checkpoint_path: snake_case = {"visual_embedding_dim": 2_0_4_8} elif "nlvr" in checkpoint_path: snake_case = {"visual_embedding_dim": 1_0_2_4} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: snake_case = {"visual_embedding_dim": 5_1_2} snake_case = "multichoice" elif "vqa_advanced" in checkpoint_path: snake_case = {"visual_embedding_dim": 2_0_4_8} snake_case = "vqa_advanced" elif "vqa" in checkpoint_path: snake_case = {"visual_embedding_dim": 2_0_4_8, "num_labels": 3_1_2_9} snake_case = "vqa" elif "nlvr" in checkpoint_path: snake_case = { "visual_embedding_dim": 1_0_2_4, "num_labels": 2, } snake_case = "nlvr" snake_case = VisualBertConfig(**__snake_case ) # Load State Dict snake_case = load_state_dict(__snake_case ) snake_case = get_new_dict(__snake_case , __snake_case ) if model_type == "pretraining": snake_case = VisualBertForPreTraining(__snake_case ) elif model_type == "vqa": snake_case = VisualBertForQuestionAnswering(__snake_case ) elif model_type == "nlvr": snake_case = VisualBertForVisualReasoning(__snake_case ) elif model_type == "multichoice": snake_case = VisualBertForMultipleChoice(__snake_case ) model.load_state_dict(__snake_case ) # Save Checkpoints Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") lowerCAmelCase_ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' lowerCAmelCase_ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_58_18, } def __magic_name__ ( A , A , A ) -> List[str]: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(_a )}''' ) raise ValueError(_a ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } lowerCAmelCase_ = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __magic_name__ ( A , A , A , A , A , A ) -> Any: for attribute in key.split('.' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models snake_case = 'lm_head' snake_case = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: snake_case = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __magic_name__ ( A , A , A ) -> Any: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == 'group' , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(SCREAMING_SNAKE_CASE__ )[0].split('.' )[-2] snake_case = mapped_key.replace('*' , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: snake_case = 'weight_g' elif "weight_v" in name: snake_case = 'weight_v' elif "bias" in name: snake_case = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case = 'weight' else: snake_case = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __magic_name__ ( A , A , A , A , A ) -> Optional[Any]: snake_case = full_name.split('conv_layers.' )[-1] snake_case = name.split('.' ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __magic_name__ ( A , A , A=None , A=None , A=True ) -> List[Any]: if config_path is not None: snake_case = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: snake_case = UniSpeechConfig() if is_finetuned: if dict_path: snake_case = Dictionary.load_from_json(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(SCREAMING_SNAKE_CASE__ , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) snake_case = target_dict.indices # fairseq has the <pad> and <s> switched snake_case = 4_2 snake_case = 4_3 with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE__ , ) snake_case = True if config.feat_extract_norm == 'layer' else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) snake_case = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case = UniSpeechForCTC(SCREAMING_SNAKE_CASE__ ) else: snake_case = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) snake_case = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCAmelCase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
'''simple docstring''' lowerCAmelCase_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowerCAmelCase_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def lowerCamelCase ( A , A , A ) -> list[int]: snake_case = True snake_case = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(A , A , A ) order.append(A ) return order def lowerCamelCase ( A , A , A ) -> list[int]: snake_case = True snake_case = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(A , A , A ) return component def lowerCamelCase ( A ) -> list[list[int]]: snake_case = len(A ) * [False] snake_case = {vert: [] for vert in range(len(A ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(A ) snake_case = [] for i, was_visited in enumerate(A ): if not was_visited: order += topology_sort(A , A , A ) snake_case = [] snake_case = len(A ) * [False] for i in range(len(A ) ): snake_case = order[len(A ) - i - 1] if not visited[vert]: snake_case = find_components(A , A , A ) components_list.append(A ) return components_list
368
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
0
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase : def __init__( self, lowercase_, lowercase_ = 13, lowercase_ = 64, lowercase_ = 2, lowercase_ = 3, lowercase_ = 3, lowercase_ = True, lowercase_ = True, lowercase_ = 128, lowercase_=[16, 32, 64, 128], lowercase_ = 7, lowercase_ = 4, lowercase_ = 37, lowercase_ = "gelu", lowercase_ = 0.1, lowercase_ = 0.1, lowercase_ = 10, lowercase_ = 0.02, lowercase_ = 2, lowercase_ = 1, lowercase_ = 128, lowercase_ = [2, 2, 2, 2], lowercase_ = 2, lowercase_ = 2, ) -> Any: snake_case = parent snake_case = batch_size snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = is_training snake_case = use_labels snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = type_sequence_label_size snake_case = initializer_range snake_case = encoder_stride snake_case = num_attention_outputs snake_case = embed_dim snake_case = embed_dim + 1 snake_case = resolution snake_case = depths snake_case = hidden_sizes snake_case = dim snake_case = mlp_expansion_ratio def _lowerCamelCase ( self ) -> int: snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ) -> Optional[Any]: return EfficientFormerConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowercase_, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, resolution=self.resolution, depths=self.depths, hidden_sizes=self.hidden_sizes, dim=self.dim, mlp_expansion_ratio=self.mlp_expansion_ratio, ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> List[Any]: snake_case = TFEfficientFormerModel(config=lowercase_ ) snake_case = model(lowercase_, training=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Optional[int]: snake_case = self.type_sequence_label_size snake_case = TFEfficientFormerForImageClassification(lowercase_ ) snake_case = model(lowercase_, labels=lowercase_, training=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case = 1 snake_case = TFEfficientFormerForImageClassification(lowercase_ ) snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case = model(lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self ) -> Dict: snake_case = self.prepare_config_and_inputs() snake_case , snake_case , snake_case = config_and_inputs snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): snake_case_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) snake_case_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _lowerCamelCase ( self ) -> List[Any]: snake_case = TFEfficientFormerModelTester(self ) snake_case = ConfigTester( self, config_class=lowercase_, has_text_modality=lowercase_, hidden_size=37 ) def _lowerCamelCase ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def _lowerCamelCase ( self ) -> Any: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def _lowerCamelCase ( self ) -> Optional[Any]: pass def _lowerCamelCase ( self ) -> Optional[Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = model_class(lowercase_ ) snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case = [*signature.parameters.keys()] snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1], lowercase_ ) def _lowerCamelCase ( self ) -> List[Any]: def check_hidden_states_output(lowercase_, lowercase_, lowercase_ ): snake_case = model_class(lowercase_ ) snake_case = model(**self._prepare_for_class(lowercase_, lowercase_ ), training=lowercase_ ) snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case = getattr( self.model_tester, 'expected_num_hidden_layers', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase_ ), lowercase_ ) if hasattr(self.model_tester, 'encoder_seq_length' ): snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester, 'chunk_length' ) and self.model_tester.chunk_length > 1: snake_case = seq_length * self.model_tester.chunk_length else: snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowercase_, (list, tuple) ) self.assertEqual(len(lowercase_ ), lowercase_ ) snake_case = getattr(self.model_tester, 'seq_length', lowercase_ ) snake_case = getattr(self.model_tester, 'decoder_seq_length', lowercase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ), [decoder_seq_length, self.model_tester.hidden_size], ) snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case = True check_hidden_states_output(lowercase_, lowercase_, lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case = True check_hidden_states_output(lowercase_, lowercase_, lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_=False ) -> Union[str, Any]: snake_case = super()._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _lowerCamelCase ( self ) -> str: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def _lowerCamelCase ( self ) -> int: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def _lowerCamelCase ( self ) -> Any: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = TFEfficientFormerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = True snake_case = getattr(self.model_tester, 'seq_length', lowercase_ ) snake_case = getattr(self.model_tester, 'encoder_seq_length', lowercase_ ) snake_case = getattr(self.model_tester, 'key_length', lowercase_ ) snake_case = getattr(self.model_tester, 'chunk_length', lowercase_ ) if chunk_length is not None and hasattr(self.model_tester, 'num_hashes' ): snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: snake_case = True snake_case = False snake_case = True snake_case = model_class(lowercase_ ) snake_case = model(**self._prepare_for_class(lowercase_, lowercase_ ), training=lowercase_ ) snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_ ), self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case = True snake_case = model_class(lowercase_ ) snake_case = model(**self._prepare_for_class(lowercase_, lowercase_ ), training=lowercase_ ) snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowercase_ ), self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def _lowerCamelCase ( self ) -> str: snake_case , snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model snake_case = model_class(lowercase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes snake_case = { key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=lowercase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } snake_case = model(lowercase_ ) self.assertTrue(outputs_dict is not None ) def __magic_name__ ( ) -> Union[str, Any]: snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCamelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ) -> Optional[Any]: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ) -> Optional[int]: snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=lowercase_, return_tensors='tf' ) # forward pass snake_case = model(**lowercase_, training=lowercase_ ) # verify the logits snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, lowercase_ ) snake_case = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowercase_, atol=1E-4 ) ) @slow def _lowerCamelCase ( self ) -> Optional[int]: snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) snake_case = self.default_image_processor snake_case = prepare_img() snake_case = image_processor(images=lowercase_, return_tensors='tf' ) # forward pass snake_case = model(**lowercase_, training=lowercase_ ) # verify the logits snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, lowercase_ ) snake_case = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3], lowercase_, atol=1E-4 ) )
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = "Hello world! cécé herlolip" def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = FairseqRobertaModel.from_pretrained(_lowerCamelCase ) roberta.eval() # disable dropout snake_case = roberta.model.encoder.sentence_encoder snake_case = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: snake_case = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print('Our RoBERTa config:' , _lowerCamelCase ) snake_case = XLMRobertaXLForSequenceClassification(_lowerCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(_lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings snake_case = roberta_sent_encoder.embed_tokens.weight snake_case = roberta_sent_encoder.embed_positions.weight snake_case = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. snake_case = roberta_sent_encoder.layer_norm.weight snake_case = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer snake_case = model.roberta.encoder.layer[i] snake_case = roberta_sent_encoder.layers[i] snake_case = layer.attention snake_case = roberta_layer.self_attn_layer_norm.weight snake_case = roberta_layer.self_attn_layer_norm.bias # self attention snake_case = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) snake_case = roberta_layer.self_attn.q_proj.weight snake_case = roberta_layer.self_attn.q_proj.bias snake_case = roberta_layer.self_attn.k_proj.weight snake_case = roberta_layer.self_attn.k_proj.bias snake_case = roberta_layer.self_attn.v_proj.weight snake_case = roberta_layer.self_attn.v_proj.bias # self-attention output snake_case = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape snake_case = roberta_layer.self_attn.out_proj.weight snake_case = roberta_layer.self_attn.out_proj.bias # this one is final layer norm snake_case = roberta_layer.final_layer_norm.weight snake_case = roberta_layer.final_layer_norm.bias # intermediate snake_case = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape snake_case = roberta_layer.fca.weight snake_case = roberta_layer.fca.bias # output snake_case = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape snake_case = roberta_layer.fca.weight snake_case = roberta_layer.fca.bias # end of layer if classification_head: snake_case = roberta.model.classification_heads["mnli"].dense.weight snake_case = roberta.model.classification_heads["mnli"].dense.bias snake_case = roberta.model.classification_heads["mnli"].out_proj.weight snake_case = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head snake_case = roberta.model.encoder.lm_head.dense.weight snake_case = roberta.model.encoder.lm_head.dense.bias snake_case = roberta.model.encoder.lm_head.layer_norm.weight snake_case = roberta.model.encoder.lm_head.layer_norm.bias snake_case = roberta.model.encoder.lm_head.weight snake_case = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. snake_case = roberta.encode(_lowerCamelCase ).unsqueeze(0 ) # batch of size 1 snake_case = model(_lowerCamelCase )[0] if classification_head: snake_case = roberta.model.classification_heads["mnli"](roberta.extract_features(_lowerCamelCase ) ) else: snake_case = roberta.model(_lowerCamelCase )[0] print(our_output.shape , their_output.shape ) snake_case = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 snake_case = torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(_lowerCamelCase ).mkdir(parents=_lowerCamelCase , exist_ok=_lowerCamelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) lowerCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowerCAmelCase_ = True except (ImportError, AttributeError): lowerCAmelCase_ = object def __magic_name__ ( *A , **A ) -> List[Any]: pass lowerCAmelCase_ = False lowerCAmelCase_ = logging.get_logger("transformers-cli/serving") def __magic_name__ ( A ) -> List[str]: snake_case = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowerCamelCase__ , args.host , args.port , args.workers ) class lowerCamelCase ( a_ ): snake_case_ = 42 class lowerCamelCase ( a_ ): snake_case_ = 42 snake_case_ = 42 class lowerCamelCase ( a_ ): snake_case_ = 42 class lowerCamelCase ( a_ ): snake_case_ = 42 class lowerCamelCase ( a_ ): @staticmethod def _lowerCamelCase ( lowercase_ ) -> List[str]: snake_case = parser.add_parser( 'serve', help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task', type=lowercase_, choices=get_supported_tasks(), help='The task to run the pipeline on', ) serve_parser.add_argument('--host', type=lowercase_, default='localhost', help='Interface the server will listen on.' ) serve_parser.add_argument('--port', type=lowercase_, default=8888, help='Port the serving will listen to.' ) serve_parser.add_argument('--workers', type=lowercase_, default=1, help='Number of http workers' ) serve_parser.add_argument('--model', type=lowercase_, help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config', type=lowercase_, help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer', type=lowercase_, help='Tokenizer name to use.' ) serve_parser.add_argument( '--device', type=lowercase_, default=-1, help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)', ) serve_parser.set_defaults(func=lowercase_ ) def __init__( self, lowercase_, lowercase_, lowercase_, lowercase_ ) -> Tuple: snake_case = pipeline snake_case = host snake_case = port snake_case = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install \"transformers[serving]\".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(F'''Serving model over {host}:{port}''' ) snake_case = FastAPI( routes=[ APIRoute( '/', self.model_info, response_model=lowercase_, response_class=lowercase_, methods=['GET'], ), APIRoute( '/tokenize', self.tokenize, response_model=lowercase_, response_class=lowercase_, methods=['POST'], ), APIRoute( '/detokenize', self.detokenize, response_model=lowercase_, response_class=lowercase_, methods=['POST'], ), APIRoute( '/forward', self.forward, response_model=lowercase_, response_class=lowercase_, methods=['POST'], ), ], timeout=600, ) def _lowerCamelCase ( self ) -> Union[str, Any]: run(self._app, host=self.host, port=self.port, workers=self.workers ) def _lowerCamelCase ( self ) -> Optional[Any]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def _lowerCamelCase ( self, lowercase_ = Body(lowercase_, embed=lowercase_ ), lowercase_ = Body(lowercase_, embed=lowercase_ ) ) -> Dict: try: snake_case = self._pipeline.tokenizer.tokenize(lowercase_ ) if return_ids: snake_case = self._pipeline.tokenizer.convert_tokens_to_ids(lowercase_ ) return ServeTokenizeResult(tokens=lowercase_, tokens_ids=lowercase_ ) else: return ServeTokenizeResult(tokens=lowercase_ ) except Exception as e: raise HTTPException(status_code=500, detail={'model': '', 'error': str(lowercase_ )} ) def _lowerCamelCase ( self, lowercase_ = Body(lowercase_, embed=lowercase_ ), lowercase_ = Body(lowercase_, embed=lowercase_ ), lowercase_ = Body(lowercase_, embed=lowercase_ ), ) -> Optional[int]: try: snake_case = self._pipeline.tokenizer.decode(lowercase_, lowercase_, lowercase_ ) return ServeDeTokenizeResult(model='', text=lowercase_ ) except Exception as e: raise HTTPException(status_code=500, detail={'model': '', 'error': str(lowercase_ )} ) async def _lowerCamelCase ( self, lowercase_=Body(lowercase_, embed=lowercase_ ) ) -> str: if len(lowercase_ ) == 0: return ServeForwardResult(output=[], attention=[] ) try: # Forward through the model snake_case = self._pipeline(lowercase_ ) return ServeForwardResult(output=lowercase_ ) except Exception as e: raise HTTPException(500, {'error': str(lowercase_ )} )
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __magic_name__ ( A ) -> int: snake_case = FileLock(str(tmpdir / 'foo.lock' ) ) snake_case = FileLock(str(tmpdir / 'foo.lock' ) ) snake_case = 0.01 with locka.acquire(): with pytest.raises(_SCREAMING_SNAKE_CASE ): snake_case = time.time() locka.acquire(_SCREAMING_SNAKE_CASE ) assert time.time() - _start > timeout def __magic_name__ ( A ) -> Tuple: snake_case = "a" * 1_0_0_0 + ".lock" snake_case = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(_SCREAMING_SNAKE_CASE ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 snake_case = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_SCREAMING_SNAKE_CASE ): locka.acquire(0 )
351
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
0
'''simple docstring''' import argparse import os import re lowerCAmelCase_ = 'src/diffusers' # Pattern that looks at the indentation in a line. lowerCAmelCase_ = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase_ = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase_ = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase_ = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase_ = re.compile(r"\[([^\]]+)\]") def __magic_name__ ( A ) -> List[Any]: snake_case = _re_indent.search(UpperCamelCase__ ) return "" if search is None else search.groups()[0] def __magic_name__ ( A , A="" , A=None , A=None ) -> Dict: snake_case = 0 snake_case = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(UpperCamelCase__ ): index += 1 snake_case = ['''\n'''.join(lines[:index] )] else: snake_case = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case = [lines[index]] index += 1 while index < len(UpperCamelCase__ ) and (end_prompt is None or not lines[index].startswith(UpperCamelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCamelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(UpperCamelCase__ ) ) if index < len(UpperCamelCase__ ) - 1: snake_case = [lines[index + 1]] index += 1 else: snake_case = [] else: blocks.append('\n'.join(UpperCamelCase__ ) ) snake_case = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCamelCase__ ) > 0: blocks.append('\n'.join(UpperCamelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCamelCase__ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def __magic_name__ ( A ) -> Optional[int]: def _inner(A ): return key(UpperCamelCase__ ).lower().replace('_' , '' ) return _inner def __magic_name__ ( A , A=None ) -> Optional[int]: # If no key is provided, we use a noop. def noop(A ): return x if key is None: snake_case = noop # Constants are all uppercase, they go first. snake_case = [obj for obj in objects if key(UpperCamelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case = [obj for obj in objects if key(UpperCamelCase__ )[0].isupper() and not key(UpperCamelCase__ ).isupper()] # Functions begin with a lowercase, they go last. snake_case = [obj for obj in objects if not key(UpperCamelCase__ )[0].isupper()] snake_case = ignore_underscore(UpperCamelCase__ ) return sorted(UpperCamelCase__ , key=UpperCamelCase__ ) + sorted(UpperCamelCase__ , key=UpperCamelCase__ ) + sorted(UpperCamelCase__ , key=UpperCamelCase__ ) def __magic_name__ ( A ) -> List[str]: # This inner function sort imports between [ ]. def _replace(A ): snake_case = match.groups()[0] if "," not in imports: return F'''[{imports}]''' snake_case = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(UpperCamelCase__ )] ) + "]" snake_case = import_statement.split('\n' ) if len(UpperCamelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case = 2 if lines[1].strip() == '''[''' else 1 snake_case = [(i, _re_strip_line.search(UpperCamelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case = sort_objects(UpperCamelCase__ , key=lambda A : x[1] ) snake_case = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCamelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case = keys[:-1] snake_case = get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(UpperCamelCase__ )] ) return "\n".join(UpperCamelCase__ ) else: # Finally we have to deal with imports fitting on one line snake_case = _re_bracket_content.sub(_replace , UpperCamelCase__ ) return import_statement def __magic_name__ ( A , A=True ) -> int: with open(UpperCamelCase__ , 'r' ) as f: snake_case = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case = split_code_in_indented_blocks( UpperCamelCase__ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCamelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case = main_blocks[block_idx] snake_case = block.split('\n' ) # Get to the start of the imports. snake_case = 0 while line_idx < len(UpperCamelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case = len(UpperCamelCase__ ) else: line_idx += 1 if line_idx >= len(UpperCamelCase__ ): continue # Ignore beginning and last line: they don't contain anything. snake_case = '''\n'''.join(block_lines[line_idx:-1] ) snake_case = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case = split_code_in_indented_blocks(UpperCamelCase__ , indent_level=UpperCamelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case = [(pattern.search(UpperCamelCase__ ).groups()[0] if pattern.search(UpperCamelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case = [(i, key) for i, key in enumerate(UpperCamelCase__ ) if key is not None] snake_case = [x[0] for x in sorted(UpperCamelCase__ , key=lambda A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case = 0 snake_case = [] for i in range(len(UpperCamelCase__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: snake_case = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCamelCase__ ) count += 1 # And we put our main block back together with its first and last line. snake_case = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCamelCase__ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(UpperCamelCase__ , 'w' ) as f: f.write('\n'.join(UpperCamelCase__ ) ) def __magic_name__ ( A=True ) -> str: snake_case = [] for root, _, files in os.walk(UpperCamelCase__ ): if "__init__.py" in files: snake_case = sort_imports(os.path.join(UpperCamelCase__ , '__init__.py' ) , check_only=UpperCamelCase__ ) if result: snake_case = [os.path.join(UpperCamelCase__ , '__init__.py' )] if len(UpperCamelCase__ ) > 0: raise ValueError(F'''Would overwrite {len(UpperCamelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCAmelCase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase ( _lowerCamelCase ): @require_torch def _lowerCamelCase ( self ) -> Dict: snake_case = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' snake_case = '\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n ' snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn\'t access internet\")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache snake_case = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowercase_ ) BertModel.from_pretrained(lowercase_ ) BertTokenizer.from_pretrained(lowercase_ ) pipeline(task='fill-mask', model=lowercase_ ) # baseline - just load from_pretrained with normal network snake_case = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed snake_case = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case = '1' snake_case = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) @require_torch def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' snake_case = '\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n ' snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache snake_case = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(lowercase_ ) BertModel.from_pretrained(lowercase_ ) BertTokenizer.from_pretrained(lowercase_ ) pipeline(task='fill-mask', model=lowercase_ ) # baseline - just load from_pretrained with normal network snake_case = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed snake_case = self.get_env() snake_case = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) @require_torch def _lowerCamelCase ( self ) -> List[str]: snake_case = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' snake_case = '\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n ' snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network snake_case = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed snake_case = self.get_env() snake_case = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) # next emulate no network snake_case = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case = '1' snake_case = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) @require_torch def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = '\nfrom transformers import pipeline\n ' snake_case = '\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n ' snake_case = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n ' snake_case = self.get_env() snake_case = '1' snake_case = [sys.executable, '-c', '\n'.join([load, mock, run] )] snake_case = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 1, result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode', result.stderr.decode().replace('\n', '' ), ) @require_torch def _lowerCamelCase ( self ) -> Tuple: snake_case = '\nfrom transformers import AutoModel\n ' snake_case = '\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n ' # baseline - just load from_pretrained with normal network snake_case = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed snake_case = self.get_env() snake_case = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files snake_case = '1' snake_case = subprocess.run(lowercase_, env=lowercase_, check=lowercase_, capture_output=lowercase_ ) self.assertEqual(result.returncode, 0, result.stderr ) self.assertIn('success', result.stdout.decode() )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase ( lowerCamelCase__ ): def __init__( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = True, lowercase_ = None, lowercase_ = False, lowercase_ = None, lowercase_ = True, lowercase_ = "arrow", **lowercase_, ) -> str: super().__init__( split=lowercase_, features=lowercase_, cache_dir=lowercase_, keep_in_memory=lowercase_, streaming=lowercase_, **lowercase_, ) snake_case = load_from_cache_file snake_case = file_format snake_case = Spark( df=lowercase_, features=lowercase_, cache_dir=lowercase_, working_dir=lowercase_, **lowercase_, ) def _lowerCamelCase ( self ) -> Optional[int]: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase_, file_format=self._file_format, ) return self.builder.as_dataset(split=self.split )
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "google/fnet-base": 5_1_2, "google/fnet-large": 5_1_2, } lowerCAmelCase_ = "▁" class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''token_type_ids'''] snake_case_ = FNetTokenizer def __init__( self, lowercase_=None, lowercase_=None, lowercase_=False, lowercase_=True, lowercase_=True, lowercase_="<unk>", lowercase_="[SEP]", lowercase_="<pad>", lowercase_="[CLS]", lowercase_="[MASK]", **lowercase_, ) -> List[Any]: snake_case = ( AddedToken(lowerCamelCase_, lstrip=lowerCamelCase_, rstrip=lowerCamelCase_, normalized=lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ) else mask_token ) super().__init__( lowerCamelCase_, tokenizer_file=lowerCamelCase_, do_lower_case=lowerCamelCase_, remove_space=lowerCamelCase_, keep_accents=lowerCamelCase_, unk_token=lowerCamelCase_, sep_token=lowerCamelCase_, pad_token=lowerCamelCase_, cls_token=lowerCamelCase_, mask_token=lowerCamelCase_, **lowerCamelCase_, ) snake_case = do_lower_case snake_case = remove_space snake_case = keep_accents snake_case = vocab_file snake_case = False if not self.vocab_file else True def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Any: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Union[str, Any]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case = os.path.join( lowerCamelCase_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file, lowerCamelCase_ ) return (out_vocab_file,)
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase : def __init__( self, lowercase_, lowercase_=13, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> Any: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope snake_case = self.vocab_size - 1 def _lowerCamelCase ( self ) -> List[str]: snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case = ids_tensor([self.batch_size], self.num_choices ) snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> List[str]: snake_case = OpenAIGPTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_, token_type_ids=lowercase_, head_mask=lowercase_ ) snake_case = model(lowercase_, token_type_ids=lowercase_ ) snake_case = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> Optional[int]: snake_case = OpenAIGPTLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> str: snake_case = OpenAIGPTDoubleHeadsModel(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> List[str]: snake_case = self.num_labels snake_case = OpenAIGPTForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case = model(lowercase_, token_type_ids=lowercase_, labels=lowercase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case_ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> List[str]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_=False ) -> Tuple: snake_case = super()._prepare_for_class(lowercase_, lowercase_, return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=lowercase_, ) snake_case = inputs_dict['labels'] snake_case = inputs_dict['labels'] snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=lowercase_, ) snake_case = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowercase_ ) return inputs_dict def _lowerCamelCase ( self ) -> int: snake_case = OpenAIGPTModelTester(self ) snake_case = ConfigTester(self, config_class=lowercase_, n_embd=37 ) def _lowerCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Tuple: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase_ ) def _lowerCamelCase ( self ) -> int: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase_ ) def _lowerCamelCase ( self ) -> List[str]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase_ ) def _lowerCamelCase ( self ) -> str: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ ) @slow def _lowerCamelCase ( self ) -> List[str]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = OpenAIGPTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self ) -> List[str]: snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowercase_ ) snake_case = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=lowercase_ ) # the president is snake_case = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case = model.generate(lowercase_, do_sample=lowercase_ ) self.assertListEqual(output_ids[0].tolist(), lowercase_ )
356
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( A__ , A__ , unittest.TestCase ): snake_case_ = CycleDiffusionPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } snake_case_ = PipelineTesterMixin.required_optional_params - {'latents'} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) snake_case = DDIMScheduler( beta_start=0.00_085, beta_end=0.012, beta_schedule='scaled_linear', num_train_timesteps=1000, clip_sample=lowerCamelCase__, set_alpha_to_one=lowerCamelCase__, ) torch.manual_seed(0 ) snake_case = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) snake_case = CLIPTextModel(lowerCamelCase__ ) snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self, lowercase_, lowercase_=0 ) -> List[str]: snake_case = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) snake_case = image / 2 + 0.5 if str(lowerCamelCase__ ).startswith('mps' ): snake_case = torch.manual_seed(lowerCamelCase__ ) else: snake_case = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) snake_case = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self ) -> int: snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = CycleDiffusionPipeline(**lowerCamelCase__ ) snake_case = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) snake_case = self.get_dummy_inputs(lowerCamelCase__ ) snake_case = pipe(**lowerCamelCase__ ) snake_case = output.images snake_case = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU' ) def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCamelCase__, 'half' ): snake_case = module.half() snake_case = CycleDiffusionPipeline(**lowerCamelCase__ ) snake_case = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) snake_case = self.get_dummy_inputs(lowerCamelCase__ ) snake_case = pipe(**lowerCamelCase__ ) snake_case = output.images snake_case = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self ) -> Optional[Any]: return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def _lowerCamelCase ( self ) -> Optional[Any]: return super().test_inference_batch_single_identical() @skip_mps def _lowerCamelCase ( self ) -> Optional[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self ) -> List[Any]: return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self ) -> Tuple: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> Dict: snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) snake_case = init_image.resize((512, 512) ) snake_case = 'CompVis/stable-diffusion-v1-4' snake_case = DDIMScheduler.from_pretrained(lowerCamelCase__, subfolder='scheduler' ) snake_case = CycleDiffusionPipeline.from_pretrained( lowerCamelCase__, scheduler=lowerCamelCase__, safety_checker=lowerCamelCase__, torch_dtype=torch.floataa, revision='fp16' ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() snake_case = 'A black colored car' snake_case = 'A blue colored car' snake_case = torch.manual_seed(0 ) snake_case = pipe( prompt=lowerCamelCase__, source_prompt=lowerCamelCase__, image=lowerCamelCase__, num_inference_steps=100, eta=0.1, strength=0.85, guidance_scale=3, source_guidance_scale=1, generator=lowerCamelCase__, output_type='np', ) snake_case = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _lowerCamelCase ( self ) -> Dict: snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) snake_case = init_image.resize((512, 512) ) snake_case = 'CompVis/stable-diffusion-v1-4' snake_case = DDIMScheduler.from_pretrained(lowerCamelCase__, subfolder='scheduler' ) snake_case = CycleDiffusionPipeline.from_pretrained(lowerCamelCase__, scheduler=lowerCamelCase__, safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() snake_case = 'A black colored car' snake_case = 'A blue colored car' snake_case = torch.manual_seed(0 ) snake_case = pipe( prompt=lowerCamelCase__, source_prompt=lowerCamelCase__, image=lowerCamelCase__, num_inference_steps=100, eta=0.1, strength=0.85, guidance_scale=3, source_guidance_scale=1, generator=lowerCamelCase__, output_type='np', ) snake_case = output.images assert np.abs(image - expected_image ).max() < 2E-2
357
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''OwlViTFeatureExtractor'''] lowerCAmelCase_ = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCAmelCase_ = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" lowerCAmelCase_ = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" lowerCAmelCase_ = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n" def __magic_name__ ( A , A ) -> Dict: return float((preds == labels).mean() ) def __magic_name__ ( A , A , A="binary" ) -> Optional[Any]: snake_case = simple_accuracy(_lowercase , _lowercase ) snake_case = float(fa_score(y_true=_lowercase , y_pred=_lowercase , average=_lowercase ) ) return { "accuracy": acc, "f1": fa, } def __magic_name__ ( A , A ) -> List[Any]: snake_case = {} for id_pred, label in zip(_lowercase , _lowercase ): snake_case = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' snake_case = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: snake_case = [(pred, label)] snake_case , snake_case = [], [] for question, preds_labels in question_map.items(): snake_case , snake_case = zip(*_lowercase ) snake_case = fa_score(y_true=_lowercase , y_pred=_lowercase , average='macro' ) fas.append(_lowercase ) snake_case = int(sum(pred == label for pred, label in preds_labels ) == len(_lowercase ) ) ems.append(_lowercase ) snake_case = float(sum(_lowercase ) / len(_lowercase ) ) snake_case = sum(_lowercase ) / len(_lowercase ) snake_case = float(fa_score(y_true=_lowercase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def _lowerCamelCase ( self ) -> Optional[Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(self._get_feature_types() ), codebase_urls=[], reference_urls=[], format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None, ) def _lowerCamelCase ( self ) -> List[Any]: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Optional[int]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(__A, __A )} elif self.config_name == "cb": return acc_and_fa(__A, __A, fa_avg='macro' ) elif self.config_name == "record": snake_case = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] snake_case = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(__A, __A )[0] elif self.config_name == "multirc": return evaluate_multirc(__A, __A ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(__A, __A )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__ ( A , A ) -> List[str]: snake_case = old_name if "patch_embed" in old_name: snake_case = old_name.split('.' ) if layer == "0": snake_case = old_name.replace('0' , 'convolution1' ) elif layer == "1": snake_case = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": snake_case = old_name.replace('3' , 'convolution2' ) else: snake_case = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(R'\d\.\d' , A ): snake_case = R"""\b\d{2}\b""" if bool(re.search(A , A ) ): snake_case = re.search(R'\d\.\d\d.' , A ).group() else: snake_case = re.search(R'\d\.\d.' , A ).group() if int(match[0] ) < 6: snake_case = old_name.replace(A , '' ) snake_case = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) snake_case = """intermediate_stages.""" + trimmed_name else: snake_case = old_name.replace(A , '' ) if int(match[2] ) < num_meta4D_last_stage: snake_case = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: snake_case = str(int(match[2] ) - num_meta4D_last_stage ) snake_case = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: snake_case = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: snake_case = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: snake_case = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: snake_case = trimmed_name.replace('fc2' , 'linear_out' ) snake_case = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R'.\d.' , A ): snake_case = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: snake_case = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: snake_case = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: snake_case = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: snake_case = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: snake_case = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case = new_name.replace('norm' , 'layernorm' ) snake_case = """efficientformer.""" + new_name else: snake_case = """efficientformer.encoder.""" + new_name return new_name def __magic_name__ ( A , A ) -> Union[str, Any]: for key in checkpoint.copy().keys(): snake_case = checkpoint.pop(A ) snake_case = val return checkpoint def __magic_name__ ( ) -> int: snake_case = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case = Image.open(requests.get(A , stream=A ).raw ) return image def __magic_name__ ( A , A , A , A ) -> Optional[int]: snake_case = torch.load(A , map_location='cpu' )["""model"""] snake_case = EfficientFormerConfig.from_json_file(A ) snake_case = EfficientFormerForImageClassificationWithTeacher(A ) snake_case = """_""".join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) snake_case = config.depths[-1] - config.num_metaad_blocks + 1 snake_case = convert_torch_checkpoint(A , A ) model.load_state_dict(A ) model.eval() snake_case = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image snake_case = prepare_img() snake_case = 2_5_6 snake_case = 2_2_4 snake_case = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) snake_case = processor(images=A , return_tensors='pt' ).pixel_values # original processing pipeline snake_case = Compose( [ Resize(A , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(A ), ToTensor(), Normalize(A , A ), ] ) snake_case = image_transforms(A ).unsqueeze(0 ) assert torch.allclose(A , A ) snake_case = model(A ) snake_case = outputs.logits snake_case = (1, 1_0_0_0) if "l1" in model_name: snake_case = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :1_0] , A , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :1_0] , A , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(A ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='Add model' , use_temp_dir=A , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message='Add image processor' , use_temp_dir=A , ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowerCAmelCase_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = jnp.floataa snake_case_ = True def _lowerCamelCase ( self ) -> List[Any]: super().setup() snake_case = nn.Dense(5, dtype=self.dtype ) def __call__( self, *lowercase_, **lowercase_ ) -> int: snake_case = super().__call__(*lowerCamelCase_, **lowerCamelCase_ ) snake_case = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = FlaxBigBirdForNaturalQuestionsModule def __magic_name__ ( A , A , A , A , A , A ) -> Optional[Any]: def cross_entropy(A , A , A=None ): snake_case = logits.shape[-1] snake_case = (labels[..., None] == jnp.arange(_a )[None]).astype('f4' ) snake_case = jax.nn.log_softmax(_a , axis=-1 ) snake_case = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: snake_case = reduction(_a ) return loss snake_case = partial(_a , reduction=jnp.mean ) snake_case = cross_entropy(_a , _a ) snake_case = cross_entropy(_a , _a ) snake_case = cross_entropy(_a , _a ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCamelCase : snake_case_ = '''google/bigbird-roberta-base''' snake_case_ = 3000 snake_case_ = 10500 snake_case_ = 128 snake_case_ = 3 snake_case_ = 1 snake_case_ = 5 # tx_args snake_case_ = 3e-5 snake_case_ = 0.0 snake_case_ = 20000 snake_case_ = 0.0_095 snake_case_ = '''bigbird-roberta-natural-questions''' snake_case_ = '''training-expt''' snake_case_ = '''data/nq-training.jsonl''' snake_case_ = '''data/nq-validation.jsonl''' def _lowerCamelCase ( self ) -> int: os.makedirs(self.base_dir, exist_ok=lowerCamelCase_ ) snake_case = os.path.join(self.base_dir, self.save_dir ) snake_case = self.batch_size_per_device * jax.device_count() @dataclass class lowerCamelCase : snake_case_ = 42 snake_case_ = 4096 # no dynamic padding on TPUs def __call__( self, lowercase_ ) -> Tuple: snake_case = self.collate_fn(lowerCamelCase_ ) snake_case = jax.tree_util.tree_map(lowerCamelCase_, lowerCamelCase_ ) return batch def _lowerCamelCase ( self, lowercase_ ) -> Dict: snake_case , snake_case = self.fetch_inputs(features['input_ids'] ) snake_case = { 'input_ids': jnp.array(lowerCamelCase_, dtype=jnp.intaa ), 'attention_mask': jnp.array(lowerCamelCase_, dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'], dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'], dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'], dtype=jnp.intaa ), } return batch def _lowerCamelCase ( self, lowercase_ ) -> Union[str, Any]: snake_case = [self._fetch_inputs(lowerCamelCase_ ) for ids in input_ids] return zip(*lowerCamelCase_ ) def _lowerCamelCase ( self, lowercase_ ) -> Tuple: snake_case = [1 for _ in range(len(lowerCamelCase_ ) )] while len(lowerCamelCase_ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __magic_name__ ( A , A , A=None ) -> Any: if seed is not None: snake_case = dataset.shuffle(seed=_a ) for i in range(len(_a ) // batch_size ): snake_case = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_a ) @partial(jax.pmap , axis_name='batch' ) def __magic_name__ ( A , A , **A ) -> List[str]: def loss_fn(A ): snake_case = model_inputs.pop('start_labels' ) snake_case = model_inputs.pop('end_labels' ) snake_case = model_inputs.pop('pooled_labels' ) snake_case = state.apply_fn(**_a , params=_a , dropout_rng=_a , train=_a ) snake_case , snake_case , snake_case = outputs return state.loss_fn( _a , _a , _a , _a , _a , _a , ) snake_case , snake_case = jax.random.split(_a ) snake_case = jax.value_and_grad(_a ) snake_case , snake_case = grad_fn(state.params ) snake_case = jax.lax.pmean({'loss': loss} , axis_name='batch' ) snake_case = jax.lax.pmean(_a , 'batch' ) snake_case = state.apply_gradients(grads=_a ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def __magic_name__ ( A , **A ) -> Any: snake_case = model_inputs.pop('start_labels' ) snake_case = model_inputs.pop('end_labels' ) snake_case = model_inputs.pop('pooled_labels' ) snake_case = state.apply_fn(**_a , params=state.params , train=_a ) snake_case , snake_case , snake_case = outputs snake_case = state.loss_fn(_a , _a , _a , _a , _a , _a ) snake_case = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class lowerCamelCase ( train_state.TrainState ): snake_case_ = struct.field(pytree_node=__lowerCAmelCase ) @dataclass class lowerCamelCase : snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = None def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_=None ) -> List[str]: snake_case = model.params snake_case = TrainState.create( apply_fn=model.__call__, params=lowerCamelCase_, tx=lowerCamelCase_, loss_fn=lowerCamelCase_, ) if ckpt_dir is not None: snake_case , snake_case , snake_case , snake_case , snake_case = restore_checkpoint(lowerCamelCase_, lowerCamelCase_ ) snake_case = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } snake_case , snake_case = build_tx(**lowerCamelCase_ ) snake_case = train_state.TrainState( step=lowerCamelCase_, apply_fn=model.__call__, params=lowerCamelCase_, tx=lowerCamelCase_, opt_state=lowerCamelCase_, ) snake_case = args snake_case = data_collator snake_case = lr snake_case = params snake_case = jax_utils.replicate(lowerCamelCase_ ) return state def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Any: snake_case = self.args snake_case = len(lowerCamelCase_ ) // args.batch_size snake_case = jax.random.PRNGKey(0 ) snake_case = jax.random.split(lowerCamelCase_, jax.device_count() ) for epoch in range(args.max_epochs ): snake_case = jnp.array(0, dtype=jnp.floataa ) snake_case = get_batched_dataset(lowerCamelCase_, args.batch_size, seed=lowerCamelCase_ ) snake_case = 0 for batch in tqdm(lowerCamelCase_, total=lowerCamelCase_, desc=F'''Running EPOCH-{epoch}''' ): snake_case = self.data_collator(lowerCamelCase_ ) snake_case , snake_case , snake_case = self.train_step_fn(lowerCamelCase_, lowerCamelCase_, **lowerCamelCase_ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: snake_case = jax_utils.unreplicate(state.step ) snake_case = running_loss.item() / i snake_case = self.scheduler_fn(state_step - 1 ) snake_case = self.evaluate(lowerCamelCase_, lowerCamelCase_ ) snake_case = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowerCamelCase_ ) ) self.logger.log(lowerCamelCase_, commit=lowerCamelCase_ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''', state=lowerCamelCase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> int: snake_case = get_batched_dataset(lowerCamelCase_, self.args.batch_size ) snake_case = len(lowerCamelCase_ ) // self.args.batch_size snake_case = jnp.array(0, dtype=jnp.floataa ) snake_case = 0 for batch in tqdm(lowerCamelCase_, total=lowerCamelCase_, desc='Evaluating ... ' ): snake_case = self.data_collator(lowerCamelCase_ ) snake_case = self.val_step_fn(lowerCamelCase_, **lowerCamelCase_ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> List[Any]: snake_case = jax_utils.unreplicate(lowerCamelCase_ ) print(F'''SAVING CHECKPOINT IN {save_dir}''', end=' ... ' ) self.model_save_fn(lowerCamelCase_, params=state.params ) with open(os.path.join(lowerCamelCase_, 'opt_state.msgpack' ), 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args, os.path.join(lowerCamelCase_, 'args.joblib' ) ) joblib.dump(self.data_collator, os.path.join(lowerCamelCase_, 'data_collator.joblib' ) ) with open(os.path.join(lowerCamelCase_, 'training_state.json' ), 'w' ) as f: json.dump({'step': state.step.item()}, lowerCamelCase_ ) print('DONE' ) def __magic_name__ ( A , A ) -> Dict: print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=' ... ' ) with open(os.path.join(_a , 'flax_model.msgpack' ) , 'rb' ) as f: snake_case = from_bytes(state.params , f.read() ) with open(os.path.join(_a , 'opt_state.msgpack' ) , 'rb' ) as f: snake_case = from_bytes(state.opt_state , f.read() ) snake_case = joblib.load(os.path.join(_a , 'args.joblib' ) ) snake_case = joblib.load(os.path.join(_a , 'data_collator.joblib' ) ) with open(os.path.join(_a , 'training_state.json' ) , 'r' ) as f: snake_case = json.load(_a ) snake_case = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def __magic_name__ ( A , A , A , A ) -> Union[str, Any]: snake_case = num_train_steps - warmup_steps snake_case = optax.linear_schedule(init_value=_a , end_value=_a , transition_steps=_a ) snake_case = optax.linear_schedule(init_value=_a , end_value=1E-7 , transition_steps=_a ) snake_case = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __magic_name__ ( A , A , A , A , A ) -> Any: def weight_decay_mask(A ): snake_case = traverse_util.flatten_dict(_a ) snake_case = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(_a ) snake_case = scheduler_fn(_a , _a , _a , _a ) snake_case = optax.adamw(learning_rate=_a , weight_decay=_a , mask=_a ) return tx, lr
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' def __magic_name__ ( ) -> Tuple: snake_case = [] snake_case = 1 while len(__lowerCAmelCase ) < 1E6: constant.append(str(__lowerCAmelCase ) ) i += 1 snake_case = ''''''.join(__lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' import math from datetime import datetime, timedelta def __magic_name__ ( A ) -> datetime: snake_case = year % 1_9 snake_case = year % 4 snake_case = year % 7 snake_case = math.floor(year / 1_0_0 ) snake_case = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) snake_case = leap_day_inhibits / 4 snake_case = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 snake_case = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon snake_case = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(_lowercase , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(_lowercase , 4 , 1_8 ) else: return datetime(_lowercase , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase_ = '''will be''' if year > datetime.now().year else '''was''' print(f"Easter in {year} {tense} {gauss_easter(year)}")
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): snake_case_ = IFInpaintingPipeline snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def _lowerCamelCase ( self ) -> Union[str, Any]: return self._get_dummy_components() def _lowerCamelCase ( self, lowercase_, lowercase_=0 ) -> Optional[Any]: if str(lowerCAmelCase_ ).startswith('mps' ): snake_case = torch.manual_seed(lowerCAmelCase_ ) else: snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) snake_case = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) snake_case = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def _lowerCamelCase ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowerCamelCase ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def _lowerCamelCase ( self ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowerCamelCase ( self ) -> Union[str, Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowerCamelCase ( self ) -> Dict: self._test_save_load_local() def _lowerCamelCase ( self ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2, )
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase_ = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class lowerCamelCase ( unittest.TestCase ): snake_case_ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case_ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case_ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case_ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> Dict: snake_case = ZeroShotClassificationPipeline( model=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_, candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Dict: snake_case = classifier('Who are you voting for in 2020?', candidate_labels='politics' ) self.assertEqual(SCREAMING_SNAKE_CASE_, {'sequence': ANY(SCREAMING_SNAKE_CASE_ ), 'labels': [ANY(SCREAMING_SNAKE_CASE_ )], 'scores': [ANY(SCREAMING_SNAKE_CASE_ )]} ) # No kwarg snake_case = classifier('Who are you voting for in 2020?', ['politics'] ) self.assertEqual(SCREAMING_SNAKE_CASE_, {'sequence': ANY(SCREAMING_SNAKE_CASE_ ), 'labels': [ANY(SCREAMING_SNAKE_CASE_ )], 'scores': [ANY(SCREAMING_SNAKE_CASE_ )]} ) snake_case = classifier('Who are you voting for in 2020?', candidate_labels=['politics'] ) self.assertEqual(SCREAMING_SNAKE_CASE_, {'sequence': ANY(SCREAMING_SNAKE_CASE_ ), 'labels': [ANY(SCREAMING_SNAKE_CASE_ )], 'scores': [ANY(SCREAMING_SNAKE_CASE_ )]} ) snake_case = classifier('Who are you voting for in 2020?', candidate_labels='politics, public health' ) self.assertEqual( SCREAMING_SNAKE_CASE_, {'sequence': ANY(SCREAMING_SNAKE_CASE_ ), 'labels': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], 'scores': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ), 1.0 ) snake_case = classifier('Who are you voting for in 2020?', candidate_labels=['politics', 'public health'] ) self.assertEqual( SCREAMING_SNAKE_CASE_, {'sequence': ANY(SCREAMING_SNAKE_CASE_ ), 'labels': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], 'scores': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ), 1.0 ) snake_case = classifier( 'Who are you voting for in 2020?', candidate_labels='politics', hypothesis_template='This text is about {}' ) self.assertEqual(SCREAMING_SNAKE_CASE_, {'sequence': ANY(SCREAMING_SNAKE_CASE_ ), 'labels': [ANY(SCREAMING_SNAKE_CASE_ )], 'scores': [ANY(SCREAMING_SNAKE_CASE_ )]} ) # https://github.com/huggingface/transformers/issues/13846 snake_case = classifier(['I am happy'], ['positive', 'negative'] ) self.assertEqual( SCREAMING_SNAKE_CASE_, [ {'sequence': ANY(SCREAMING_SNAKE_CASE_ ), 'labels': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], 'scores': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(1 ) ], ) snake_case = classifier(['I am happy', 'I am sad'], ['positive', 'negative'] ) self.assertEqual( SCREAMING_SNAKE_CASE_, [ {'sequence': ANY(SCREAMING_SNAKE_CASE_ ), 'labels': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], 'scores': [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(2 ) ], ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier('', candidate_labels='politics' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier(SCREAMING_SNAKE_CASE_, candidate_labels='politics' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier('Who are you voting for in 2020?', candidate_labels='' ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier('Who are you voting for in 2020?', candidate_labels=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( 'Who are you voting for in 2020?', candidate_labels='politics', hypothesis_template='Not formatting template', ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( 'Who are you voting for in 2020?', candidate_labels='politics', hypothesis_template=SCREAMING_SNAKE_CASE_, ) self.run_entailment_id(SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase ( self, lowercase_ ) -> Union[str, Any]: snake_case = zero_shot_classifier.model.config snake_case = config.labelaid snake_case = zero_shot_classifier.entailment_id snake_case = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1 ) snake_case = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) snake_case = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) snake_case = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2 ) snake_case = original_labelaid self.assertEqual(SCREAMING_SNAKE_CASE_, zero_shot_classifier.entailment_id ) @require_torch def _lowerCamelCase ( self ) -> str: snake_case = pipeline( 'zero-shot-classification', model='sshleifer/tiny-distilbert-base-cased-distilled-squad', framework='pt', ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100, candidate_labels=['politics', 'public health', 'science'] ) @require_torch def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = pipeline( 'zero-shot-classification', model='sshleifer/tiny-distilbert-base-cased-distilled-squad', framework='pt', ) snake_case = zero_shot_classifier( 'Who are you voting for in 2020?', candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], }, ) @require_tf def _lowerCamelCase ( self ) -> int: snake_case = pipeline( 'zero-shot-classification', model='sshleifer/tiny-distilbert-base-cased-distilled-squad', framework='tf', ) snake_case = zero_shot_classifier( 'Who are you voting for in 2020?', candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.333, 0.333, 0.333], }, ) @slow @require_torch def _lowerCamelCase ( self ) -> Optional[int]: snake_case = pipeline('zero-shot-classification', model='roberta-large-mnli', framework='pt' ) snake_case = zero_shot_classifier( 'Who are you voting for in 2020?', candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], }, ) snake_case = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.', candidate_labels=['machine learning', 'statistics', 'translation', 'vision'], multi_label=SCREAMING_SNAKE_CASE_, ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], }, ) @slow @require_tf def _lowerCamelCase ( self ) -> Optional[int]: snake_case = pipeline('zero-shot-classification', model='roberta-large-mnli', framework='tf' ) snake_case = zero_shot_classifier( 'Who are you voting for in 2020?', candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.976, 0.015, 0.009], }, ) snake_case = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.', candidate_labels=['machine learning', 'statistics', 'translation', 'vision'], multi_label=SCREAMING_SNAKE_CASE_, ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.817, 0.713, 0.018, 0.018], }, )
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' def __magic_name__ ( A ) -> Optional[Any]: snake_case = min(SCREAMING_SNAKE_CASE__ ) # min() finds the minimum value snake_case = max(SCREAMING_SNAKE_CASE__ ) # max() finds the maximum value snake_case = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size snake_case = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. snake_case = 0 for count in range(SCREAMING_SNAKE_CASE__ ): while holes[count] > 0: holes[count] -= 1 snake_case = count + min_val i += 1 def __magic_name__ ( ) -> Union[str, Any]: snake_case = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(SCREAMING_SNAKE_CASE__ ) print('Sorted order is:' , ' '.join(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": main()
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
'''simple docstring''' from __future__ import annotations class lowerCamelCase : def __init__( self, lowercase_, lowercase_ ) -> Union[str, Any]: snake_case = text, pattern snake_case = len(lowercase_ ), len(lowercase_ ) def _lowerCamelCase ( self, lowercase_ ) -> int: for i in range(self.patLen - 1, -1, -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self, lowercase_ ) -> int: for i in range(self.patLen - 1, -1, -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self ) -> list[int]: snake_case = [] for i in range(self.textLen - self.patLen + 1 ): snake_case = self.mismatch_in_text(lowercase_ ) if mismatch_index == -1: positions.append(lowercase_ ) else: snake_case = self.match_in_pattern(self.text[mismatch_index] ) snake_case = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase_ = "ABAABA" lowerCAmelCase_ = "AB" lowerCAmelCase_ = BoyerMooreSearch(text, pattern) lowerCAmelCase_ = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
368
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
0
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowerCAmelCase_ = 2_9_9_7_9_2_4_5_8 # Symbols lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = symbols("ct x y z") def __magic_name__ ( A ) -> List[str]: if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def __magic_name__ ( A ) -> Tuple: return 1 / sqrt(1 - beta(__UpperCamelCase ) ** 2 ) def __magic_name__ ( A ) -> int: return np.array( [ [gamma(__UpperCamelCase ), -gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), 0, 0], [-gamma(__UpperCamelCase ) * beta(__UpperCamelCase ), gamma(__UpperCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __magic_name__ ( A , A = None ) -> List[str]: if event is None: snake_case = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__UpperCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowerCAmelCase_ = transform(2_9_9_7_9_2_4_5) print("Example of four vector: ") print(f"ct\' = {four_vector[0]}") print(f"x\' = {four_vector[1]}") print(f"y\' = {four_vector[2]}") print(f"z\' = {four_vector[3]}") # Substitute symbols with numerical values lowerCAmelCase_ = {ct: c, x: 1, y: 1, z: 1} lowerCAmelCase_ = [four_vector[i].subs(sub_dict) for i in range(4)] print(f"\n{numerical_vector}")
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __magic_name__ ( A , A , **A ) -> Tuple: snake_case = AutoConfig.from_pretrained(a__ , **a__ ) snake_case = AutoModelForSeqaSeqLM.from_config(a__ ) model.save_pretrained(a__ ) AutoTokenizer.from_pretrained(a__ ).save_pretrained(a__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
371
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''''' snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str: super().__init__(self, **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case = fsspec.open( lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) snake_case = os.path.basename(self.file.path.split('::' )[0] ) snake_case = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) snake_case = None @classmethod def _lowerCamelCase ( cls, lowercase_ ) -> Any: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def _lowerCamelCase ( self ) -> Optional[Any]: if self.dir_cache is None: snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} snake_case = {f['name']: f} def _lowerCamelCase ( self, lowercase_ ) -> str: return self.file.open().read() def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any: snake_case = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''bz2''' snake_case_ = '''bz2''' snake_case_ = '''.bz2''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''gzip''' snake_case_ = '''gzip''' snake_case_ = '''.gz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''lz4''' snake_case_ = '''lz4''' snake_case_ = '''.lz4''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''xz''' snake_case_ = '''xz''' snake_case_ = '''.xz''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''zstd''' snake_case_ = '''zstd''' snake_case_ = '''.zst''' def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]: super().__init__( fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case = self.file.__enter__ class lowerCamelCase : def __init__( self, lowercase_ ) -> List[Any]: snake_case = file_ def __enter__( self ) -> Dict: self._file.__enter__() return self def __exit__( self, *lowercase_, **lowercase_ ) -> Dict: self._file.__exit__(*lowercase_, **lowercase_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _lowerCamelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self, lowercase_ ) -> List[Any]: return getattr(self._file, lowercase_ ) def fixed_enter(*lowercase_, **lowercase_ ): return WrappedFile(_enter(*lowercase_, **lowercase_ ) ) snake_case = fixed_enter
332
0
'''simple docstring''' def __magic_name__ ( A , A ) -> List[Any]: return "\n".join( F'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
350
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A , A , A ) -> int | float: if len(A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] snake_case = (left + right) >> 1 # the middle snake_case = find_max(A , A , A ) # find max in range[left, mid] snake_case = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
332
0
'''simple docstring''' class lowerCamelCase : def __init__( self, lowercase_ ) -> None: snake_case = len(lowercase_ ) snake_case = [0] * len_array if len_array > 0: snake_case = array[0] for i in range(1, lowercase_ ): snake_case = self.prefix_sum[i - 1] + array[i] def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _lowerCamelCase ( self, lowercase_ ) -> bool: snake_case = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): @register_to_config def __init__( self, lowercase_ = 3, lowercase_ = 3, lowercase_ = ("DownEncoderBlock2D",), lowercase_ = ("UpDecoderBlock2D",), lowercase_ = (64,), lowercase_ = 1, lowercase_ = "silu", lowercase_ = 3, lowercase_ = 32, lowercase_ = 256, lowercase_ = 32, lowercase_ = None, lowercase_ = 0.18_215, lowercase_ = "group", ) -> str: super().__init__() # pass init params to Encoder snake_case = Encoder( in_channels=lowercase_, out_channels=lowercase_, down_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, double_z=lowercase_, ) snake_case = vq_embed_dim if vq_embed_dim is not None else latent_channels snake_case = nn.Convad(lowercase_, lowercase_, 1 ) snake_case = VectorQuantizer(lowercase_, lowercase_, beta=0.25, remap=lowercase_, sane_index_shape=lowercase_ ) snake_case = nn.Convad(lowercase_, lowercase_, 1 ) # pass init params to Decoder snake_case = Decoder( in_channels=lowercase_, out_channels=lowercase_, up_block_types=lowercase_, block_out_channels=lowercase_, layers_per_block=lowercase_, act_fn=lowercase_, norm_num_groups=lowercase_, norm_type=lowercase_, ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> VQEncoderOutput: snake_case = self.encoder(lowercase_ ) snake_case = self.quant_conv(lowercase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowercase_ ) @apply_forward_hook def _lowerCamelCase ( self, lowercase_, lowercase_ = False, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: snake_case , snake_case , snake_case = self.quantize(lowercase_ ) else: snake_case = h snake_case = self.post_quant_conv(lowercase_ ) snake_case = self.decoder(lowercase_, quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case = sample snake_case = self.encode(lowercase_ ).latents snake_case = self.decode(lowercase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowercase_ )
332
0
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class lowerCamelCase ( tf.keras.layers.Layer ): def __init__( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_=1, lowercase_=False, **lowercase_ ) -> Dict: super().__init__(**snake_case_ ) snake_case = vocab_size snake_case = d_embed snake_case = d_proj snake_case = cutoffs + [vocab_size] snake_case = [0] + self.cutoffs snake_case = div_val snake_case = self.cutoffs[0] snake_case = len(self.cutoffs ) - 1 snake_case = self.shortlist_size + self.n_clusters snake_case = keep_order snake_case = [] snake_case = [] def _lowerCamelCase ( self, lowercase_ ) -> str: if self.n_clusters > 0: snake_case = self.add_weight( shape=(self.n_clusters, self.d_embed), initializer='zeros', trainable=snake_case_, name='cluster_weight' ) snake_case = self.add_weight( shape=(self.n_clusters,), initializer='zeros', trainable=snake_case_, name='cluster_bias' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: snake_case = self.add_weight( shape=(self.d_embed, self.d_proj), initializer='zeros', trainable=snake_case_, name=F'''out_projs_._{i}''', ) self.out_projs.append(snake_case_ ) else: self.out_projs.append(snake_case_ ) snake_case = self.add_weight( shape=(self.vocab_size, self.d_embed), initializer='zeros', trainable=snake_case_, name=F'''out_layers_._{i}_._weight''', ) snake_case = self.add_weight( shape=(self.vocab_size,), initializer='zeros', trainable=snake_case_, name=F'''out_layers_._{i}_._bias''', ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case = self.d_embed // (self.div_val**i) snake_case = self.add_weight( shape=(d_emb_i, self.d_proj), initializer='zeros', trainable=snake_case_, name=F'''out_projs_._{i}''' ) self.out_projs.append(snake_case_ ) snake_case = self.add_weight( shape=(r_idx - l_idx, d_emb_i), initializer='zeros', trainable=snake_case_, name=F'''out_layers_._{i}_._weight''', ) snake_case = self.add_weight( shape=(r_idx - l_idx,), initializer='zeros', trainable=snake_case_, name=F'''out_layers_._{i}_._bias''', ) self.out_layers.append((weight, bias) ) super().build(snake_case_ ) @staticmethod def _lowerCamelCase ( lowercase_, lowercase_, lowercase_, lowercase_=None ) -> Dict: snake_case = x if proj is not None: snake_case = tf.einsum('ibd,ed->ibe', snake_case_, snake_case_ ) return tf.einsum('ibd,nd->ibn', snake_case_, snake_case_ ) + b @staticmethod def _lowerCamelCase ( lowercase_, lowercase_ ) -> str: snake_case = shape_list(snake_case_ ) snake_case = tf.range(lp_size[0], dtype=target.dtype ) snake_case = tf.stack([r, target], 1 ) return tf.gather_nd(snake_case_, snake_case_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_=True, lowercase_=False ) -> int: snake_case = 0 if self.n_clusters == 0: snake_case = self._logit(snake_case_, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0] ) if target is not None: snake_case = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=snake_case_, logits=snake_case_ ) snake_case = tf.nn.log_softmax(snake_case_, axis=-1 ) else: snake_case = shape_list(snake_case_ ) snake_case = [] snake_case = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): snake_case = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: snake_case = (target >= l_idx) & (target < r_idx) snake_case = tf.where(snake_case_ ) snake_case = tf.boolean_mask(snake_case_, snake_case_ ) - l_idx if self.div_val == 1: snake_case = self.out_layers[0][0][l_idx:r_idx] snake_case = self.out_layers[0][1][l_idx:r_idx] else: snake_case = self.out_layers[i][0] snake_case = self.out_layers[i][1] if i == 0: snake_case = tf.concat([cur_W, self.cluster_weight], 0 ) snake_case = tf.concat([cur_b, self.cluster_bias], 0 ) snake_case = self._logit(snake_case_, snake_case_, snake_case_, self.out_projs[0] ) snake_case = tf.nn.log_softmax(snake_case_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: snake_case = tf.boolean_mask(snake_case_, snake_case_ ) snake_case = self._gather_logprob(snake_case_, snake_case_ ) else: snake_case = self._logit(snake_case_, snake_case_, snake_case_, self.out_projs[i] ) snake_case = tf.nn.log_softmax(snake_case_ ) snake_case = self.cutoffs[0] + i - 1 # No probability for the head cluster snake_case = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(snake_case_ ) if target is not None: snake_case = tf.boolean_mask(snake_case_, snake_case_ ) snake_case = tf.boolean_mask(snake_case_, snake_case_ ) snake_case = self._gather_logprob(snake_case_, snake_case_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(snake_case_, -cur_logprob, shape_list(snake_case_ ) ) snake_case = tf.concat(snake_case_, axis=-1 ) if target is not None: if return_mean: snake_case = tf.reduce_mean(snake_case_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(snake_case_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(snake_case_, name=self.name, aggregation='mean' if return_mean else '' ) return out
352
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int: snake_case = [0] snake_case = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target snake_case = 0 # the area corresponding to the grid that gives the product closest to target snake_case = 0 # an estimate of b, using the quadratic formula snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the largest integer less than b_estimate snake_case = 42 # the triangle number corresponding to b_floor snake_case = 42 # the triangle number corresponding to b_ceil snake_case = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 snake_case = floor(A ) snake_case = ceil(A ) snake_case = triangle_numbers[b_floor] snake_case = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_first_guess * triangle_a snake_case = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): snake_case = triangle_b_second_guess * triangle_a snake_case = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
332
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __magic_name__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: with open(UpperCamelCase_ ) as metadata_file: snake_case = json.load(UpperCamelCase_ ) snake_case = LukeConfig(use_entity_aware_attention=UpperCamelCase_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path snake_case = torch.load(UpperCamelCase_ , map_location='cpu' )['module'] # Load the entity vocab file snake_case = load_original_entity_vocab(UpperCamelCase_ ) # add an entry for [MASK2] snake_case = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks snake_case = AddedToken('<ent>' , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) snake_case = AddedToken('<ent2>' , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'r' ) as f: snake_case = json.load(UpperCamelCase_ ) snake_case = 'MLukeTokenizer' with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) snake_case = MLukeTokenizer.from_pretrained(UpperCamelCase_ ) # Initialize the embeddings of the special tokens snake_case = tokenizer.convert_tokens_to_ids(['@'] )[0] snake_case = tokenizer.convert_tokens_to_ids(['#'] )[0] snake_case = state_dict['embeddings.word_embeddings.weight'] snake_case = word_emb[ent_init_index].unsqueeze(0 ) snake_case = word_emb[enta_init_index].unsqueeze(0 ) snake_case = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case = state_dict[bias_name] snake_case = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case = F'''encoder.layer.{layer_index}.attention.self.''' snake_case = state_dict[prefix + matrix_name] snake_case = state_dict[prefix + matrix_name] snake_case = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case = state_dict['entity_embeddings.entity_embeddings.weight'] snake_case = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) snake_case = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case = state_dict['entity_predictions.bias'] snake_case = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) snake_case = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case = LukeForMaskedLM(config=UpperCamelCase_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) snake_case = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): snake_case = state_dict[key] else: snake_case = state_dict[key] snake_case , snake_case = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) if set(UpperCamelCase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCamelCase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case = MLukeTokenizer.from_pretrained(UpperCamelCase_ , task='entity_classification' ) snake_case = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' snake_case = (0, 9) snake_case = tokenizer(UpperCamelCase_ , entity_spans=[span] , return_tensors='pt' ) snake_case = model(**UpperCamelCase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case = torch.Size((1, 3_3, 7_6_8) ) snake_case = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case = torch.Size((1, 1, 7_6_8) ) snake_case = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction snake_case = MLukeTokenizer.from_pretrained(UpperCamelCase_ ) snake_case = 'Tokyo is the capital of <mask>.' snake_case = (2_4, 3_0) snake_case = tokenizer(UpperCamelCase_ , entity_spans=[span] , return_tensors='pt' ) snake_case = model(**UpperCamelCase_ ) snake_case = encoding['input_ids'][0].tolist() snake_case = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) snake_case = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCamelCase_ ) snake_case = outputs.entity_logits[0][0].argmax().item() snake_case = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(UpperCamelCase_ ) ) model.save_pretrained(UpperCamelCase_ ) def __magic_name__ ( UpperCamelCase_ ) -> int: snake_case = ['[MASK]', '[PAD]', '[UNK]'] snake_case = [json.loads(UpperCamelCase_ ) for line in open(UpperCamelCase_ )] snake_case = {} for entry in data: snake_case = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case = entity_id break snake_case = F'''{language}:{entity_name}''' snake_case = entity_id return new_mapping if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCAmelCase_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
332
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: snake_case = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) snake_case = torch.manual_seed(0 ) snake_case = pipe( image=a__, generator=a__, guidance_scale=7.5, num_inference_steps=50, output_type='numpy', ).images snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) snake_case = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
354
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) snake_case_ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case_ = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) snake_case_ = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) snake_case_ = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) snake_case_ = field( default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) snake_case_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) snake_case_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''train''' snake_case_ = '''dev''' class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int: snake_case = args snake_case = is_language_sensitive snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_, lowercase_ ): try: snake_case = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) snake_case = mode # Load data features from cache or dataset file snake_case = 'v2' if args.version_2_with_negative else 'v1' snake_case = os.path.join( cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case = cached_features_file + '.lock' with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: snake_case = time.time() snake_case = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. snake_case = self.old_features['features'] snake_case = self.old_features.get('dataset', lowercase_ ) snake_case = self.old_features.get('examples', lowercase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: snake_case = self.processor.get_dev_examples(args.data_dir ) else: snake_case = self.processor.get_train_examples(args.data_dir ) snake_case , snake_case = squad_convert_examples_to_features( examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, ) snake_case = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset snake_case = self.features[i] snake_case = torch.tensor(feature.input_ids, dtype=torch.long ) snake_case = torch.tensor(feature.attention_mask, dtype=torch.long ) snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long ) snake_case = torch.tensor(feature.cls_index, dtype=torch.long ) snake_case = torch.tensor(feature.p_mask, dtype=torch.float ) snake_case = torch.tensor(feature.is_impossible, dtype=torch.float ) snake_case = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: snake_case = torch.tensor(feature.start_position, dtype=torch.long ) snake_case = torch.tensor(feature.end_position, dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
332
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowerCamelCase ( nn.Module ): def __init__( self ) -> str: super().__init__() snake_case = nn.Linear(3, 4 ) snake_case = nn.BatchNormad(4 ) snake_case = nn.Linear(4, 5 ) def _lowerCamelCase ( self, lowercase_ ) -> str: return self.lineara(self.batchnorm(self.lineara(UpperCamelCase_ ) ) ) class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: snake_case = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase_, model.state_dict() ) snake_case = os.path.join(UpperCamelCase_, 'index.json' ) self.assertTrue(os.path.isfile(UpperCamelCase_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: snake_case = os.path.join(UpperCamelCase_, F'''{key}.dat''' ) self.assertTrue(os.path.isfile(UpperCamelCase_ ) ) # TODO: add tests on the fact weights are properly loaded def _lowerCamelCase ( self ) -> List[str]: snake_case = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: snake_case = torch.randn(2, 3, dtype=UpperCamelCase_ ) with TemporaryDirectory() as tmp_dir: snake_case = offload_weight(UpperCamelCase_, 'weight', UpperCamelCase_, {} ) snake_case = os.path.join(UpperCamelCase_, 'weight.dat' ) self.assertTrue(os.path.isfile(UpperCamelCase_ ) ) self.assertDictEqual(UpperCamelCase_, {'weight': {'shape': [2, 3], 'dtype': str(UpperCamelCase_ ).split('.' )[1]}} ) snake_case = load_offloaded_weight(UpperCamelCase_, index['weight'] ) self.assertTrue(torch.equal(UpperCamelCase_, UpperCamelCase_ ) ) def _lowerCamelCase ( self ) -> Any: snake_case = ModelForTest() snake_case = model.state_dict() snake_case = {k: v for k, v in state_dict.items() if 'linear2' not in k} snake_case = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase_, UpperCamelCase_ ) snake_case = OffloadedWeightsLoader(state_dict=UpperCamelCase_, save_folder=UpperCamelCase_ ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase_, weight_map[key] ) ) snake_case = {k: v for k, v in state_dict.items() if 'weight' in k} snake_case = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase_, UpperCamelCase_ ) snake_case = OffloadedWeightsLoader(state_dict=UpperCamelCase_, save_folder=UpperCamelCase_ ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase_, weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase_, UpperCamelCase_ ) # Duplicates are removed snake_case = OffloadedWeightsLoader(state_dict=UpperCamelCase_, save_folder=UpperCamelCase_ ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase_ ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase_, weight_map[key] ) ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = {'a.1': 0, 'a.10': 1, 'a.2': 2} snake_case = extract_submodules_state_dict(UpperCamelCase_, ['a.1', 'a.2'] ) self.assertDictEqual(UpperCamelCase_, {'a.1': 0, 'a.2': 2} ) snake_case = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} snake_case = extract_submodules_state_dict(UpperCamelCase_, ['a.1', 'a.2'] ) self.assertDictEqual(UpperCamelCase_, {'a.1.a': 0, 'a.2.a': 2} )
355
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( A , A , A ) -> Any: # Initialise PyTorch model snake_case = BertConfig.from_json_file(A ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case = BertForPreTraining(A ) # Load weights from tf checkpoint load_tf_weights_in_bert(A , A , A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __magic_name__ ( A , A , A , A , A ) -> List[Any]: for attribute in key.split('.' ): snake_case = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: snake_case = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __magic_name__ ( A , A ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case = None for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) snake_case = True elif name.split('.' )[0] == "proj": snake_case = fairseq_model.proj snake_case = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(lowerCamelCase_ )[0].split('.' )[-2] snake_case = mapped_key.replace('*' , lowerCamelCase_ ) if "weight_g" in name: snake_case = '''weight_g''' elif "weight_v" in name: snake_case = '''weight_v''' elif "bias" in name: snake_case = '''bias''' elif "weight" in name: snake_case = '''weight''' else: snake_case = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def __magic_name__ ( A , A , A , A , A ) -> str: snake_case = full_name.split('conv_layers.' )[-1] snake_case = name.split('.' ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase_ ) def __magic_name__ ( A ) -> List[str]: snake_case = emb.weight.shape snake_case = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) snake_case = emb.weight.data return lin_layer def __magic_name__ ( A ) -> List[str]: with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: snake_case = f.readlines() snake_case = [line.split(' ' )[0] for line in lines] snake_case = len(lowerCamelCase_ ) snake_case = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(lowerCamelCase_ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __magic_name__ ( A , A , A , A , A , A , A , ) -> List[str]: snake_case = WavaVecaConfig.from_pretrained(lowerCamelCase_ ) snake_case = SpeechaTextaConfig.from_pretrained( lowerCamelCase_ , vocab_size=lowerCamelCase_ , decoder_layers=lowerCamelCase_ , do_stable_layer_norm=lowerCamelCase_ ) snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case = model[0].eval() # set weights for wav2vec2 encoder snake_case = WavaVecaModel(lowerCamelCase_ ) snake_case = recursively_load_weights_wavaveca(model.encoder , lowerCamelCase_ ) snake_case = SpeechaTextaForCausalLM(lowerCamelCase_ ) snake_case = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase_ ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) snake_case = SpeechEncoderDecoderModel(encoder=lowerCamelCase_ , decoder=lowerCamelCase_ ) snake_case = False # add projection layer snake_case = nn.Parameter(projection_layer.weight ) snake_case = nn.Parameter(projection_layer.bias ) snake_case = create_vocab_dict(lowerCamelCase_ ) with open(os.path.join(lowerCamelCase_ , 'vocab.json' ) , 'w' ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) snake_case = SpeechaTextaTokenizer(os.path.join(lowerCamelCase_ , 'vocab.json' ) ) tokenizer.save_pretrained(lowerCamelCase_ ) snake_case = hf_wavavec.config.to_dict() snake_case = tokenizer.pad_token_id snake_case = tokenizer.bos_token_id snake_case = tokenizer.eos_token_id snake_case = '''speech_to_text_2''' snake_case = '''wav2vec2''' snake_case = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase_ ) hf_wavavec.save_pretrained(lowerCamelCase_ ) feature_extractor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0_2_2_4, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") lowerCAmelCase_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
356
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> list: if len(A ) == 0: return [] snake_case , snake_case = min(A ), max(A ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
332
0
'''simple docstring''' from math import ceil, sqrt def __magic_name__ ( A = 1_0_0_0_0_0_0 ) -> int: snake_case = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: snake_case = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: snake_case = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"{solution() = }")
357
'''simple docstring''' def __magic_name__ ( A ) -> float: return 1_0 - x * x def __magic_name__ ( A , A ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(A ) * equation(A ) >= 0: raise ValueError('Wrong space!' ) snake_case = a while (b - a) >= 0.01: # Find middle point snake_case = (a + b) / 2 # Check if middle point is root if equation(A ) == 0.0: break # Decide the side to repeat the steps if equation(A ) * equation(A ) < 0: snake_case = c else: snake_case = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
332
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( lowerCamelCase__ ): def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.', __snake_case, ) super().__init__(*__snake_case, **__snake_case )
358
'''simple docstring''' import pytest lowerCAmelCase_ = "__dummy_dataset1__" lowerCAmelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def __magic_name__ ( ) -> List[Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __magic_name__ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __magic_name__ ( A , A , A ) -> Optional[int]: snake_case = dataset_loading_script_name snake_case = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=A ) snake_case = script_dir / F'''{script_name}.py''' with open(A , 'w' ) as f: f.write(A ) return str(A )
332
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __magic_name__ ( A , A , A ) -> str: if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): snake_case = [image] if isinstance(image[0] , PIL.Image.Image ): snake_case = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] snake_case = np.concatenate(lowerCAmelCase__ , axis=0 ) snake_case = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_5_5.0 snake_case = image.transpose(0 , 3 , 1 , 2 ) snake_case = 2.0 * image - 1.0 snake_case = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): snake_case = torch.cat(lowerCAmelCase__ , dim=0 ) return image def __magic_name__ ( A , A , A , A=0.9_995 ) -> Optional[int]: if not isinstance(lowerCAmelCase__ , np.ndarray ): snake_case = True snake_case = va.device snake_case = va.cpu().numpy() snake_case = va.cpu().numpy() snake_case = np.sum(va * va / (np.linalg.norm(lowerCAmelCase__ ) * np.linalg.norm(lowerCAmelCase__ )) ) if np.abs(lowerCAmelCase__ ) > DOT_THRESHOLD: snake_case = (1 - t) * va + t * va else: snake_case = np.arccos(lowerCAmelCase__ ) snake_case = np.sin(lowerCAmelCase__ ) snake_case = theta_a * t snake_case = np.sin(lowerCAmelCase__ ) snake_case = np.sin(theta_a - theta_t ) / sin_theta_a snake_case = sin_theta_t / sin_theta_a snake_case = sa * va + sa * va if inputs_are_torch: snake_case = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) return va def __magic_name__ ( A , A ) -> int: snake_case = F.normalize(lowerCAmelCase__ , dim=-1 ) snake_case = F.normalize(lowerCAmelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __magic_name__ ( A , A ) -> Optional[int]: for param in model.parameters(): snake_case = value class lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): def __init__( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_=None, lowercase_=None, lowercase_=None, ) -> Tuple: super().__init__() self.register_modules( vae=A__, text_encoder=A__, clip_model=A__, tokenizer=A__, unet=A__, scheduler=A__, feature_extractor=A__, coca_model=A__, coca_tokenizer=A__, coca_transform=A__, ) snake_case = ( feature_extractor.size if isinstance(feature_extractor.size, A__ ) else feature_extractor.size['shortest_edge'] ) snake_case = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, A__ ) set_requires_grad(self.clip_model, A__ ) def _lowerCamelCase ( self, lowercase_ = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: self.enable_attention_slicing(A__ ) def _lowerCamelCase ( self ) -> int: set_requires_grad(self.vae, A__ ) def _lowerCamelCase ( self ) -> Tuple: set_requires_grad(self.vae, A__ ) def _lowerCamelCase ( self ) -> Any: set_requires_grad(self.unet, A__ ) def _lowerCamelCase ( self ) -> List[Any]: set_requires_grad(self.unet, A__ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ ) -> int: # get the original timestep using init_timestep snake_case = min(int(num_inference_steps * strength ), A__ ) snake_case = max(num_inference_steps - init_timestep, 0 ) snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_=None ) -> str: if not isinstance(A__, torch.Tensor ): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(A__ )}''' ) snake_case = image.to(device=A__, dtype=A__ ) if isinstance(A__, A__ ): snake_case = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A__ ) ] snake_case = torch.cat(A__, dim=0 ) else: snake_case = self.vae.encode(A__ ).latent_dist.sample(A__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case = 0.18_215 * init_latents snake_case = init_latents.repeat_interleave(A__, dim=0 ) snake_case = randn_tensor(init_latents.shape, generator=A__, device=A__, dtype=A__ ) # get latents snake_case = self.scheduler.add_noise(A__, A__, A__ ) snake_case = init_latents return latents def _lowerCamelCase ( self, lowercase_ ) -> Union[str, Any]: snake_case = self.coca_transform(A__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): snake_case = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) snake_case = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>', '' ).rstrip(' .,' ) def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Tuple: snake_case = self.feature_extractor.preprocess(A__ ) snake_case = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() snake_case = self.clip_model.get_image_features(A__ ) snake_case = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=A__ ) snake_case = image_embeddings_clip.repeat_interleave(A__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, ) -> Any: snake_case = latents.detach().requires_grad_() snake_case = self.scheduler.scale_model_input(A__, A__ ) # predict the noise residual snake_case = self.unet(A__, A__, encoder_hidden_states=A__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): snake_case = self.scheduler.alphas_cumprod[timestep] snake_case = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf snake_case = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 snake_case = torch.sqrt(A__ ) snake_case = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, A__ ): snake_case = self.scheduler.sigmas[index] snake_case = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case = 1 / 0.18_215 * sample snake_case = self.vae.decode(A__ ).sample snake_case = (image / 2 + 0.5).clamp(0, 1 ) snake_case = transforms.Resize(self.feature_extractor_size )(A__ ) snake_case = self.normalize(A__ ).to(latents.dtype ) snake_case = self.clip_model.get_image_features(A__ ) snake_case = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=A__ ) snake_case = spherical_dist_loss(A__, A__ ).mean() * clip_guidance_scale snake_case = -torch.autograd.grad(A__, A__ )[0] if isinstance(self.scheduler, A__ ): snake_case = latents.detach() + grads * (sigma**2) snake_case = noise_pred_original else: snake_case = noise_pred_original - torch.sqrt(A__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = 512, lowercase_ = 512, lowercase_ = 0.6, lowercase_ = 50, lowercase_ = 7.5, lowercase_ = 1, lowercase_ = 0.0, lowercase_ = 100, lowercase_ = None, lowercase_ = "pil", lowercase_ = True, lowercase_ = 0.8, lowercase_ = 0.1, lowercase_ = 0.1, ) -> List[Any]: if isinstance(A__, A__ ) and len(A__ ) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(A__ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(A__, torch.Generator ) and batch_size > 1: snake_case = [generator] + [None] * (batch_size - 1) snake_case = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] snake_case = [x[0] for x in coca_is_none if x[1]] snake_case = ', '.join(A__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A__ ): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) snake_case = self.get_image_description(A__ ) if style_prompt is None: if len(A__ ): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) snake_case = self.get_image_description(A__ ) # get prompt text embeddings for content and style snake_case = self.tokenizer( A__, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=A__, return_tensors='pt', ) snake_case = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] snake_case = self.tokenizer( A__, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=A__, return_tensors='pt', ) snake_case = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] snake_case = slerp(A__, A__, A__ ) # duplicate text embeddings for each generation per prompt snake_case = text_embeddings.repeat_interleave(A__, dim=0 ) # set timesteps snake_case = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) snake_case = {} if accepts_offset: snake_case = 1 self.scheduler.set_timesteps(A__, **A__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) snake_case , snake_case = self.get_timesteps(A__, A__, self.device ) snake_case = timesteps[:1].repeat(A__ ) # Preprocess image snake_case = preprocess(A__, A__, A__ ) snake_case = self.prepare_latents( A__, A__, A__, text_embeddings.dtype, self.device, A__ ) snake_case = preprocess(A__, A__, A__ ) snake_case = self.prepare_latents( A__, A__, A__, text_embeddings.dtype, self.device, A__ ) snake_case = slerp(A__, A__, A__ ) if clip_guidance_scale > 0: snake_case = self.get_clip_image_embeddings(A__, A__ ) snake_case = self.get_clip_image_embeddings(A__, A__ ) snake_case = slerp( A__, A__, A__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case = content_text_input.input_ids.shape[-1] snake_case = self.tokenizer([''], padding='max_length', max_length=A__, return_tensors='pt' ) snake_case = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt snake_case = uncond_embeddings.repeat_interleave(A__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case = (batch_size, self.unet.config.in_channels, height // 8, width // 8) snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps snake_case = torch.randn(A__, generator=A__, device='cpu', dtype=A__ ).to( self.device ) else: snake_case = torch.randn(A__, generator=A__, device=self.device, dtype=A__ ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) snake_case = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case = {} if accepts_eta: snake_case = eta # check if the scheduler accepts generator snake_case = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: snake_case = generator with self.progress_bar(total=A__ ): for i, t in enumerate(A__ ): # expand the latents if we are doing classifier free guidance snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case = self.scheduler.scale_model_input(A__, A__ ) # predict the noise residual snake_case = self.unet(A__, A__, encoder_hidden_states=A__ ).sample # perform classifier free guidance if do_classifier_free_guidance: snake_case , snake_case = noise_pred.chunk(2 ) snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: snake_case = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) snake_case , snake_case = self.cond_fn( A__, A__, A__, A__, A__, A__, A__, ) # compute the previous noisy sample x_t -> x_t-1 snake_case = self.scheduler.step(A__, A__, A__, **A__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor snake_case = 1 / 0.18_215 * latents snake_case = self.vae.decode(A__ ).sample snake_case = (image / 2 + 0.5).clamp(0, 1 ) snake_case = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": snake_case = self.numpy_to_pil(A__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A__, nsfw_content_detected=A__ )
359
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __magic_name__ ( A , A , A , A , A , A , A ) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() snake_case = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left snake_case = min(A , A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() snake_case = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right snake_case = max(A , A ) # after all swaps are performed, send the values back to main result_pipe[1].send(A ) def __magic_name__ ( A ) -> str: snake_case = [] snake_case = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) snake_case = temp_rs snake_case = temp_rr for i in range(1 , len(A ) - 1 ): snake_case = Pipe() snake_case = Pipe() process_array_.append( Process( target=A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) snake_case = temp_rs snake_case = temp_rr process_array_.append( Process( target=A , args=( len(A ) - 1, arr[len(A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(A ) ): snake_case = result_pipe[p][0].recv() process_array_[p].join() return arr def __magic_name__ ( ) -> Tuple: snake_case = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*A ) snake_case = odd_even_transposition(A ) print('Sorted List\n' ) print(*A ) if __name__ == "__main__": main()
332
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "gpt-neox-20b": 2_0_4_8, } class lowerCamelCase ( __a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="<|endoftext|>", lowercase_="<|endoftext|>", lowercase_="<|endoftext|>", lowercase_=False, **lowercase_, ) -> Any: super().__init__( a__, a__, tokenizer_file=a__, unk_token=a__, bos_token=a__, eos_token=a__, add_prefix_space=a__, **a__, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', a__ ) != add_prefix_space: snake_case = getattr(a__, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**a__ ) snake_case = add_prefix_space def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[str]: snake_case = self._tokenizer.model.save(a__, name=a__ ) return tuple(a__ ) def _lowerCamelCase ( self, lowercase_ ) -> Union[str, Any]: snake_case = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__, add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: snake_case = input_ids[-self.model_max_length :] return input_ids
360
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase ( lowerCamelCase__ ): snake_case_ = '''ClapFeatureExtractor''' snake_case_ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self, lowercase_, lowercase_ ) -> int: super().__init__(__A, __A ) def __call__( self, lowercase_=None, lowercase_=None, lowercase_=None, **lowercase_ ) -> Dict: snake_case = kwargs.pop('sampling_rate', __A ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: snake_case = self.tokenizer(__A, return_tensors=__A, **__A ) if audios is not None: snake_case = self.feature_extractor( __A, sampling_rate=__A, return_tensors=__A, **__A ) if text is not None and audios is not None: snake_case = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ), tensor_type=__A ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> List[Any]: return self.tokenizer.batch_decode(*__A, **__A ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> List[Any]: return self.tokenizer.decode(*__A, **__A ) @property def _lowerCamelCase ( self ) -> Optional[int]: snake_case = self.tokenizer.model_input_names snake_case = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
361
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''roberta''' def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
0
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''char''' snake_case_ = '''bpe''' snake_case_ = '''wp''' lowerCAmelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = ['''image_processor''', '''char_tokenizer'''] snake_case_ = '''ViTImageProcessor''' snake_case_ = '''MgpstrTokenizer''' def __init__( self, lowercase_=None, lowercase_=None, **lowercase_ ) -> Optional[int]: snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', __a, ) snake_case = kwargs.pop('feature_extractor' ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) snake_case = tokenizer snake_case = AutoTokenizer.from_pretrained('gpt2' ) snake_case = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(__a, __a ) def __call__( self, lowercase_=None, lowercase_=None, lowercase_=None, **lowercase_ ) -> int: if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: snake_case = self.image_processor(__a, return_tensors=__a, **__a ) if text is not None: snake_case = self.char_tokenizer(__a, return_tensors=__a, **__a ) if text is None: return inputs elif images is None: return encodings else: snake_case = encodings['input_ids'] return inputs def _lowerCamelCase ( self, lowercase_ ) -> Union[str, Any]: snake_case , snake_case , snake_case = sequences snake_case = char_preds.size(0 ) snake_case , snake_case = self._decode_helper(__a, 'char' ) snake_case , snake_case = self._decode_helper(__a, 'bpe' ) snake_case , snake_case = self._decode_helper(__a, 'wp' ) snake_case = [] snake_case = [] for i in range(__a ): snake_case = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case = scores.index(max(__a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case = {} snake_case = final_strs snake_case = final_scores snake_case = char_strs snake_case = bpe_strs snake_case = wp_strs return out def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]: if format == DecodeType.CHARACTER: snake_case = self.char_decode snake_case = 1 snake_case = '[s]' elif format == DecodeType.BPE: snake_case = self.bpe_decode snake_case = 2 snake_case = '#' elif format == DecodeType.WORDPIECE: snake_case = self.wp_decode snake_case = 102 snake_case = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''' ) snake_case , snake_case = [], [] snake_case = pred_logits.size(0 ) snake_case = pred_logits.size(1 ) snake_case , snake_case = pred_logits.topk(1, dim=-1, largest=__a, sorted=__a ) snake_case = preds_index.view(-1, __a )[:, 1:] snake_case = decoder(__a ) snake_case , snake_case = torch.nn.functional.softmax(__a, dim=2 ).max(dim=2 ) snake_case = preds_max_prob[:, 1:] for index in range(__a ): snake_case = preds_str[index].find(__a ) snake_case = preds_str[index][:pred_eos] snake_case = preds_index[index].cpu().tolist() snake_case = pred_index.index(__a ) if eos_token in pred_index else -1 snake_case = preds_max_prob[index][: pred_eos_index + 1] snake_case = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(__a ) conf_scores.append(__a ) return dec_strs, conf_scores def _lowerCamelCase ( self, lowercase_ ) -> Tuple: snake_case = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(__a )] return decode_strs def _lowerCamelCase ( self, lowercase_ ) -> int: return self.bpe_tokenizer.batch_decode(__a ) def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]: snake_case = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(__a )] return decode_strs
362
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_ = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } lowerCAmelCase_ = { "allenai/led-base-16384": 1_6_3_8_4, } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = LEDTokenizer snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int: super().__init__( lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, ) snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) ) snake_case = add_prefix_space snake_case = pre_tok_class(**lowercase_ ) snake_case = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case = 'post_processor' snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ ) if tokenizer_component_instance: snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case = tuple(state['sep'] ) if "cls" in state: snake_case = tuple(state['cls'] ) snake_case = False if state.get('add_prefix_space', lowercase_ ) != add_prefix_space: snake_case = add_prefix_space snake_case = True if state.get('trim_offsets', lowercase_ ) != trim_offsets: snake_case = trim_offsets snake_case = True if changes_to_apply: snake_case = getattr(lowercase_, state.pop('type' ) ) snake_case = component_class(**lowercase_ ) setattr(self.backend_tokenizer, lowercase_, lowercase_ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self, lowercase_ ) -> Any: snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value snake_case = value def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding: snake_case = kwargs.get('is_split_into_words', lowercase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]: snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ ) return tuple(lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict: snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]: snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict: snake_case = super()._pad( encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, ) # Load from model defaults if return_attention_mask is None: snake_case = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ ) if needs_to_be_padded: snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
332
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCamelCase : def __init__( self, lowercase_, lowercase_=14, lowercase_=7, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=True, lowercase_=99, lowercase_=32, lowercase_=5, lowercase_=4, lowercase_=37, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=16, lowercase_=2, lowercase_=0.02, lowercase_=3, lowercase_=4, lowercase_=None, ) -> List[Any]: snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_token_type_ids snake_case = use_input_mask snake_case = use_labels snake_case = use_mc_token_ids snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope snake_case = self.vocab_size - 1 def _lowerCamelCase ( self ) -> List[Any]: snake_case = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case = None if self.use_mc_token_ids: snake_case = ids_tensor([self.batch_size, self.num_choices], self.seq_length ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case = ids_tensor([self.batch_size], self.num_choices ) snake_case = self.get_config() snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _lowerCamelCase ( self ) -> Union[str, Any]: return CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> Tuple: snake_case = CTRLModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() model(UpperCamelCase__, token_type_ids=UpperCamelCase__, head_mask=UpperCamelCase__ ) model(UpperCamelCase__, token_type_ids=UpperCamelCase__ ) snake_case = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ), config.n_layer ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> Dict: snake_case = CTRLLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case = model(UpperCamelCase__, token_type_ids=UpperCamelCase__, labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self ) -> Dict: snake_case = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask} return config, inputs_dict def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, *lowercase_ ) -> Tuple: snake_case = self.num_labels snake_case = CTRLForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case = model(UpperCamelCase__, token_type_ids=UpperCamelCase__, labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) @require_torch class lowerCamelCase ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): snake_case_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () snake_case_ = (CTRLLMHeadModel,) if is_torch_available() else () snake_case_ = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_, lowercase_ ) -> List[str]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _lowerCamelCase ( self ) -> Dict: snake_case = CTRLModelTester(self ) snake_case = ConfigTester(self, config_class=UpperCamelCase__, n_embd=37 ) def _lowerCamelCase ( self ) -> Optional[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Dict: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*UpperCamelCase__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*UpperCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self ) -> Union[str, Any]: pass @slow def _lowerCamelCase ( self ) -> int: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = CTRLModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def _lowerCamelCase ( self ) -> List[Any]: pass @require_torch class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _lowerCamelCase ( self ) -> Union[str, Any]: snake_case = CTRLLMHeadModel.from_pretrained('ctrl' ) model.to(UpperCamelCase__ ) snake_case = torch.tensor( [[11859, 0, 1611, 8]], dtype=torch.long, device=UpperCamelCase__ ) # Legal the president is snake_case = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a snake_case = model.generate(UpperCamelCase__, do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].tolist(), UpperCamelCase__ )
363
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
0
'''simple docstring''' import datasets from .evaluate import evaluate lowerCAmelCase_ = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" lowerCAmelCase_ = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" lowerCAmelCase_ = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def _lowerCamelCase ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ), codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'], reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'], ) def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> int: snake_case = {prediction['id']: prediction['prediction_text'] for prediction in predictions} snake_case = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] snake_case = evaluate(dataset=_A, predictions=_A ) return score
364
'''simple docstring''' from pathlib import Path import fire def __magic_name__ ( A , A , A ) -> Union[str, Any]: snake_case = Path(A ) snake_case = Path(A ) dest_dir.mkdir(exist_ok=A ) for path in src_dir.iterdir(): snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case = dest_dir.joinpath(path.name ) print(A ) dest_path.open('w' ).write('\n'.join(A ) ) if __name__ == "__main__": fire.Fire(minify)
332
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase_ = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __magic_name__ ( A ) -> List[str]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def __magic_name__ ( A ) -> Dict: from transformers.testing_utils import pytest_terminal_summary_main snake_case = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ )
365
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def __magic_name__ ( A , A ) -> Union[str, Any]: inspect_dataset(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def __magic_name__ ( A , A ) -> int: inspect_metric(A , A ) snake_case = path + '.py' assert script_name in os.listdir(A ) assert "__pycache__" not in os.listdir(A ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_config_info(A , config_name=A ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> Any: with pytest.raises(A ): get_dataset_config_info(A , config_name=A ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __magic_name__ ( A , A ) -> Dict: snake_case = get_dataset_config_names(A ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> List[str]: snake_case = get_dataset_infos(A ) assert list(infos.keys() ) == expected_configs snake_case = expected_configs[0] assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __magic_name__ ( A , A , A ) -> Any: snake_case = get_dataset_infos(A ) assert expected_config in infos snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __magic_name__ ( A , A , A ) -> int: with pytest.raises(A ): get_dataset_split_names(A , config_name=A )
332
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase_ = get_tests_dir("fixtures") class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> str: # A mock response for an HTTP head request to emulate server down snake_case = mock.Mock() snake_case = 500 snake_case = {} snake_case = HTTPError snake_case = {} # Download this model to make sure it's in the cache. snake_case = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowercase_ ) as mock_head: snake_case = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self ) -> Optional[int]: # This test is for deprecated behavior and can be removed in v5 snake_case = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def _lowerCamelCase ( self ) -> Dict: with self.assertRaises(lowercase_ ): # config is in subfolder, the following should not work without specifying the subfolder snake_case = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) snake_case = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(lowercase_ ) @is_staging_test class lowerCamelCase ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls ) -> Dict: snake_case = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _lowerCamelCase ( cls ) -> List[Any]: try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def _lowerCamelCase ( self ) -> str: snake_case = ViTImageProcessor.from_pretrained(lowercase_ ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowercase_, repo_id='test-image-processor', push_to_hub=lowercase_, use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) ) def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = ViTImageProcessor.from_pretrained(lowercase_ ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowercase_, repo_id='valid_org/test-image-processor-org', push_to_hub=lowercase_, use_auth_token=self._token ) snake_case = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowercase_, getattr(lowercase_, lowercase_ ) ) def _lowerCamelCase ( self ) -> Any: CustomImageProcessor.register_for_auto_class() snake_case = CustomImageProcessor.from_pretrained(lowercase_ ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) snake_case = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''', trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
366
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
332
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) lowerCAmelCase_ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) lowerCAmelCase_ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) lowerCAmelCase_ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) lowerCAmelCase_ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) lowerCAmelCase_ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModel) class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class lowerCamelCase ( _BaseAutoModelClass ): snake_case_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowerCAmelCase_ = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] lowerCAmelCase_ = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def lowerCamelCase ( ) -> List[str]: snake_case = calculate_rouge(snake_case_ , snake_case_ , bootstrap_aggregation=snake_case_ , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(snake_case_ , snake_case_ ) snake_case = calculate_rouge(snake_case_ , snake_case_ , bootstrap_aggregation=snake_case_ , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def lowerCamelCase ( ) -> str: snake_case = 'rougeLsum' snake_case = calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ , rouge_keys=[k] )[k] snake_case = calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ , rouge_keys=[k] )[k] assert score > score_no_sep def lowerCamelCase ( ) -> Optional[int]: snake_case = ['rouge1', 'rouge2', 'rougeL'] snake_case = calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ , rouge_keys=snake_case_ ) snake_case = calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ , rouge_keys=snake_case_ ) assert score_sep == score_no_sep def lowerCamelCase ( ) -> str: snake_case = [ 'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.', 'Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .', ] snake_case = [ 'Margot Frank, died in 1945, a month earlier than previously thought.', 'Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of' ' the final seconds on board Flight 9525.', ] assert calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ ) == calculate_rouge(snake_case_ , snake_case_ , newline_sep=snake_case_ ) def lowerCamelCase ( ) -> Optional[Any]: snake_case = [ '\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" ' ] snake_case = [ ' Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .' ] snake_case = calculate_rouge(snake_case_ , snake_case_ , rouge_keys=['rougeLsum'] , newline_sep=snake_case_ )['rougeLsum'] snake_case = calculate_rouge(snake_case_ , snake_case_ , rouge_keys=['rougeLsum'] )['rougeLsum'] assert new_score > prev_score def lowerCamelCase ( ) -> Any: snake_case = Path('examples/seq2seq/test_data/wmt_en_ro' ) snake_case = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(snake_case_ , snake_case_ ) snake_case = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=snake_case_ ) assert isinstance(snake_case_ , snake_case_ )
368
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__lowerCAmelCase ): snake_case_ = ['''note_seq'''] def __init__( self, *lowercase_, **lowercase_ ) -> str: requires_backends(self, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: requires_backends(cls, ['note_seq'] ) @classmethod def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: requires_backends(cls, ['note_seq'] )
332
0
'''simple docstring''' from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar("T") class lowerCamelCase ( Generic[T] ): def __init__( self, lowercase_ = True ) -> Optional[Any]: snake_case = {} # dictionary of lists snake_case = directed def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase ) self.adj_list[destination_vertex].append(_UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase ) snake_case = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_UpperCAmelCase ) snake_case = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: snake_case = [destination_vertex] snake_case = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_UpperCAmelCase ) snake_case = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: snake_case = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: snake_case = [destination_vertex] snake_case = [] return self def __repr__( self ) -> List[str]: return pformat(self.adj_list )
369
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): def __init__( self, *lowercase_, **lowercase_ ) -> None: warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.', lowercase_, ) super().__init__(*lowercase_, **lowercase_ )
332
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __magic_name__ ( ) -> Any: plt.scatter(A , A , color='red' ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
332
0