code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import heapq
import sys
import numpy as np
lowerCAmelCase_ = tuple[int, int]
class lowerCamelCase :
def __init__( self ) -> Any:
snake_case = []
snake_case = set()
def _lowerCamelCase ( self ) -> Optional[Any]:
if not self.empty():
return self.elements[0][0]
else:
return float('inf' )
def _lowerCamelCase ( self ) -> Any:
return len(self.elements ) == 0
def _lowerCamelCase ( self, lowercase_, lowercase_ ) -> Union[str, Any]:
if item not in self.set:
heapq.heappush(self.elements, (priority, item) )
self.set.add(lowercase_ )
else:
# update
# print("update", item)
snake_case = []
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements, (pro, xxx) )
def _lowerCamelCase ( self, lowercase_ ) -> Dict:
if item in self.set:
self.set.remove(lowercase_ )
snake_case = []
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements, (prito, yyy) )
def _lowerCamelCase ( self ) -> Tuple:
return self.elements[0][1]
def _lowerCamelCase ( self ) -> Dict:
((snake_case) , (snake_case)) = heapq.heappop(self.elements )
self.set.remove(lowercase_ )
return (priority, item)
def __magic_name__ ( A , A ) -> Optional[Any]:
# euclidean distance
snake_case = np.array(A )
snake_case = np.array(A )
return np.linalg.norm(a - b )
def __magic_name__ ( A , A ) -> str:
# integer division by time variable
return consistent_heuristic(A , A ) // t
def __magic_name__ ( A , A ) -> List[Any]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def __magic_name__ ( A , A , A , A ) -> Dict:
snake_case = g_function[start] + Wa * heuristics[i](A , A )
return ans
def __magic_name__ ( A , A , A ) -> Optional[Any]:
snake_case = np.chararray((n, n) )
for i in range(A ):
for j in range(A ):
snake_case = '*'
for i in range(A ):
for j in range(A ):
if (j, (n - 1) - i) in blocks:
snake_case = '#'
snake_case = '-'
snake_case = back_pointer[goal]
while x != start:
((snake_case) , (snake_case)) = x
# print(x)
snake_case = '-'
snake_case = back_pointer[x]
snake_case = '-'
for i in range(A ):
for j in range(A ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=' ' )
print('<-- End position' , end=' ' )
else:
print(grid[i][j] , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
snake_case = back_pointer[goal]
while x != start:
print(A , end=' ' )
snake_case = back_pointer[x]
print(A )
sys.exit()
def __magic_name__ ( A ) -> Dict:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def __magic_name__ ( A , A , A , A , A , A , A , A , ) -> int:
for itera in range(A ):
open_list[itera].remove_element(A )
# print("s", s)
# print("j", j)
((snake_case) , (snake_case)) = s
snake_case = (x - 1, y)
snake_case = (x + 1, y)
snake_case = (x, y + 1)
snake_case = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(A ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(A )
snake_case = -1
snake_case = float('inf' )
if valid(A ) and g_function[neighbours] > g_function[s] + 1:
snake_case = g_function[s] + 1
snake_case = s
if neighbours not in close_list_anchor:
open_list[0].put(A , key(A , 0 , A , A ) )
if neighbours not in close_list_inad:
for var in range(1 , A ):
if key(A , A , A , A ) <= Wa * key(
A , 0 , A , A ):
open_list[j].put(
A , key(A , A , A , A ) )
def __magic_name__ ( ) -> List[Any]:
snake_case = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
lowerCAmelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
lowerCAmelCase_ = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(1_0, 1),
(1_1, 1),
(1_2, 1),
(1_3, 1),
(1_4, 1),
(1_5, 1),
(1_6, 1),
(1_7, 1),
(1_8, 1),
(1_9, 1),
]
lowerCAmelCase_ = make_common_ground()
lowerCAmelCase_ = blocks_blk
# hyper parameters
lowerCAmelCase_ = 1
lowerCAmelCase_ = 1
lowerCAmelCase_ = 2_0
lowerCAmelCase_ = 3 # one consistent and two other inconsistent
# start and end destination
lowerCAmelCase_ = (0, 0)
lowerCAmelCase_ = (n - 1, n - 1)
lowerCAmelCase_ = 1
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = {start: 0, goal: float('inf' )}
snake_case = {start: -1, goal: -1}
snake_case = []
snake_case = set()
for i in range(A ):
open_list.append(PriorityQueue() )
open_list[i].put(A , key(A , A , A , A ) )
snake_case = []
snake_case = []
while open_list[0].minkey() < float('inf' ):
for i in range(1 , A ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(A , A , A )
else:
snake_case , snake_case = open_list[i].top_show()
visited.add(A )
expand_state(
A , A , A , A , A , A , A , A , )
close_list_inad.append(A )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(A , A , A )
else:
snake_case = open_list[0].top_show()
visited.add(A )
expand_state(
A , 0 , A , A , A , A , A , A , )
close_list_anchor.append(A )
print('No path found to goal' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(A ):
if (j, i) in blocks:
print('#' , end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*' , end=' ' )
else:
print('-' , end=' ' )
else:
print('*' , end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position' , end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 361 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''roberta'''
def __init__( self, lowercase_=50265, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=True, lowercase_=None, **lowercase_, ) -> Tuple:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = use_cache
snake_case = classifier_dropout
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332 | 0 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
lowerCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(__lowerCAmelCase )
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, **lowercase_ ) -> List[str]:
super().__init__(**lowercase_ )
requires_backends(self, 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self, lowercase_, **lowercase_ ) -> Union[str, Any]:
return super().__call__(lowercase_, **lowercase_ )
def _lowerCamelCase ( self, **lowercase_ ) -> Union[str, Any]:
snake_case = {}
if "candidate_labels" in kwargs:
snake_case = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
snake_case = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def _lowerCamelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a photo of {}." ) -> Optional[int]:
snake_case = load_image(lowercase_ )
snake_case = self.image_processor(images=[image], return_tensors=self.framework )
snake_case = candidate_labels
snake_case = [hypothesis_template.format(lowercase_ ) for x in candidate_labels]
snake_case = self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ )
snake_case = [text_inputs]
return inputs
def _lowerCamelCase ( self, lowercase_ ) -> Optional[int]:
snake_case = model_inputs.pop('candidate_labels' )
snake_case = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0], lowercase_ ):
snake_case = text_inputs[0]
else:
# Batching case.
snake_case = text_inputs[0][0]
snake_case = self.model(**lowercase_, **lowercase_ )
snake_case = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def _lowerCamelCase ( self, lowercase_ ) -> int:
snake_case = model_outputs.pop('candidate_labels' )
snake_case = model_outputs['logits'][0]
if self.framework == "pt":
snake_case = logits.softmax(dim=-1 ).squeeze(-1 )
snake_case = probs.tolist()
if not isinstance(lowercase_, lowercase_ ):
snake_case = [scores]
elif self.framework == "tf":
snake_case = stable_softmax(lowercase_, axis=-1 )
snake_case = probs.numpy().tolist()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
snake_case = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] )
]
return result
| 362 |
'''simple docstring'''
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_ = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_ = {
"allenai/led-base-16384": 1_6_3_8_4,
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = LEDTokenizer
snake_case_ = ['''input_ids''', '''attention_mask''']
def __init__( self, lowercase_=None, lowercase_=None, lowercase_=None, lowercase_="replace", lowercase_="<s>", lowercase_="</s>", lowercase_="</s>", lowercase_="<s>", lowercase_="<unk>", lowercase_="<pad>", lowercase_="<mask>", lowercase_=False, lowercase_=True, **lowercase_, ) -> int:
super().__init__(
lowercase_, lowercase_, tokenizer_file=lowercase_, errors=lowercase_, bos_token=lowercase_, eos_token=lowercase_, sep_token=lowercase_, cls_token=lowercase_, unk_token=lowercase_, pad_token=lowercase_, mask_token=lowercase_, add_prefix_space=lowercase_, trim_offsets=lowercase_, **lowercase_, )
snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = getattr(lowercase_, pre_tok_state.pop('type' ) )
snake_case = add_prefix_space
snake_case = pre_tok_class(**lowercase_ )
snake_case = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
snake_case = 'post_processor'
snake_case = getattr(self.backend_tokenizer, lowercase_, lowercase_ )
if tokenizer_component_instance:
snake_case = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
snake_case = tuple(state['sep'] )
if "cls" in state:
snake_case = tuple(state['cls'] )
snake_case = False
if state.get('add_prefix_space', lowercase_ ) != add_prefix_space:
snake_case = add_prefix_space
snake_case = True
if state.get('trim_offsets', lowercase_ ) != trim_offsets:
snake_case = trim_offsets
snake_case = True
if changes_to_apply:
snake_case = getattr(lowercase_, state.pop('type' ) )
snake_case = component_class(**lowercase_ )
setattr(self.backend_tokenizer, lowercase_, lowercase_ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _lowerCamelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def _lowerCamelCase ( self, lowercase_ ) -> Any:
snake_case = AddedToken(lowercase_, lstrip=lowercase_, rstrip=lowercase_ ) if isinstance(lowercase_, lowercase_ ) else value
snake_case = value
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, *lowercase_, **lowercase_ ) -> BatchEncoding:
snake_case = kwargs.get('is_split_into_words', lowercase_ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
'to use it with pretokenized inputs.' )
return super()._encode_plus(*lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple[str]:
snake_case = self._tokenizer.model.save(lowercase_, name=lowercase_ )
return tuple(lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_=None ) -> Dict:
snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> List[int]:
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = PaddingStrategy.DO_NOT_PAD, lowercase_ = None, lowercase_ = None, ) -> dict:
snake_case = super()._pad(
encoded_inputs=lowercase_, max_length=lowercase_, padding_strategy=lowercase_, pad_to_multiple_of=lowercase_, return_attention_mask=lowercase_, )
# Load from model defaults
if return_attention_mask is None:
snake_case = 'attention_mask' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
snake_case = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
snake_case = len(encoded_inputs['global_attention_mask'] ) != len(lowercase_ )
if needs_to_be_padded:
snake_case = len(lowercase_ ) - len(encoded_inputs['global_attention_mask'] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
snake_case = (
encoded_inputs['global_attention_mask'] + [-1] * difference
)
elif self.padding_side == "left":
snake_case = [-1] * difference + encoded_inputs[
'global_attention_mask'
]
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return encoded_inputs
| 332 | 0 |
'''simple docstring'''
def __magic_name__ ( A , A ) -> str:
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(A , int(b / 2 ) ) * actual_power(A , int(b / 2 ) )
else:
return a * actual_power(A , int(b / 2 ) ) * actual_power(A , int(b / 2 ) )
def __magic_name__ ( A , A ) -> float:
if b < 0:
return 1 / actual_power(A , A )
return actual_power(A , A )
if __name__ == "__main__":
print(power(-2, -3))
| 363 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332 | 0 |
'''simple docstring'''
from __future__ import annotations
class lowerCamelCase :
def __init__( self, lowercase_, lowercase_ ) -> str:
snake_case , snake_case = text, pattern
snake_case , snake_case = len(lowercase_ ), len(lowercase_ )
def _lowerCamelCase ( self, lowercase_ ) -> int:
for i in range(self.patLen - 1, -1, -1 ):
if char == self.pattern[i]:
return i
return -1
def _lowerCamelCase ( self, lowercase_ ) -> int:
for i in range(self.patLen - 1, -1, -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def _lowerCamelCase ( self ) -> list[int]:
# searches pattern in text and returns index positions
snake_case = []
for i in range(self.textLen - self.patLen + 1 ):
snake_case = self.mismatch_in_text(lowercase_ )
if mismatch_index == -1:
positions.append(lowercase_ )
else:
snake_case = self.match_in_pattern(self.text[mismatch_index] )
snake_case = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
lowerCAmelCase_ = "ABAABA"
lowerCAmelCase_ = "AB"
lowerCAmelCase_ = BoyerMooreSearch(text, pattern)
lowerCAmelCase_ = bms.bad_character_heuristic()
if len(positions) == 0:
print("No match found")
else:
print("Pattern found in following positions: ")
print(positions)
| 364 |
'''simple docstring'''
from pathlib import Path
import fire
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = Path(A )
snake_case = Path(A )
dest_dir.mkdir(exist_ok=A )
for path in src_dir.iterdir():
snake_case = [x.rstrip() for x in list(path.open().readlines() )][:n]
snake_case = dest_dir.joinpath(path.name )
print(A )
dest_path.open('w' ).write('\n'.join(A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 332 | 0 |
'''simple docstring'''
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
lowerCAmelCase_ = logging.get_logger(__name__)
def __magic_name__ ( A , A , A , A ) -> Tuple[int, int]:
def constraint_to_multiple_of(A , A , A=0 , A=None ):
snake_case = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
snake_case = math.floor(val / multiple ) * multiple
if x < min_val:
snake_case = math.ceil(val / multiple ) * multiple
return x
snake_case = (output_size, output_size) if isinstance(A , A ) else output_size
snake_case , snake_case = get_image_size(A )
snake_case , snake_case = output_size
# determine new height and width
snake_case = output_height / input_height
snake_case = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
snake_case = scale_width
else:
# fit height
snake_case = scale_height
snake_case = constraint_to_multiple_of(scale_height * input_height , multiple=A )
snake_case = constraint_to_multiple_of(scale_width * input_width , multiple=A )
return (new_height, new_width)
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ['''pixel_values''']
def __init__( self, lowercase_ = True, lowercase_ = None, lowercase_ = PILImageResampling.BILINEAR, lowercase_ = False, lowercase_ = 1, lowercase_ = True, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = None, lowercase_ = None, **lowercase_, ) -> None:
super().__init__(**lowercase_ )
snake_case = size if size is not None else {'height': 384, 'width': 384}
snake_case = get_size_dict(lowercase_ )
snake_case = do_resize
snake_case = size
snake_case = keep_aspect_ratio
snake_case = ensure_multiple_of
snake_case = resample
snake_case = do_rescale
snake_case = rescale_factor
snake_case = do_normalize
snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = False, lowercase_ = 1, lowercase_ = PILImageResampling.BICUBIC, lowercase_ = None, **lowercase_, ) -> np.ndarray:
snake_case = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
snake_case = get_resize_output_image_size(
lowercase_, output_size=(size['height'], size['width']), keep_aspect_ratio=lowercase_, multiple=lowercase_, )
return resize(lowercase_, size=lowercase_, resample=lowercase_, data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> List[str]:
return rescale(lowercase_, scale=lowercase_, data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray:
return normalize(lowercase_, mean=lowercase_, std=lowercase_, data_format=lowercase_, **lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = ChannelDimension.FIRST, **lowercase_, ) -> PIL.Image.Image:
snake_case = do_resize if do_resize is not None else self.do_resize
snake_case = size if size is not None else self.size
snake_case = get_size_dict(lowercase_ )
snake_case = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
snake_case = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
snake_case = resample if resample is not None else self.resample
snake_case = do_rescale if do_rescale is not None else self.do_rescale
snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
snake_case = do_normalize if do_normalize is not None else self.do_normalize
snake_case = image_mean if image_mean is not None else self.image_mean
snake_case = image_std if image_std is not None else self.image_std
snake_case = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
snake_case = [to_numpy_array(lowercase_ ) for image in images]
if do_resize:
snake_case = [self.resize(image=lowercase_, size=lowercase_, resample=lowercase_ ) for image in images]
if do_rescale:
snake_case = [self.rescale(image=lowercase_, scale=lowercase_ ) for image in images]
if do_normalize:
snake_case = [self.normalize(image=lowercase_, mean=lowercase_, std=lowercase_ ) for image in images]
snake_case = [to_channel_dimension_format(lowercase_, lowercase_ ) for image in images]
snake_case = {'pixel_values': images}
return BatchFeature(data=lowercase_, tensor_type=lowercase_ )
def _lowerCamelCase ( self, lowercase_, lowercase_ = None ) -> Tuple:
snake_case = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(lowercase_ ):
snake_case = target_sizes.numpy()
snake_case = []
for idx in range(len(lowercase_ ) ):
snake_case = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ), size=target_sizes[idx], mode='bilinear', align_corners=lowercase_ )
snake_case = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowercase_ )
else:
snake_case = logits.argmax(dim=1 )
snake_case = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 365 |
'''simple docstring'''
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
lowerCAmelCase_ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __magic_name__ ( A , A ) -> Union[str, Any]:
inspect_dataset(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __magic_name__ ( A , A ) -> int:
inspect_metric(A , A )
snake_case = path + '.py'
assert script_name in os.listdir(A )
assert "__pycache__" not in os.listdir(A )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_config_info(A , config_name=A )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> Any:
with pytest.raises(A ):
get_dataset_config_info(A , config_name=A )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __magic_name__ ( A , A ) -> Dict:
snake_case = get_dataset_config_names(A )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> List[str]:
snake_case = get_dataset_infos(A )
assert list(infos.keys() ) == expected_configs
snake_case = expected_configs[0]
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __magic_name__ ( A , A , A ) -> Any:
snake_case = get_dataset_infos(A )
assert expected_config in infos
snake_case = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __magic_name__ ( A , A , A ) -> int:
with pytest.raises(A ):
get_dataset_split_names(A , config_name=A )
| 332 | 0 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def __magic_name__ ( A = 2_0_0_0_0_0_0 ) -> int:
snake_case = [0]
snake_case = 4_2
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
snake_case = 0
# the area corresponding to the grid that gives the product closest to target
snake_case = 0
# an estimate of b, using the quadratic formula
snake_case = 4_2
# the largest integer less than b_estimate
snake_case = 4_2
# the largest integer less than b_estimate
snake_case = 4_2
# the triangle number corresponding to b_floor
snake_case = 4_2
# the triangle number corresponding to b_ceil
snake_case = 4_2
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
snake_case = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
snake_case = floor(A )
snake_case = ceil(A )
snake_case = triangle_numbers[b_floor]
snake_case = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_first_guess * triangle_a
snake_case = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
snake_case = triangle_b_second_guess * triangle_a
snake_case = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f"{solution() = }")
| 366 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 332 | 0 |
'''simple docstring'''
def __magic_name__ ( A ) -> float:
return 1_0 - x * x
def __magic_name__ ( A , A ) -> float:
# Bolzano theory in order to find if there is a root between a and b
if equation(A ) * equation(A ) >= 0:
raise ValueError('Wrong space!' )
snake_case = a
while (b - a) >= 0.01:
# Find middle point
snake_case = (a + b) / 2
# Check if middle point is root
if equation(A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(A ) * equation(A ) < 0:
snake_case = c
else:
snake_case = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 367 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
lowerCAmelCase_ = False
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 12
@property
def _lowerCamelCase ( self ) -> Dict:
return 12
@property
def _lowerCamelCase ( self ) -> List[Any]:
return 32
@property
def _lowerCamelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
snake_case = VQModel(
block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, )
return model
@property
def _lowerCamelCase ( self ) -> List[Any]:
snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def _lowerCamelCase ( self ) -> Tuple:
torch.manual_seed(0 )
snake_case = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, )
return CLIPTextModel(lowercase_ )
@property
def _lowerCamelCase ( self ) -> str:
torch.manual_seed(0 )
snake_case = 12
snake_case = 12
snake_case = {
'attention_bias': True,
'cross_attention_dim': 32,
'attention_head_dim': height * width,
'num_attention_heads': 1,
'num_vector_embeds': self.num_embed,
'num_embeds_ada_norm': self.num_embeds_ada_norm,
'norm_num_groups': 32,
'sample_size': width,
'activation_fn': 'geglu-approximate',
}
snake_case = TransformeraDModel(**lowercase_ )
return model
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'cpu'
snake_case = self.dummy_vqvae
snake_case = self.dummy_text_encoder
snake_case = self.dummy_tokenizer
snake_case = self.dummy_transformer
snake_case = VQDiffusionScheduler(self.num_embed )
snake_case = LearnedClassifierFreeSamplingEmbeddings(
learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length )
snake_case = VQDiffusionPipeline(
vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, )
snake_case = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
snake_case = 'teddy bear playing in the pool'
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' )
snake_case = output.images
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipe(
[prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self ) -> int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self ) -> str:
snake_case = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' )
snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' )
snake_case = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 )
snake_case = pipeline(
'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', )
snake_case = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 332 | 0 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowerCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__lowerCAmelCase )} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} )
snake_case_ = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case_ = field(
default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , )
snake_case_ = field(
default=64 , metadata={
'''help''': (
'''The maximum number of tokens for the question. Questions longer than this will '''
'''be truncated to this length.'''
)
} , )
snake_case_ = field(
default=30 , metadata={
'''help''': (
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
)
} , )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
snake_case_ = field(
default=__lowerCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} )
snake_case_ = field(
default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} )
snake_case_ = field(
default=0 , metadata={
'''help''': (
'''language id of input for language-specific xlm models (see'''
''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'''
)
} , )
snake_case_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} )
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''train'''
snake_case_ = '''dev'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
snake_case_ = 42
def __init__( self, lowercase_, lowercase_, lowercase_ = None, lowercase_ = Split.train, lowercase_ = False, lowercase_ = None, lowercase_ = "pt", ) -> int:
snake_case = args
snake_case = is_language_sensitive
snake_case = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowercase_, lowercase_ ):
try:
snake_case = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
snake_case = mode
# Load data features from cache or dataset file
snake_case = 'v2' if args.version_2_with_negative else 'v1'
snake_case = os.path.join(
cache_dir if cache_dir is not None else args.data_dir, F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''', )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case = cached_features_file + '.lock'
with FileLock(lowercase_ ):
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
snake_case = time.time()
snake_case = torch.load(lowercase_ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
snake_case = self.old_features['features']
snake_case = self.old_features.get('dataset', lowercase_ )
snake_case = self.old_features.get('examples', lowercase_ )
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''', time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
' future run' )
else:
if mode == Split.dev:
snake_case = self.processor.get_dev_examples(args.data_dir )
else:
snake_case = self.processor.get_train_examples(args.data_dir )
snake_case , snake_case = squad_convert_examples_to_features(
examples=self.examples, tokenizer=lowercase_, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=mode == Split.train, threads=args.threads, return_dataset=lowercase_, )
snake_case = time.time()
torch.save(
{'features': self.features, 'dataset': self.dataset, 'examples': self.examples}, lowercase_, )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ) -> Tuple:
return len(self.features )
def __getitem__( self, lowercase_ ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
snake_case = self.features[i]
snake_case = torch.tensor(feature.input_ids, dtype=torch.long )
snake_case = torch.tensor(feature.attention_mask, dtype=torch.long )
snake_case = torch.tensor(feature.token_type_ids, dtype=torch.long )
snake_case = torch.tensor(feature.cls_index, dtype=torch.long )
snake_case = torch.tensor(feature.p_mask, dtype=torch.float )
snake_case = torch.tensor(feature.is_impossible, dtype=torch.float )
snake_case = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'token_type_ids': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'cls_index': cls_index, 'p_mask': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'is_impossible': is_impossible} )
if self.is_language_sensitive:
inputs.update({'langs': (torch.ones(input_ids.shape, dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
snake_case = torch.tensor(feature.start_position, dtype=torch.long )
snake_case = torch.tensor(feature.end_position, dtype=torch.long )
inputs.update({'start_positions': start_positions, 'end_positions': end_positions} )
return inputs
| 368 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCamelCase ( metaclass=__lowerCAmelCase ):
snake_case_ = ['''note_seq''']
def __init__( self, *lowercase_, **lowercase_ ) -> str:
requires_backends(self, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]:
requires_backends(cls, ['note_seq'] )
@classmethod
def _lowerCamelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]:
requires_backends(cls, ['note_seq'] )
| 332 | 0 |
'''simple docstring'''
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ = logging.get_logger(__name__)
def __magic_name__ ( A ) -> Optional[Any]:
snake_case = SwinConfig.from_pretrained(
'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
snake_case = MaskFormerConfig(backbone_config=A )
snake_case = 'huggingface/label-files'
if "ade20k-full" in model_name:
# this should be ok
snake_case = 8_4_7
snake_case = 'maskformer-ade20k-full-id2label.json'
elif "ade" in model_name:
# this should be ok
snake_case = 1_5_0
snake_case = 'ade20k-id2label.json'
elif "coco-stuff" in model_name:
# this should be ok
snake_case = 1_7_1
snake_case = 'maskformer-coco-stuff-id2label.json'
elif "coco" in model_name:
# TODO
snake_case = 1_3_3
snake_case = 'coco-panoptic-id2label.json'
elif "cityscapes" in model_name:
# this should be ok
snake_case = 1_9
snake_case = 'cityscapes-id2label.json'
elif "vistas" in model_name:
# this should be ok
snake_case = 6_5
snake_case = 'mapillary-vistas-id2label.json'
snake_case = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
return config
def __magic_name__ ( A ) -> Dict:
snake_case = []
# stem
# fmt: off
rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') )
rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') )
# heads on top
rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') )
rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') )
rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') )
for i in range(3 ):
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def __magic_name__ ( A , A , A ) -> Union[str, Any]:
snake_case = dct.pop(A )
snake_case = val
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
snake_case = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
snake_case = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
snake_case = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case = in_proj_weight[:dim, :]
snake_case = in_proj_bias[: dim]
snake_case = in_proj_weight[
dim : dim * 2, :
]
snake_case = in_proj_bias[
dim : dim * 2
]
snake_case = in_proj_weight[
-dim :, :
]
snake_case = in_proj_bias[-dim :]
# fmt: on
def __magic_name__ ( A , A ) -> int:
# fmt: off
snake_case = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case = in_proj_weight[: hidden_size, :]
snake_case = in_proj_bias[:config.hidden_size]
snake_case = in_proj_weight[hidden_size : hidden_size * 2, :]
snake_case = in_proj_bias[hidden_size : hidden_size * 2]
snake_case = in_proj_weight[-hidden_size :, :]
snake_case = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
snake_case = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case = in_proj_weight[: hidden_size, :]
snake_case = in_proj_bias[:config.hidden_size]
snake_case = in_proj_weight[hidden_size : hidden_size * 2, :]
snake_case = in_proj_bias[hidden_size : hidden_size * 2]
snake_case = in_proj_weight[-hidden_size :, :]
snake_case = in_proj_bias[-hidden_size :]
# fmt: on
def __magic_name__ ( ) -> torch.Tensor:
snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg'
snake_case = Image.open(requests.get(A , stream=A ).raw )
return im
@torch.no_grad()
def __magic_name__ ( A , A , A , A = False ) -> Tuple:
snake_case = get_maskformer_config(A )
# load original state_dict
with open(A , 'rb' ) as f:
snake_case = pickle.load(A )
snake_case = data['model']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
snake_case = create_rename_keys(A )
for src, dest in rename_keys:
rename_key(A , A , A )
read_in_swin_q_k_v(A , config.backbone_config )
read_in_decoder_q_k_v(A , A )
# update to torch tensors
for key, value in state_dict.items():
snake_case = torch.from_numpy(A )
# load 🤗 model
snake_case = MaskFormerForInstanceSegmentation(A )
model.eval()
for name, param in model.named_parameters():
print(A , param.shape )
snake_case , snake_case = model.load_state_dict(A , strict=A )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(A ) == 0, F'''Unexpected keys: {unexpected_keys}'''
# verify results
snake_case = prepare_img()
if "vistas" in model_name:
snake_case = 6_5
elif "cityscapes" in model_name:
snake_case = 6_5_5_3_5
else:
snake_case = 2_5_5
snake_case = True if 'ade' in model_name else False
snake_case = MaskFormerImageProcessor(ignore_index=A , reduce_labels=A )
snake_case = image_processor(A , return_tensors='pt' )
snake_case = model(**A )
print('Logits:' , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
snake_case = torch.tensor(
[[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , A , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(A ).mkdir(exist_ok=A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
if push_to_hub:
print('Pushing model and image processor to the hub...' )
model.push_to_hub(F'''nielsr/{model_name}''' )
image_processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="maskformer-swin-tiny-ade",
type=str,
help=("Name of the MaskFormer model you'd like to convert",),
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl",
type=str,
help="Path to the original state dict (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase_ = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 369 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
lowerCAmelCase_ = logging.get_logger(__name__)
class lowerCamelCase ( __lowerCAmelCase ):
def __init__( self, *lowercase_, **lowercase_ ) -> None:
warnings.warn(
'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DPTImageProcessor instead.', lowercase_, )
super().__init__(*lowercase_, **lowercase_ )
| 332 | 0 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class lowerCamelCase ( unittest.TestCase ):
def _lowerCamelCase ( self, lowercase_ ) -> Any:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'], model_result['ss'] ):
snake_case = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(lowercase_ )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], eager_mode=lowercase_, multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Any:
snake_case = 'sgugger/tiny-distilbert-classification'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, only_pretrain_model=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> List[str]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Any:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], eager_mode=lowercase_, multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_, [config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_, [config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Any:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowerCamelCase ( self ) -> Dict:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_, [config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowerCamelCase ( self ) -> Optional[Any]:
snake_case = 'patrickvonplaten/t5-tiny-random'
snake_case = AutoConfig.from_pretrained(lowercase_ )
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_, configs=[config] )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0, 'Cannot do xla on CPU.' )
def _lowerCamelCase ( self ) -> str:
snake_case = 'sshleifer/tiny-gpt2'
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], training=lowercase_, inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], use_xla=lowercase_, multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowerCamelCase ( self ) -> Dict:
snake_case = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], inference=lowercase_, save_to_csv=lowercase_, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(lowercase_, 'inf_time.csv' ), inference_memory_csv_file=os.path.join(lowercase_, 'inf_mem.csv' ), env_info_csv_file=os.path.join(lowercase_, 'env.csv' ), multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
benchmark.run()
self.assertTrue(Path(os.path.join(lowercase_, 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase_, 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase_, 'env.csv' ) ).exists() )
def _lowerCamelCase ( self ) -> Tuple:
snake_case = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(lowercase_ ):
self.assertTrue(hasattr(lowercase_, 'sequential' ) )
self.assertTrue(hasattr(lowercase_, 'cumulative' ) )
self.assertTrue(hasattr(lowercase_, 'current' ) )
self.assertTrue(hasattr(lowercase_, 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
snake_case = TensorFlowBenchmarkArguments(
models=[MODEL_ID], inference=lowercase_, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(lowercase_, 'log.txt' ), log_print=lowercase_, trace_memory_line_by_line=lowercase_, eager_mode=lowercase_, multi_process=lowercase_, )
snake_case = TensorFlowBenchmark(lowercase_ )
snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(lowercase_, 'log.txt' ) ).exists() )
| 370 |
'''simple docstring'''
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
lowerCAmelCase_ = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
lowerCAmelCase_ = dataset.iloc[:, 1:2].values
lowerCAmelCase_ = dataset.iloc[:, 2].values
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0)
lowerCAmelCase_ = PolynomialFeatures(degree=4)
lowerCAmelCase_ = poly_reg.fit_transform(X)
lowerCAmelCase_ = LinearRegression()
pol_reg.fit(X_poly, y)
def __magic_name__ ( ) -> Any:
plt.scatter(A , A , color='red' )
plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color='blue' )
plt.title('Truth or Bluff (Linear Regression)' )
plt.xlabel('Position level' )
plt.ylabel('Salary' )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 332 | 0 |
from __future__ import annotations
def __magic_name__ ( A , A = None , A = None , A = False , ) -> tuple[int, float, str]:
snake_case = cipher_alphabet or [chr(A ) for i in range(9_7 , 1_2_3 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
snake_case = {
'a': 0.08_497,
'b': 0.01_492,
'c': 0.02_202,
'd': 0.04_253,
'e': 0.11_162,
'f': 0.02_228,
'g': 0.02_015,
'h': 0.06_094,
'i': 0.07_546,
'j': 0.00_153,
'k': 0.01_292,
'l': 0.04_025,
'm': 0.02_406,
'n': 0.06_749,
'o': 0.07_507,
'p': 0.01_929,
'q': 0.00_095,
'r': 0.07_587,
's': 0.06_327,
't': 0.09_356,
'u': 0.02_758,
'v': 0.00_978,
'w': 0.02_560,
'x': 0.00_150,
'y': 0.01_994,
'z': 0.00_077,
}
else:
# Custom frequencies dictionary
snake_case = frequencies_dict
if not case_sensitive:
snake_case = ciphertext.lower()
# Chi squared statistic values
snake_case = {}
# cycle through all of the shifts
for shift in range(len(A ) ):
snake_case = ''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
snake_case = (alphabet_letters.index(letter.lower() ) - shift) % len(
A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
snake_case = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
snake_case = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
snake_case = decrypted_with_shift.lower().count(A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
snake_case = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
snake_case = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
snake_case = decrypted_with_shift.count(A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
snake_case = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
snake_case = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
snake_case = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(A ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
snake_case = min(
A , key=A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
snake_case
) , (
snake_case
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 371 |
'''simple docstring'''
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = ''''''
snake_case_ = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
snake_case_ = None # compression type in fsspec. ex: "gzip"
snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self, lowercase_ = "", lowercase_ = None, lowercase_ = None, **lowercase_ ) -> str:
super().__init__(self, **lowercase_ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
snake_case = fsspec.open(
lowercase_, mode='rb', protocol=lowercase_, compression=self.compression, client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed.
}, **(target_options or {}), )
snake_case = os.path.basename(self.file.path.split('::' )[0] )
snake_case = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
snake_case = None
@classmethod
def _lowerCamelCase ( cls, lowercase_ ) -> Any:
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowercase_ ).lstrip('/' )
def _lowerCamelCase ( self ) -> Optional[Any]:
if self.dir_cache is None:
snake_case = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
snake_case = {f['name']: f}
def _lowerCamelCase ( self, lowercase_ ) -> str:
return self.file.open().read()
def _lowerCamelCase ( self, lowercase_, lowercase_ = "rb", lowercase_=None, lowercase_=True, lowercase_=None, **lowercase_, ) -> Any:
snake_case = self._strip_protocol(lowercase_ )
if mode != "rb":
raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''bz2'''
snake_case_ = '''bz2'''
snake_case_ = '''.bz2'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''gzip'''
snake_case_ = '''gzip'''
snake_case_ = '''.gz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''lz4'''
snake_case_ = '''lz4'''
snake_case_ = '''.lz4'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''xz'''
snake_case_ = '''xz'''
snake_case_ = '''.xz'''
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''zstd'''
snake_case_ = '''zstd'''
snake_case_ = '''.zst'''
def __init__( self, lowercase_, lowercase_ = "rb", lowercase_ = None, lowercase_ = None, lowercase_ = DEFAULT_BLOCK_SIZE, **lowercase_, ) -> Union[str, Any]:
super().__init__(
fo=lowercase_, mode=lowercase_, target_protocol=lowercase_, target_options=lowercase_, block_size=lowercase_, **lowercase_, )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
snake_case = self.file.__enter__
class lowerCamelCase :
def __init__( self, lowercase_ ) -> List[Any]:
snake_case = file_
def __enter__( self ) -> Dict:
self._file.__enter__()
return self
def __exit__( self, *lowercase_, **lowercase_ ) -> Dict:
self._file.__exit__(*lowercase_, **lowercase_ )
def __iter__( self ) -> List[str]:
return iter(self._file )
def _lowerCamelCase ( self ) -> List[str]:
return next(self._file )
def __getattr__( self, lowercase_ ) -> List[Any]:
return getattr(self._file, lowercase_ )
def fixed_enter(*lowercase_, **lowercase_ ):
return WrappedFile(_enter(*lowercase_, **lowercase_ ) )
snake_case = fixed_enter
| 332 | 0 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = '''▁'''
UpperCamelCase = {
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
}
UpperCamelCase = {
'''vocab_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'''
),
},
'''spm_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'''
)
},
}
UpperCamelCase = {
'''facebook/s2t-small-librispeech-asr''': 1024,
}
UpperCamelCase = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de''']
UpperCamelCase = {'''mustc''': MUSTC_LANGS}
class snake_case_ ( __A ):
__A : Tuple = VOCAB_FILES_NAMES
__A : Tuple = PRETRAINED_VOCAB_FILES_MAP
__A : Optional[Any] = MAX_MODEL_INPUT_SIZES
__A : Tuple = ["input_ids", "attention_mask"]
__A : List[int] = []
def __init__( self : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int]="<s>" , lowercase_ : List[Any]="</s>" , lowercase_ : Dict="<pad>" , lowercase_ : Optional[int]="<unk>" , lowercase_ : Tuple=False , lowercase_ : List[str]=False , lowercase_ : Optional[int]=None , lowercase_ : Optional[int]=None , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Optional[int] , ) -> None:
lowercase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , do_upper_case=lowercase_ , do_lower_case=lowercase_ , tgt_lang=lowercase_ , lang_codes=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
lowercase__ : Dict = do_upper_case
lowercase__ : Optional[Any] = do_lower_case
lowercase__ : Optional[int] = load_json(lowercase_ )
lowercase__ : Tuple = {v: k for k, v in self.encoder.items()}
lowercase__ : Optional[int] = spm_file
lowercase__ : Union[str, Any] = load_spm(lowercase_ , self.sp_model_kwargs )
if lang_codes is not None:
lowercase__ : List[str] = lang_codes
lowercase__ : Union[str, Any] = LANGUAGES[lang_codes]
lowercase__ : List[str] = [F'''<lang:{lang}>''' for lang in self.langs]
lowercase__ : str = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs}
lowercase__ : str = self.lang_tokens
lowercase__ : Optional[Any] = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
lowercase__ : Dict = {}
@property
def __UpperCamelCase ( self : List[Any] ) -> int:
return len(self.encoder )
@property
def __UpperCamelCase ( self : List[str] ) -> str:
return self._tgt_lang
@tgt_lang.setter
def __UpperCamelCase ( self : str , lowercase_ : List[Any] ) -> None:
lowercase__ : Dict = new_tgt_lang
self.set_tgt_lang_special_tokens(lowercase_ )
def __UpperCamelCase ( self : List[str] , lowercase_ : str ) -> None:
lowercase__ : Any = self.lang_code_to_id[tgt_lang]
lowercase__ : Tuple = [lang_code_id]
def __UpperCamelCase ( self : List[str] , lowercase_ : str ) -> List[str]:
return self.sp_model.encode(lowercase_ , out_type=lowercase_ )
def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[int] ) -> Any:
return self.encoder.get(lowercase_ , self.encoder[self.unk_token] )
def __UpperCamelCase ( self : int , lowercase_ : int ) -> str:
return self.decoder.get(lowercase_ , self.unk_token )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> str:
lowercase__ : Optional[int] = []
lowercase__ : List[str] = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
lowercase__ : List[Any] = self.sp_model.decode(lowercase_ )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
lowercase__ : Tuple = []
else:
current_sub_tokens.append(lowercase_ )
lowercase__ : List[Any] = self.sp_model.decode(lowercase_ )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def __UpperCamelCase ( self : List[str] , lowercase_ : int , lowercase_ : Dict=None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
lowercase__ : int = [1] * len(self.prefix_tokens )
lowercase__ : Tuple = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones
return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones
def __UpperCamelCase ( self : str ) -> Dict:
lowercase__ : int = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Dict:
lowercase__ : Optional[Any] = self.__dict__.copy()
lowercase__ : Any = None
return state
def __setstate__( self : List[Any] , lowercase_ : Dict ) -> None:
lowercase__ : Tuple = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowercase__ : Optional[int] = {}
lowercase__ : Tuple = load_spm(self.spm_file , self.sp_model_kwargs )
def __UpperCamelCase ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]:
lowercase__ : Any = Path(lowercase_ )
assert save_dir.is_dir(), F'''{save_directory} should be a directory'''
lowercase__ : str = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
lowercase__ : Dict = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , lowercase_ )
if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , lowercase_ )
elif not os.path.isfile(self.spm_file ):
with open(lowercase_ , "wb" ) as fi:
lowercase__ : Any = self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
return (str(lowercase_ ), str(lowercase_ ))
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any]):
lowercase__ : List[Any] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase)
spm.Load(str(_lowerCamelCase))
return spm
def lowercase_ ( _lowerCamelCase : str):
with open(_lowerCamelCase , "r") as f:
return json.load(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : str):
with open(_lowerCamelCase , "w") as f:
json.dump(_lowerCamelCase , _lowerCamelCase , indent=2)
| 333 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 1 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Optional[int] ) -> Tuple:
lowercase__ : str = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(lowercase_ ) )
def __UpperCamelCase ( self : Any ) -> Optional[Any]:
lowercase__ : Dict = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(lowercase_ ) )
def __UpperCamelCase ( self : Tuple ) -> Tuple:
lowercase__ : Union[str, Any] = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(lowercase_ ) )
def __UpperCamelCase ( self : Tuple ) -> Any:
lowercase__ : Optional[Any] = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
]
self.assertTrue(is_safetensors_compatible(lowercase_ ) )
def __UpperCamelCase ( self : Tuple ) -> str:
lowercase__ : Optional[Any] = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
# Removed: 'text_encoder/model.safetensors',
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertFalse(is_safetensors_compatible(lowercase_ ) )
def __UpperCamelCase ( self : Dict ) -> str:
lowercase__ : Any = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
lowercase__ : Any = "fp16"
self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Optional[int] = [
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
lowercase__ : Optional[int] = "fp16"
self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
# pass variant but use the non-variant filenames
lowercase__ : List[Any] = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
lowercase__ : List[Any] = "fp16"
self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
def __UpperCamelCase ( self : Dict ) -> Union[str, Any]:
lowercase__ : Tuple = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase__ : str = "fp16"
self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
def __UpperCamelCase ( self : str ) -> str:
lowercase__ : Optional[int] = [
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
]
lowercase__ : List[Any] = "fp16"
self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
def __UpperCamelCase ( self : Union[str, Any] ) -> int:
# pass variant but use the non-variant filenames
lowercase__ : Union[str, Any] = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
]
lowercase__ : Any = "fp16"
self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
lowercase__ : str = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
# 'text_encoder/model.fp16.safetensors',
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
lowercase__ : List[str] = "fp16"
self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
| 333 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class snake_case_ ( __A ):
__A : List[str] = "unispeech"
def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : Any = feat_extract_norm
lowercase__ : Optional[Any] = feat_extract_activation
lowercase__ : Dict = list(lowercase_ )
lowercase__ : Union[str, Any] = list(lowercase_ )
lowercase__ : List[str] = list(lowercase_ )
lowercase__ : List[str] = conv_bias
lowercase__ : Any = num_conv_pos_embeddings
lowercase__ : Dict = num_conv_pos_embedding_groups
lowercase__ : int = len(self.conv_dim )
lowercase__ : str = num_hidden_layers
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : Any = attention_dropout
lowercase__ : Union[str, Any] = activation_dropout
lowercase__ : Any = feat_proj_dropout
lowercase__ : str = final_dropout
lowercase__ : int = layerdrop
lowercase__ : Optional[int] = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = num_ctc_classes
lowercase__ : int = vocab_size
lowercase__ : str = do_stable_layer_norm
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : List[Any] = apply_spec_augment
lowercase__ : Dict = mask_time_prob
lowercase__ : Tuple = mask_time_length
lowercase__ : str = mask_time_min_masks
lowercase__ : List[Any] = mask_feature_prob
lowercase__ : int = mask_feature_length
lowercase__ : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__ : Optional[int] = num_codevectors_per_group
lowercase__ : List[str] = num_codevector_groups
lowercase__ : Dict = contrastive_logits_temperature
lowercase__ : Tuple = feat_quantizer_dropout
lowercase__ : Any = num_negatives
lowercase__ : Dict = codevector_dim
lowercase__ : Tuple = proj_codevector_dim
lowercase__ : List[str] = diversity_loss_weight
# ctc loss
lowercase__ : Tuple = ctc_loss_reduction
lowercase__ : Dict = ctc_zero_infinity
# pretraining loss
lowercase__ : Optional[Any] = replace_prob
@property
def __UpperCamelCase ( self : Dict ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 333 | 1 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def lowercase_ ( _lowerCamelCase : Optional[int]):
lowercase__ : int = model.config
lowercase__ : Tuple = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
lowercase__ : str = MBartConfig(
is_decoder=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , add_cross_attention=_lowerCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer) , scale_embedding=_lowerCamelCase , add_final_layer_norm=_lowerCamelCase , )
return encoder_config, decoder_config
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
if "encoder.model" in name:
lowercase__ : Optional[Any] = name.replace("encoder.model" , "encoder")
if "decoder.model" in name:
lowercase__ : Any = name.replace("decoder.model" , "decoder")
if "patch_embed.proj" in name:
lowercase__ : Dict = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
lowercase__ : Union[str, Any] = name.replace("patch_embed.norm" , "embeddings.norm")
if name.startswith("encoder"):
if "layers" in name:
lowercase__ : int = "encoder." + name
if "attn.proj" in name:
lowercase__ : Dict = name.replace("attn.proj" , "attention.output.dense")
if "attn" in name and "mask" not in name:
lowercase__ : List[str] = name.replace("attn" , "attention.self")
if "norm1" in name:
lowercase__ : Dict = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Union[str, Any] = name.replace("norm2" , "layernorm_after")
if "mlp.fc1" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : int = name.replace("mlp.fc2" , "output.dense")
if name == "encoder.norm.weight":
lowercase__ : str = "encoder.layernorm.weight"
if name == "encoder.norm.bias":
lowercase__ : Union[str, Any] = "encoder.layernorm.bias"
return name
def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]):
for key in orig_state_dict.copy().keys():
lowercase__ : str = orig_state_dict.pop(_lowerCamelCase)
if "qkv" in key:
lowercase__ : Tuple = key.split(".")
lowercase__ : int = int(key_split[3])
lowercase__ : List[Any] = int(key_split[5])
lowercase__ : Tuple = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowercase__ : Union[str, Any] = val[:dim, :]
lowercase__ : Any = val[dim : dim * 2, :]
lowercase__ : str = val[-dim:, :]
else:
lowercase__ : Tuple = val[:dim]
lowercase__ : int = val[dim : dim * 2]
lowercase__ : List[Any] = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
lowercase__ : Optional[Any] = val
return orig_state_dict
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=False):
# load original model
lowercase__ : List[Any] = DonutModel.from_pretrained(_lowerCamelCase).eval()
# load HuggingFace model
lowercase__ , lowercase__ : Optional[Any] = get_configs(_lowerCamelCase)
lowercase__ : Tuple = DonutSwinModel(_lowerCamelCase)
lowercase__ : Optional[int] = MBartForCausalLM(_lowerCamelCase)
lowercase__ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase)
model.eval()
lowercase__ : Tuple = original_model.state_dict()
lowercase__ : int = convert_state_dict(_lowerCamelCase , _lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
# verify results on scanned document
lowercase__ : str = load_dataset("hf-internal-testing/example-documents")
lowercase__ : str = dataset["test"][0]["image"].convert("RGB")
lowercase__ : Optional[int] = XLMRobertaTokenizerFast.from_pretrained(_lowerCamelCase , from_slow=_lowerCamelCase)
lowercase__ : Tuple = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1])
lowercase__ : Optional[Any] = DonutProcessor(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Dict = processor(_lowerCamelCase , return_tensors="pt").pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
lowercase__ : Optional[int] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
lowercase__ : List[Any] = "When is the coffee break?"
lowercase__ : List[Any] = task_prompt.replace("{user_input}" , _lowerCamelCase)
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
lowercase__ : int = "<s_rvlcdip>"
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
lowercase__ : Any = "<s_cord>"
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
lowercase__ : Optional[Any] = "s_cord-v2>"
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
lowercase__ : Union[str, Any] = "<s_zhtrainticket>"
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
lowercase__ : Any = "hello world"
else:
raise ValueError("Model name not supported")
lowercase__ : Union[str, Any] = original_model.decoder.tokenizer(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors="pt")[
"input_ids"
]
lowercase__ : str = original_model.encoder.model.patch_embed(_lowerCamelCase)
lowercase__ , lowercase__ : Any = model.encoder.embeddings(_lowerCamelCase)
assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3)
# verify encoder hidden states
lowercase__ : Dict = original_model.encoder(_lowerCamelCase)
lowercase__ : Union[str, Any] = model.encoder(_lowerCamelCase).last_hidden_state
assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-2)
# verify decoder hidden states
lowercase__ : int = original_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase).logits
lowercase__ : Tuple = model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase).logits
assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
model.push_to_hub("nielsr/" + model_name.split("/")[-1] , commit_message="Update model")
processor.push_to_hub("nielsr/" + model_name.split("/")[-1] , commit_message="Update model")
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''naver-clova-ix/donut-base-finetuned-docvqa''',
required=False,
type=str,
help='''Name of the original model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
required=False,
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether or not to push the converted model and processor to the 🤗 hub.''',
)
UpperCamelCase = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 333 |
def lowercase_ ( _lowerCamelCase : list):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : int = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j]
lowercase__ : List[str] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 333 | 1 |
UpperCamelCase = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any]):
# Return True if there is node that has not iterated.
lowercase__ : List[str] = [False] * len(_lowerCamelCase)
lowercase__ : Optional[Any] = [s]
lowercase__ : int = True
while queue:
lowercase__ : Optional[Any] = queue.pop(0)
for ind in range(len(graph[u])):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_lowerCamelCase)
lowercase__ : Union[str, Any] = True
lowercase__ : List[Any] = u
return visited[t]
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any]):
lowercase__ : Union[str, Any] = [-1] * (len(_lowerCamelCase))
lowercase__ : Optional[int] = 0
lowercase__ : Optional[int] = []
lowercase__ : Union[str, Any] = [i[:] for i in graph] # Record original cut, copy.
while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase):
lowercase__ : Any = float("Inf")
lowercase__ : Optional[int] = sink
while s != source:
# Find the minimum value in select path
lowercase__ : str = min(_lowerCamelCase , graph[parent[s]][s])
lowercase__ : Dict = parent[s]
max_flow += path_flow
lowercase__ : Union[str, Any] = sink
while v != source:
lowercase__ : Optional[int] = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
lowercase__ : List[str] = parent[v]
for i in range(len(_lowerCamelCase)):
for j in range(len(graph[0])):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j))
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 333 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class snake_case_ ( __A ):
__A : int = "token-classification"
def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]:
if type(lowercase_ ) == dict:
lowercase__ : Dict = Namespace(**lowercase_ )
lowercase__ : str = import_module("tasks" )
try:
lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels )
lowercase__ : int = CrossEntropyLoss().ignore_index
super().__init__(lowercase_ , len(self.labels ) , self.mode )
def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any:
return self.model(**lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple:
lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : Tuple = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : Optional[int] = self(**lowercase_ )
lowercase__ : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
lowercase__ : Any = self._feature_file(lowercase_ )
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ )
lowercase__ : Dict = self.token_classification_task.convert_examples_to_features(
lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowercase_ )
torch.save(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader:
lowercase__ : str = self._feature_file(lowercase_ )
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str:
"""Compute validation""" ""
lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : int = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : List[Any] = self(**lowercase_ )
lowercase__ , lowercase__ : Any = outputs[:2]
lowercase__ : Optional[Any] = logits.detach().cpu().numpy()
lowercase__ : int = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]:
lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean()
lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 )
lowercase__ : Dict = np.argmax(lowercase_ , axis=2 )
lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 )
lowercase__ : Any = dict(enumerate(self.labels ) )
lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )]
lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
lowercase__ : Any = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase_ , lowercase_ ),
"precision": precision_score(lowercase_ , lowercase_ ),
"recall": recall_score(lowercase_ , lowercase_ ),
"f1": fa_score(lowercase_ , lowercase_ ),
}
lowercase__ : List[Any] = dict(results.items() )
lowercase__ : List[str] = results
return ret, preds_list, out_label_list
def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict:
# when stable
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
lowercase__ : Any = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int:
# updating to test_epoch_end instead of deprecated test_end
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
lowercase__ : Optional[int] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple:
# Add NER specific options
BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ )
parser.add_argument(
"--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=1_28 , type=lowercase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCamelCase = parser.parse_args()
UpperCamelCase = NERTransformer(args)
UpperCamelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
UpperCamelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 333 | 1 |
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
UpperCamelCase = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def lowercase_ ( _lowerCamelCase : Optional[int]):
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts)
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config)
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights)
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]):
if args.student_type == "roberta":
lowercase__ : Dict = False
elif args.student_type == "gpt2":
lowercase__ : str = False
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]):
if args.student_type == "roberta":
lowercase__ : Union[str, Any] = False
def lowercase_ ( ):
lowercase__ : str = argparse.ArgumentParser(description="Training")
parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists.")
parser.add_argument(
"--dump_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="The output directory (log, checkpoints, parameters, etc.)")
parser.add_argument(
"--data_file" , type=_lowerCamelCase , required=_lowerCamelCase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , )
parser.add_argument(
"--student_type" , type=_lowerCamelCase , choices=["distilbert", "roberta", "gpt2"] , required=_lowerCamelCase , help="The student type (DistilBERT, RoBERTa)." , )
parser.add_argument("--student_config" , type=_lowerCamelCase , required=_lowerCamelCase , help="Path to the student configuration.")
parser.add_argument(
"--student_pretrained_weights" , default=_lowerCamelCase , type=_lowerCamelCase , help="Load student initialization checkpoint.")
parser.add_argument(
"--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=_lowerCamelCase , help="Teacher type (BERT, RoBERTa).")
parser.add_argument("--teacher_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="The teacher model.")
parser.add_argument("--temperature" , default=2.0 , type=_lowerCamelCase , help="Temperature for the softmax temperature.")
parser.add_argument(
"--alpha_ce" , default=0.5 , type=_lowerCamelCase , help="Linear weight for the distillation loss. Must be >=0.")
parser.add_argument(
"--alpha_mlm" , default=0.0 , type=_lowerCamelCase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , )
parser.add_argument("--alpha_clm" , default=0.5 , type=_lowerCamelCase , help="Linear weight for the CLM loss. Must be >=0.")
parser.add_argument("--alpha_mse" , default=0.0 , type=_lowerCamelCase , help="Linear weight of the MSE loss. Must be >=0.")
parser.add_argument(
"--alpha_cos" , default=0.0 , type=_lowerCamelCase , help="Linear weight of the cosine embedding loss. Must be >=0.")
parser.add_argument(
"--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.")
parser.add_argument(
"--mlm_mask_prop" , default=0.15 , type=_lowerCamelCase , help="Proportion of tokens for which we need to make a prediction." , )
parser.add_argument("--word_mask" , default=0.8 , type=_lowerCamelCase , help="Proportion of tokens to mask out.")
parser.add_argument("--word_keep" , default=0.1 , type=_lowerCamelCase , help="Proportion of tokens to keep.")
parser.add_argument("--word_rand" , default=0.1 , type=_lowerCamelCase , help="Proportion of tokens to randomly replace.")
parser.add_argument(
"--mlm_smoothing" , default=0.7 , type=_lowerCamelCase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , )
parser.add_argument("--token_counts" , type=_lowerCamelCase , help="The token counts in the data_file for MLM.")
parser.add_argument(
"--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , )
parser.add_argument(
"--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , )
parser.add_argument(
"--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , )
parser.add_argument("--n_epoch" , type=_lowerCamelCase , default=3 , help="Number of pass on the whole dataset.")
parser.add_argument("--batch_size" , type=_lowerCamelCase , default=5 , help="Batch size (for each process).")
parser.add_argument(
"--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , )
parser.add_argument(
"--gradient_accumulation_steps" , type=_lowerCamelCase , default=50 , help="Gradient accumulation for larger training batches." , )
parser.add_argument("--warmup_prop" , default=0.05 , type=_lowerCamelCase , help="Linear warmup proportion.")
parser.add_argument("--weight_decay" , default=0.0 , type=_lowerCamelCase , help="Weight decay if we apply some.")
parser.add_argument("--learning_rate" , default=5E-4 , type=_lowerCamelCase , help="The initial learning rate for Adam.")
parser.add_argument("--adam_epsilon" , default=1E-6 , type=_lowerCamelCase , help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm" , default=5.0 , type=_lowerCamelCase , help="Max gradient norm.")
parser.add_argument("--initializer_range" , default=0.02 , type=_lowerCamelCase , help="Random initialization range.")
parser.add_argument(
"--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , )
parser.add_argument(
"--fp16_opt_level" , type=_lowerCamelCase , default="O1" , help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
) , )
parser.add_argument("--n_gpu" , type=_lowerCamelCase , default=1 , help="Number of GPUs in the node.")
parser.add_argument("--local_rank" , type=_lowerCamelCase , default=-1 , help="Distributed training - Local rank")
parser.add_argument("--seed" , type=_lowerCamelCase , default=56 , help="Random seed")
parser.add_argument("--log_interval" , type=_lowerCamelCase , default=500 , help="Tensorboard logging interval.")
parser.add_argument("--checkpoint_interval" , type=_lowerCamelCase , default=4000 , help="Checkpoint interval.")
lowercase__ : List[str] = parser.parse_args()
sanity_checks(_lowerCamelCase)
# ARGS #
init_gpu_params(_lowerCamelCase)
set_seed(_lowerCamelCase)
if args.is_master:
if os.path.exists(args.dump_path):
if not args.force:
raise ValueError(
f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
" itUse `--force` if you want to overwrite it")
else:
shutil.rmtree(args.dump_path)
if not os.path.exists(args.dump_path):
os.makedirs(args.dump_path)
logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''')
# SAVE PARAMS #
logger.info(f'''Param: {args}''')
with open(os.path.join(args.dump_path , "parameters.json") , "w") as f:
json.dump(vars(_lowerCamelCase) , _lowerCamelCase , indent=4)
git_log(args.dump_path)
lowercase__ , lowercase__ , lowercase__ : int = MODEL_CLASSES[args.student_type]
lowercase__ , lowercase__ , lowercase__ : List[Any] = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
lowercase__ : Tuple = teacher_tokenizer_class.from_pretrained(args.teacher_name)
lowercase__ : Any = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
lowercase__ : Tuple = tokenizer.all_special_tokens.index(_lowerCamelCase)
lowercase__ : str = tokenizer.all_special_ids[idx]
logger.info(f'''Special tokens {special_tok_ids}''')
lowercase__ : List[Any] = special_tok_ids
lowercase__ : List[str] = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(f'''Loading data from {args.data_file}''')
with open(args.data_file , "rb") as fp:
lowercase__ : Tuple = pickle.load(_lowerCamelCase)
if args.mlm:
logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''')
with open(args.token_counts , "rb") as fp:
lowercase__ : Optional[Any] = pickle.load(_lowerCamelCase)
lowercase__ : List[Any] = np.maximum(_lowerCamelCase , 1) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
lowercase__ : Union[str, Any] = 0.0 # do not predict special tokens
lowercase__ : List[str] = torch.from_numpy(_lowerCamelCase)
else:
lowercase__ : Any = None
lowercase__ : List[str] = LmSeqsDataset(params=_lowerCamelCase , data=_lowerCamelCase)
logger.info("Data loader created.")
# STUDENT #
logger.info(f'''Loading student config from {args.student_config}''')
lowercase__ : Dict = student_config_class.from_pretrained(args.student_config)
lowercase__ : Optional[Any] = True
if args.student_pretrained_weights is not None:
logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''')
lowercase__ : List[str] = student_model_class.from_pretrained(args.student_pretrained_weights , config=_lowerCamelCase)
else:
lowercase__ : str = student_model_class(_lowerCamelCase)
if args.n_gpu > 0:
student.to(f'''cuda:{args.local_rank}''')
logger.info("Student loaded.")
# TEACHER #
lowercase__ : List[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_lowerCamelCase)
if args.n_gpu > 0:
teacher.to(f'''cuda:{args.local_rank}''')
logger.info(f'''Teacher loaded from {args.teacher_name}.''')
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_lowerCamelCase , _lowerCamelCase)
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_lowerCamelCase , _lowerCamelCase)
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
lowercase__ : Union[str, Any] = Distiller(
params=_lowerCamelCase , dataset=_lowerCamelCase , token_probs=_lowerCamelCase , student=_lowerCamelCase , teacher=_lowerCamelCase)
distiller.train()
logger.info("Let's go get some drinks.")
if __name__ == "__main__":
main()
| 333 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 333 | 1 |
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
UpperCamelCase = logging.get_logger(__name__)
logging.set_verbosity_info()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str):
if "xprophetnet" in prophetnet_checkpoint_path:
lowercase__ : int = XLMProphetNetForConditionalGenerationOld.from_pretrained(_lowerCamelCase)
lowercase__ , lowercase__ : Any = XLMProphetNetForConditionalGeneration.from_pretrained(
_lowerCamelCase , output_loading_info=_lowerCamelCase)
else:
lowercase__ : str = ProphetNetForConditionalGenerationOld.from_pretrained(_lowerCamelCase)
lowercase__ , lowercase__ : Union[str, Any] = ProphetNetForConditionalGeneration.from_pretrained(
_lowerCamelCase , output_loading_info=_lowerCamelCase)
lowercase__ : Union[str, Any] = ["key_proj", "value_proj", "query_proj"]
lowercase__ : int = {
"self_attn": "ngram_self_attn",
"cross_attn": "encoder_attn",
"cross_attn_layer_norm": "encoder_attn_layer_norm",
"feed_forward_layer_norm": "final_layer_norm",
"feed_forward": "",
"intermediate": "fc1",
"output": "fc2",
"key_proj": "k_proj",
"query_proj": "q_proj",
"value_proj": "v_proj",
"word_embeddings": "embed_tokens",
"embeddings_layer_norm": "emb_layer_norm",
"relative_pos_embeddings": "relative_linear",
"ngram_embeddings": "ngram_input_embed",
"position_embeddings": "embed_positions",
}
for key in loading_info["missing_keys"]:
lowercase__ : Any = key.split(".")
if attributes[0] == "lm_head":
lowercase__ : Any = prophet
lowercase__ : List[Any] = prophet_old
else:
lowercase__ : Any = prophet.prophetnet
lowercase__ : List[Any] = prophet_old.model
lowercase__ : Dict = False
for attribute in attributes:
if attribute in mapping:
lowercase__ : Tuple = mapping[attribute]
if not hasattr(_lowerCamelCase , _lowerCamelCase) and len(_lowerCamelCase) > 0:
lowercase__ : str = attribute
elif hasattr(_lowerCamelCase , _lowerCamelCase):
lowercase__ : Optional[int] = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
lowercase__ : List[str] = old_model.weight
logger.info(f'''{attribute} is initialized.''')
lowercase__ : str = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
lowercase__ : Dict = old_model.bias
logger.info(f'''{attribute} is initialized''')
lowercase__ : List[str] = True
break
elif attribute in special_keys and hasattr(_lowerCamelCase , "in_proj_weight"):
lowercase__ : str = old_model.in_proj_weight.shape[0] // 3
lowercase__ : Tuple = getattr(_lowerCamelCase , _lowerCamelCase)
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
lowercase__ : List[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :])
lowercase__ : List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim])
elif attribute == "key_proj":
lowercase__ : Optional[int] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :])
lowercase__ : str = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim])
elif attribute == "value_proj":
lowercase__ : Any = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :])
lowercase__ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :])
lowercase__ : List[Any] = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings."
lowercase__ : List[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :])
lowercase__ : Union[str, Any] = True
break
if attribute.isdigit():
lowercase__ : Any = model[int(_lowerCamelCase)]
lowercase__ : str = old_model[int(_lowerCamelCase)]
else:
lowercase__ : int = getattr(_lowerCamelCase , _lowerCamelCase)
if old_attribute == "":
lowercase__ : Dict = old_model
else:
if not hasattr(_lowerCamelCase , _lowerCamelCase):
raise ValueError(f'''{old_model} does not have {old_attribute}''')
lowercase__ : Dict = getattr(_lowerCamelCase , _lowerCamelCase)
if not is_key_init:
raise ValueError(f'''{key} was not correctly initialized!''')
print(f'''Saving model to {pytorch_dump_folder_path}''')
prophet.save_pretrained(_lowerCamelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
UpperCamelCase = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 333 |
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : List[str]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000):
lowercase__ : Optional[int] = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Tuple = sigmoid_function(_lowerCamelCase)
lowercase__ : Dict = np.dot(x.T , h - y) / y.size
lowercase__ : int = theta - alpha * gradient # updating the weights
lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : List[Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str):
lowercase__ : List[str] = len(_lowerCamelCase)
lowercase__ : Dict = len(_lowerCamelCase)
lowercase__ : Optional[Any] = [[False for _ in range(m + 1)] for _ in range(n + 1)]
lowercase__ : Optional[int] = True
for i in range(_lowerCamelCase):
for j in range(m + 1):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
lowercase__ : int = True
if a[i].islower():
lowercase__ : str = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class snake_case_ ( __A ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__A : ClassVar[Features] = Features({"text": Value("string" )} )
__A : ClassVar[Features] = Features({"labels": ClassLabel} )
__A : str = "text"
__A : str = "labels"
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
lowercase__ : Optional[int] = copy.deepcopy(self )
lowercase__ : Tuple = self.label_schema.copy()
lowercase__ : Union[str, Any] = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 333 | 1 |
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class snake_case_ ( __A ):
__A : Optional[int] = ["image_processor", "tokenizer"]
__A : int = "BlipImageProcessor"
__A : Any = "AutoTokenizer"
def __init__( self : Any , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] ) -> Optional[int]:
super().__init__(lowercase_ , lowercase_ )
# add QFormer tokenizer
lowercase__ : Union[str, Any] = qformer_tokenizer
def __call__( self : int , lowercase_ : ImageInput = None , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : List[str] , ) -> BatchFeature:
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
lowercase__ : Optional[int] = BatchFeature()
if text is not None:
lowercase__ : int = self.tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
encoding.update(lowercase_ )
lowercase__ : str = self.qformer_tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
lowercase__ : int = qformer_text_encoding.pop("input_ids" )
lowercase__ : str = qformer_text_encoding.pop("attention_mask" )
if images is not None:
lowercase__ : Any = self.image_processor(lowercase_ , return_tensors=lowercase_ )
encoding.update(lowercase_ )
return encoding
def __UpperCamelCase ( self : int , *lowercase_ : Tuple , **lowercase_ : Optional[int] ) -> Tuple:
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ )
def __UpperCamelCase ( self : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Dict ) -> Optional[Any]:
return self.tokenizer.decode(*lowercase_ , **lowercase_ )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
lowercase__ : Union[str, Any] = self.tokenizer.model_input_names
lowercase__ : Optional[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def __UpperCamelCase ( self : Dict , lowercase_ : Any , **lowercase_ : Optional[Any] ) -> Optional[Any]:
if os.path.isfile(lowercase_ ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowercase__ : Optional[Any] = os.path.join(lowercase_ , "qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(lowercase_ )
return super().save_pretrained(lowercase_ , **lowercase_ )
@classmethod
def __UpperCamelCase ( cls : Any , lowercase_ : List[str] , **lowercase_ : Any ) -> Any:
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(lowercase_ , subfolder="qformer_tokenizer" )
lowercase__ : Dict = cls._get_arguments_from_pretrained(lowercase_ , **lowercase_ )
args.append(lowercase_ )
return cls(*lowercase_ )
| 333 |
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((number_a + number_a) / 2)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(_lowerCamelCase : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
lowercase__ : Optional[int] = lower
lowercase__ : List[Any] = higher
lowercase__ : Dict = []
while True:
lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase)
last_numbers.append(_lowerCamelCase)
if answer(_lowerCamelCase) == "low":
lowercase__ : List[str] = number
elif answer(_lowerCamelCase) == "high":
lowercase__ : Optional[int] = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''')
print(f'''details : {last_numbers!s}''')
def lowercase_ ( ):
lowercase__ : Tuple = int(input("Enter lower value : ").strip())
lowercase__ : Optional[int] = int(input("Enter high value : ").strip())
lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip())
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
main()
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ : int = set()
# edges = list of graph's edges
lowercase__ : Union[str, Any] = get_edges(_lowerCamelCase)
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
lowercase__ , lowercase__ : List[str] = edges.pop()
chosen_vertices.add(_lowerCamelCase)
chosen_vertices.add(_lowerCamelCase)
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(_lowerCamelCase)
return chosen_vertices
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ : List[Any] = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node))
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 333 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCamelCase = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : str ) -> List[str]:
lowercase__ : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
lowercase__ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : Dict = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ )
lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" )
with open(lowercase_ , "w" , newline="\n" ) as f:
f.write(lowercase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowercase_ )
with open(lowercase_ , "r" ) as f:
self.assertTrue(f.read() , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : int ) -> str:
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , )
# Copy consistency with a really long name
lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
| 333 | 1 |
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
UpperCamelCase = logging.getLogger(__name__)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser(
description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'''
)
parser.add_argument(
'''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.'''
)
parser.add_argument(
'''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.'''
)
parser.add_argument('''--vocab_size''', default=3_0522, type=int)
UpperCamelCase = parser.parse_args()
logger.info(f"Loading data from {args.data_file}")
with open(args.data_file, '''rb''') as fp:
UpperCamelCase = pickle.load(fp)
logger.info('''Counting occurrences for MLM.''')
UpperCamelCase = Counter()
for tk_ids in data:
counter.update(tk_ids)
UpperCamelCase = [0] * args.vocab_size
for k, v in counter.items():
UpperCamelCase = v
logger.info(f"Dump to {args.token_counts_dump}")
with open(args.token_counts_dump, '''wb''') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
| 333 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True):
model.train()
lowercase__ : Tuple = model(_lowerCamelCase)
lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False):
set_seed(42)
lowercase__ : Dict = RegressionModel()
lowercase__ : int = deepcopy(_lowerCamelCase)
lowercase__ : str = RegressionDataset(length=80)
lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16)
model.to(accelerator.device)
if sched:
lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3)
lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3)
lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
# Make a copy of `model`
if sched:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( _lowerCamelCase : Tuple):
# Test when on a single CPU or GPU that the context manager does nothing
lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Any):
# Test on distributed setup that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False):
lowercase__ : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))]
GradientState._reset_state()
def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False):
lowercase__ : Dict = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowercase_ ( ):
lowercase__ : List[str] = Accelerator()
lowercase__ : List[Any] = RegressionDataset(length=80)
lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ : int = RegressionDataset(length=96)
lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if iteration < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if batch_num < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ):
lowercase__ : str = Accelerator()
lowercase__ : Dict = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
test_noop_sync(_lowerCamelCase)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**")
test_distributed_sync(_lowerCamelCase)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase = {
'''tokenizer_file''': {
'''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''',
'''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''',
'''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''',
'''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''',
'''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''',
'''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''',
'''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''',
},
}
class snake_case_ ( __A ):
__A : int = VOCAB_FILES_NAMES
__A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__A : Union[str, Any] = ["input_ids", "attention_mask"]
__A : Any = None
def __init__( self : Tuple , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=None , lowercase_ : List[str]=None , lowercase_ : Dict="<unk>" , lowercase_ : Optional[Any]="<s>" , lowercase_ : List[Any]="</s>" , lowercase_ : Optional[int]="<pad>" , lowercase_ : Dict=False , lowercase_ : Tuple=False , **lowercase_ : Tuple , ) -> Tuple:
super().__init__(
lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , add_prefix_space=lowercase_ , clean_up_tokenization_spaces=lowercase_ , **lowercase_ , )
lowercase__ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowercase_ ) != add_prefix_space:
lowercase__ : Optional[int] = getattr(lowercase_ , pre_tok_state.pop("type" ) )
lowercase__ : Dict = add_prefix_space
lowercase__ : Optional[Any] = pre_tok_class(**lowercase_ )
lowercase__ : Dict = add_prefix_space
def __UpperCamelCase ( self : Union[str, Any] , *lowercase_ : Tuple , **lowercase_ : int ) -> BatchEncoding:
lowercase__ : Union[str, Any] = kwargs.get("is_split_into_words" , lowercase_ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
" pretokenized inputs." )
return super()._batch_encode_plus(*lowercase_ , **lowercase_ )
def __UpperCamelCase ( self : Any , *lowercase_ : Dict , **lowercase_ : List[Any] ) -> BatchEncoding:
lowercase__ : List[Any] = kwargs.get("is_split_into_words" , lowercase_ )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
" pretokenized inputs." )
return super()._encode_plus(*lowercase_ , **lowercase_ )
def __UpperCamelCase ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]:
lowercase__ : Tuple = self._tokenizer.model.save(lowercase_ , name=lowercase_ )
return tuple(lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : "Conversation" ) -> List[int]:
lowercase__ : str = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_ ) + [self.eos_token_id] )
if len(lowercase_ ) > self.model_max_length:
lowercase__ : Tuple = input_ids[-self.model_max_length :]
return input_ids
| 333 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str):
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase)
lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase)
lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase)
lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
lowercase__ : Any = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowercase__ : int = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Dict = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global].")
# Encoder
for layer_index in range(config.num_layers):
lowercase__ : str = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : Any = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[str] = tax_attention_value
lowercase__ : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Any = tax_global_layer_norm
if split_mlp_wi:
lowercase__ : Tuple = tax_mlp_wi_a
lowercase__ : str = tax_mlp_wi_a
else:
lowercase__ : List[Any] = tax_mlp_wi
lowercase__ : str = tax_mlp_wo
lowercase__ : int = tax_mlp_layer_norm
lowercase__ : List[str] = flax_model_encoder_layer_block
# Only for layer 0:
lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : Optional[int] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_encoder_global_rel_embedding
# Assigning
lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
lowercase__ : Union[str, Any] = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"]
lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"]
lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"]
lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : List[Any] = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[Any] = tax_attention_value
lowercase__ : List[str] = tax_pre_attention_layer_norm
lowercase__ : List[Any] = tax_enc_dec_attention_key
lowercase__ : Optional[Any] = tax_enc_dec_attention_out
lowercase__ : str = tax_enc_dec_attention_query
lowercase__ : Union[str, Any] = tax_enc_dec_attention_value
lowercase__ : Tuple = tax_cross_layer_norm
if split_mlp_wi:
lowercase__ : List[str] = tax_mlp_wi_a
lowercase__ : List[Any] = tax_mlp_wi_a
else:
lowercase__ : Tuple = tax_mlp_wi
lowercase__ : Any = tax_mlp_wo
lowercase__ : Tuple = txa_mlp_layer_norm
lowercase__ : int = flax_model_decoder_layer_block
# Decoder Normalization
lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
lowercase__ : List[Any] = txa_decoder_norm
# Only for layer 0:
lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_decoder_rel_embedding
# Token Embeddings
lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"]
lowercase__ : Optional[Any] = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(_lowerCamelCase)
print("T5X Model was sucessfully converted!")
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
UpperCamelCase = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 333 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
UpperCamelCase = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def lowercase_ ( ):
lowercase__ : List[Any] = _ask_options(
"In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
lowercase__ : int = get_sagemaker_input()
else:
lowercase__ : List[str] = get_cluster_input()
return config
def lowercase_ ( _lowerCamelCase : str=None):
if subparsers is not None:
lowercase__ : int = subparsers.add_parser("config" , description=_lowerCamelCase)
else:
lowercase__ : Dict = argparse.ArgumentParser("Accelerate config command" , description=_lowerCamelCase)
parser.add_argument(
"--config_file" , default=_lowerCamelCase , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=_lowerCamelCase)
return parser
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : str = get_user_input()
if args.config_file is not None:
lowercase__ : List[str] = args.config_file
else:
if not os.path.isdir(_lowerCamelCase):
os.makedirs(_lowerCamelCase)
lowercase__ : Tuple = default_yaml_config_file
if config_file.endswith(".json"):
config.to_json_file(_lowerCamelCase)
else:
config.to_yaml_file(_lowerCamelCase)
print(f'''accelerate configuration saved at {config_file}''')
def lowercase_ ( ):
lowercase__ : List[Any] = config_command_parser()
lowercase__ : List[Any] = parser.parse_args()
config_command(_lowerCamelCase)
if __name__ == "__main__":
main()
| 333 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[int] = "rwkv"
__A : List[str] = {"max_position_embeddings": "context_length"}
def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int:
lowercase__ : List[str] = vocab_size
lowercase__ : str = context_length
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : str = rescale_every
lowercase__ : Optional[int] = use_cache
lowercase__ : int = bos_token_id
lowercase__ : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | 1 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
UpperCamelCase = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
UpperCamelCase = [file for file in filepaths if file != file.lower()]
if upper_files:
print(f"{len(upper_files)} files contain uppercase characters:")
print('''\n'''.join(upper_files) + '''\n''')
UpperCamelCase = [file for file in filepaths if ''' ''' in file]
if space_files:
print(f"{len(space_files)} files contain space characters:")
print('''\n'''.join(space_files) + '''\n''')
UpperCamelCase = [file for file in filepaths if '''-''' in file]
if hyphen_files:
print(f"{len(hyphen_files)} files contain hyphen characters:")
print('''\n'''.join(hyphen_files) + '''\n''')
UpperCamelCase = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(f"{len(nodir_files)} files are not in a directory:")
print('''\n'''.join(nodir_files) + '''\n''')
UpperCamelCase = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 333 |
class snake_case_ :
def __init__( self : int ) -> Optional[int]:
lowercase__ : Optional[int] = 0
lowercase__ : List[str] = 0
lowercase__ : Any = {}
def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]:
if vertex not in self.adjacency:
lowercase__ : List[Any] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]:
self.add_vertex(lowercase_ )
self.add_vertex(lowercase_ )
if head == tail:
return
lowercase__ : int = weight
lowercase__ : Any = weight
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[Any] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
edges.remove((tail, head, weight) )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(lowercase_ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : int = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge
lowercase__ : Union[str, Any] = weight
lowercase__ : Dict = weight
def __str__( self : str ) -> Any:
lowercase__ : str = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Optional[Any] = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Any = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[str] ) -> Dict:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]:
lowercase__ : Any = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : List[Any] = []
for vertex in vertices:
g.add_vertex(lowercase_ )
for edge in edges:
g.add_edge(*lowercase_ )
return g
class snake_case_ :
def __init__( self : int ) -> List[str]:
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
def __len__( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.parent )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple:
if item in self.parent:
return self.find(lowercase_ )
lowercase__ : Union[str, Any] = item
lowercase__ : int = 0
return item
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any:
if item not in self.parent:
return self.make_set(lowercase_ )
if item != self.parent[item]:
lowercase__ : Union[str, Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]:
lowercase__ : Dict = self.find(lowercase_ )
lowercase__ : Optional[int] = self.find(lowercase_ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Dict = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : int = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]:
lowercase__ : List[Any] = graph.num_vertices
lowercase__ : Optional[Any] = Graph.UnionFind()
lowercase__ : int = []
while num_components > 1:
lowercase__ : List[Any] = {}
for vertex in graph.get_vertices():
lowercase__ : Any = -1
lowercase__ : List[str] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : str = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[str] = edge
lowercase__ : List[str] = union_find.find(lowercase_ )
lowercase__ : Union[str, Any] = union_find.find(lowercase_ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Dict = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex]
if union_find.find(lowercase_ ) != union_find.find(lowercase_ ):
union_find.union(lowercase_ , lowercase_ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : Optional[Any] = num_components - 1
lowercase__ : List[Any] = Graph.build(edges=lowercase_ )
return mst
| 333 | 1 |
class snake_case_ :
def __init__( self : int ) -> Optional[int]:
lowercase__ : Optional[int] = 0
lowercase__ : List[str] = 0
lowercase__ : Any = {}
def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]:
if vertex not in self.adjacency:
lowercase__ : List[Any] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]:
self.add_vertex(lowercase_ )
self.add_vertex(lowercase_ )
if head == tail:
return
lowercase__ : int = weight
lowercase__ : Any = weight
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[Any] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
edges.remove((tail, head, weight) )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(lowercase_ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : int = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge
lowercase__ : Union[str, Any] = weight
lowercase__ : Dict = weight
def __str__( self : str ) -> Any:
lowercase__ : str = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Optional[Any] = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Any = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[str] ) -> Dict:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]:
lowercase__ : Any = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : List[Any] = []
for vertex in vertices:
g.add_vertex(lowercase_ )
for edge in edges:
g.add_edge(*lowercase_ )
return g
class snake_case_ :
def __init__( self : int ) -> List[str]:
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
def __len__( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.parent )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple:
if item in self.parent:
return self.find(lowercase_ )
lowercase__ : Union[str, Any] = item
lowercase__ : int = 0
return item
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any:
if item not in self.parent:
return self.make_set(lowercase_ )
if item != self.parent[item]:
lowercase__ : Union[str, Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]:
lowercase__ : Dict = self.find(lowercase_ )
lowercase__ : Optional[int] = self.find(lowercase_ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Dict = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : int = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]:
lowercase__ : List[Any] = graph.num_vertices
lowercase__ : Optional[Any] = Graph.UnionFind()
lowercase__ : int = []
while num_components > 1:
lowercase__ : List[Any] = {}
for vertex in graph.get_vertices():
lowercase__ : Any = -1
lowercase__ : List[str] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : str = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[str] = edge
lowercase__ : List[str] = union_find.find(lowercase_ )
lowercase__ : Union[str, Any] = union_find.find(lowercase_ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Dict = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex]
if union_find.find(lowercase_ ) != union_find.find(lowercase_ ):
union_find.union(lowercase_ , lowercase_ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : Optional[Any] = num_components - 1
lowercase__ : List[Any] = Graph.build(edges=lowercase_ )
return mst
| 333 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 | 1 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
UpperCamelCase = {
'''return_dict''': False,
'''output_hidden_states''': True,
'''output_attentions''': True,
'''torchscript''': True,
'''torch_dtype''': '''float16''',
'''use_bfloat16''': True,
'''tf_legacy_loss''': True,
'''pruned_heads''': {'''a''': 1},
'''tie_word_embeddings''': False,
'''is_decoder''': True,
'''cross_attention_hidden_size''': 128,
'''add_cross_attention''': True,
'''tie_encoder_decoder''': True,
'''max_length''': 50,
'''min_length''': 3,
'''do_sample''': True,
'''early_stopping''': True,
'''num_beams''': 3,
'''num_beam_groups''': 3,
'''diversity_penalty''': 0.5,
'''temperature''': 2.0,
'''top_k''': 10,
'''top_p''': 0.7,
'''typical_p''': 0.2,
'''repetition_penalty''': 0.8,
'''length_penalty''': 0.8,
'''no_repeat_ngram_size''': 5,
'''encoder_no_repeat_ngram_size''': 5,
'''bad_words_ids''': [1, 2, 3],
'''num_return_sequences''': 3,
'''chunk_size_feed_forward''': 5,
'''output_scores''': True,
'''return_dict_in_generate''': True,
'''forced_bos_token_id''': 2,
'''forced_eos_token_id''': 3,
'''remove_invalid_values''': True,
'''architectures''': ['''BertModel'''],
'''finetuning_task''': '''translation''',
'''id2label''': {0: '''label'''},
'''label2id''': {'''label''': '''0'''},
'''tokenizer_class''': '''BertTokenizerFast''',
'''prefix''': '''prefix''',
'''bos_token_id''': 6,
'''pad_token_id''': 7,
'''eos_token_id''': 8,
'''sep_token_id''': 9,
'''decoder_start_token_id''': 10,
'''exponential_decay_length_penalty''': (5, 1.01),
'''suppress_tokens''': [0, 1],
'''begin_suppress_tokens''': 2,
'''task_specific_params''': {'''translation''': '''some_params'''},
'''problem_type''': '''regression''',
}
@is_staging_test
class snake_case_ ( unittest.TestCase ):
@classmethod
def __UpperCamelCase ( cls : Any ) -> Dict:
lowercase__ : int = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] ) -> Optional[int]:
try:
delete_repo(token=cls._token , repo_id="test-config" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-config-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-config" )
except HTTPError:
pass
def __UpperCamelCase ( self : Union[str, Any] ) -> str:
lowercase__ : str = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("test-config" , use_auth_token=self._token )
lowercase__ : str = BertConfig.from_pretrained(F'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-config" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ , repo_id="test-config" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase__ : Dict = BertConfig.from_pretrained(F'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
def __UpperCamelCase ( self : Tuple ) -> str:
lowercase__ : Union[str, Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token )
lowercase__ : Optional[Any] = BertConfig.from_pretrained("valid_org/test-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-config-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id="valid_org/test-config-org" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase__ : int = BertConfig.from_pretrained("valid_org/test-config-org" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
def __UpperCamelCase ( self : Any ) -> str:
CustomConfig.register_for_auto_class()
lowercase__ : Optional[Any] = CustomConfig(attribute=42 )
config.push_to_hub("test-dynamic-config" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} )
lowercase__ : List[Any] = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=lowercase_ )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , "CustomConfig" )
self.assertEqual(new_config.attribute , 42 )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Optional[Any] ) -> Any:
lowercase__ : int = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
lowercase__ : Dict = c.n_embd + 1 # int
lowercase__ : List[Any] = c.resid_pdrop + 1.0 # float
lowercase__ : Tuple = not c.scale_attn_weights # bool
lowercase__ : Optional[Any] = c.summary_type + "foo" # str
c.update_from_string(
F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' )
self.assertEqual(lowercase_ , c.n_embd , "mismatch for key: n_embd" )
self.assertEqual(lowercase_ , c.resid_pdrop , "mismatch for key: resid_pdrop" )
self.assertEqual(lowercase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" )
self.assertEqual(lowercase_ , c.summary_type , "mismatch for key: summary_type" )
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[str] = PretrainedConfig()
lowercase__ : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
lowercase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] )
lowercase__ : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowercase_ , lowercase_ )]
if len(lowercase_ ) > 0:
raise ValueError(
"The following keys are set with the default values in"
" `test_configuration_common.config_common_kwargs` pick another value for them:"
F''' {", ".join(lowercase_ )}.''' )
def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
with self.assertRaises(lowercase_ ):
# config is in subfolder, the following should not work without specifying the subfolder
lowercase__ : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" )
lowercase__ : Dict = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" )
self.assertIsNotNone(lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
# A mock response for an HTTP head request to emulate server down
lowercase__ : int = mock.Mock()
lowercase__ : Tuple = 5_00
lowercase__ : str = {}
lowercase__ : Optional[int] = HTTPError
lowercase__ : List[Any] = {}
# Download this model to make sure it's in the cache.
lowercase__ : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=lowercase_ ) as mock_head:
lowercase__ : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCamelCase ( self : Optional[int] ) -> Any:
# This test is for deprecated behavior and can be removed in v5
lowercase__ : Optional[Any] = BertConfig.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" )
def __UpperCamelCase ( self : int ) -> List[str]:
lowercase__ : Tuple = AutoConfig.from_pretrained("bert-base-cased" )
lowercase__ : str = ["config.4.0.0.json"]
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(lowercase_ )
lowercase__ : str = 2
json.dump(configuration.to_dict() , open(os.path.join(lowercase_ , "config.4.0.0.json" ) , "w" ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
lowercase__ : Dict = AutoConfig.from_pretrained(lowercase_ )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
lowercase__ : Dict = ["config.42.0.0.json"]
lowercase__ : Union[str, Any] = 7_68
configuration.save_pretrained(lowercase_ )
shutil.move(os.path.join(lowercase_ , "config.4.0.0.json" ) , os.path.join(lowercase_ , "config.42.0.0.json" ) )
lowercase__ : Optional[int] = AutoConfig.from_pretrained(lowercase_ )
self.assertEqual(new_configuration.hidden_size , 7_68 )
def __UpperCamelCase ( self : Any ) -> Tuple:
# This repo has two configuration files, one for v4.0.0 and above with a different hidden size.
lowercase__ : Any = "hf-internal-testing/test-two-configs"
import transformers as new_transformers
lowercase__ : List[Any] = "v4.0.0"
lowercase__ , lowercase__ : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained(
lowercase_ , return_unused_kwargs=lowercase_ )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(lowercase_ , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
lowercase__ : List[Any] = "v3.0.0"
lowercase__ : Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(lowercase_ )
self.assertEqual(old_configuration.hidden_size , 7_68 )
| 333 |
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 1
lowercase__ : int = 0
for divide_by_number in range(_lowerCamelCase , digit + 1):
lowercase__ : list[int] = []
lowercase__ : Dict = numerator
for _ in range(1 , digit + 1):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase):
lowercase__ : Union[str, Any] = len(_lowerCamelCase)
lowercase__ : Optional[int] = divide_by_number
else:
has_been_divided.append(_lowerCamelCase)
lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 1 |
from typing import Dict, Optional
import numpy as np
import datasets
UpperCamelCase = '''
IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union
between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,
the mean IoU of the image is calculated by taking the IoU of each class and averaging them.
'''
UpperCamelCase = '''
Args:
predictions (`List[ndarray]`):
List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
references (`List[ndarray]`):
List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.
num_labels (`int`):
Number of classes (categories).
ignore_index (`int`):
Index that will be ignored during evaluation.
nan_to_num (`int`, *optional*):
If specified, NaN values will be replaced by the number defined by the user.
label_map (`dict`, *optional*):
If specified, dictionary mapping old label indices to new label indices.
reduce_labels (`bool`, *optional*, defaults to `False`):
Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,
and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.
Returns:
`Dict[str, float | ndarray]` comprising various elements:
- *mean_iou* (`float`):
Mean Intersection-over-Union (IoU averaged over all categories).
- *mean_accuracy* (`float`):
Mean accuracy (averaged over all categories).
- *overall_accuracy* (`float`):
Overall accuracy on all images.
- *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):
Per category accuracy.
- *per_category_iou* (`ndarray` of shape `(num_labels,)`):
Per category IoU.
Examples:
>>> import numpy as np
>>> mean_iou = datasets.load_metric("mean_iou")
>>> # suppose one has 3 different segmentation maps predicted
>>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
>>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])
>>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
>>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])
>>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
>>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])
>>> predicted = [predicted_1, predicted_2, predicted_3]
>>> ground_truth = [actual_1, actual_2, actual_3]
>>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}
'''
UpperCamelCase = '''\
@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,
author = {{MMSegmentation Contributors}},
license = {Apache-2.0},
month = {7},
title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},
url = {https://github.com/open-mmlab/mmsegmentation},
year = {2020}
}'''
def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : bool , _lowerCamelCase : Optional[Dict[int, int]] = None , _lowerCamelCase : bool = False , ):
if label_map is not None:
for old_id, new_id in label_map.items():
lowercase__ : Union[str, Any] = new_id
# turn into Numpy arrays
lowercase__ : Union[str, Any] = np.array(_lowerCamelCase)
lowercase__ : Optional[int] = np.array(_lowerCamelCase)
if reduce_labels:
lowercase__ : Tuple = 255
lowercase__ : Tuple = label - 1
lowercase__ : Optional[Any] = 255
lowercase__ : Union[str, Any] = label != ignore_index
lowercase__ : str = np.not_equal(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Any = pred_label[mask]
lowercase__ : Union[str, Any] = np.array(_lowerCamelCase)[mask]
lowercase__ : Optional[int] = pred_label[pred_label == label]
lowercase__ : Dict = np.histogram(_lowerCamelCase , bins=_lowerCamelCase , range=(0, num_labels - 1))[0]
lowercase__ : Any = np.histogram(_lowerCamelCase , bins=_lowerCamelCase , range=(0, num_labels - 1))[0]
lowercase__ : Union[str, Any] = np.histogram(_lowerCamelCase , bins=_lowerCamelCase , range=(0, num_labels - 1))[0]
lowercase__ : Tuple = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : bool , _lowerCamelCase : Optional[Dict[int, int]] = None , _lowerCamelCase : bool = False , ):
lowercase__ : Dict = np.zeros((num_labels,) , dtype=np.floataa)
lowercase__ : Union[str, Any] = np.zeros((num_labels,) , dtype=np.floataa)
lowercase__ : List[Any] = np.zeros((num_labels,) , dtype=np.floataa)
lowercase__ : List[str] = np.zeros((num_labels,) , dtype=np.floataa)
for result, gt_seg_map in zip(_lowerCamelCase , _lowerCamelCase):
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = intersect_and_union(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : bool , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[Dict[int, int]] = None , _lowerCamelCase : bool = False , ):
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = total_intersect_and_union(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# compute metrics
lowercase__ : Any = {}
lowercase__ : List[Any] = total_area_intersect.sum() / total_area_label.sum()
lowercase__ : str = total_area_intersect / total_area_union
lowercase__ : List[Any] = total_area_intersect / total_area_label
lowercase__ : List[Any] = np.nanmean(_lowerCamelCase)
lowercase__ : Union[str, Any] = np.nanmean(_lowerCamelCase)
lowercase__ : Tuple = all_acc
lowercase__ : Optional[Any] = iou
lowercase__ : Dict = acc
if nan_to_num is not None:
lowercase__ : Union[str, Any] = {metric: np.nan_to_num(_lowerCamelCase , nan=_lowerCamelCase) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class snake_case_ ( datasets.Metric ):
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16" ) ) ),
} ) , reference_urls=[
"https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"
] , )
def __UpperCamelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : bool , lowercase_ : Optional[int] = None , lowercase_ : Optional[Dict[int, int]] = None , lowercase_ : bool = False , ) -> Optional[Any]:
lowercase__ : Dict = mean_iou(
results=lowercase_ , gt_seg_maps=lowercase_ , num_labels=lowercase_ , ignore_index=lowercase_ , nan_to_num=lowercase_ , label_map=lowercase_ , reduce_labels=lowercase_ , )
return iou_result
| 333 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 1 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False):
try:
lowercase__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''')
return _value
UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skip("Test was skipped")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None):
if test_case is None:
return partial(_lowerCamelCase , version=_lowerCamelCase)
return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase)
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase)
class snake_case_ ( unittest.TestCase ):
__A : int = True
@classmethod
def __UpperCamelCase ( cls : str ) -> str:
lowercase__ : str = tempfile.mkdtemp()
@classmethod
def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCamelCase ( self : str ) -> Optional[int]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowercase_ )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str:
lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Optional[int] = tensor[None].clone().to(state.device)
lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu()
lowercase__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowerCamelCase):
return False
return True
class snake_case_ :
def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : int = returncode
lowercase__ : Dict = stdout
lowercase__ : List[Any] = stderr
async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str):
while True:
lowercase__ : int = await stream.readline()
if line:
callback(_lowerCamelCase)
else:
break
async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False):
if echo:
print("\nRunning: " , " ".join(_lowerCamelCase))
lowercase__ : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Tuple = []
lowercase__ : List[Any] = []
def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""):
lowercase__ : Optional[int] = line.decode("utf-8").rstrip()
sink.append(_lowerCamelCase)
if not quiet:
print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))),
] , timeout=_lowerCamelCase , )
return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True):
lowercase__ : Optional[Any] = asyncio.get_event_loop()
lowercase__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase))
lowercase__ : str = " ".join(_lowerCamelCase)
if result.returncode > 0:
lowercase__ : Dict = "\n".join(result.stderr)
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False):
try:
lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowerCamelCase , "decode"):
lowercase__ : Optional[Any] = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 333 | 1 |
from scipy.stats import pearsonr
import datasets
UpperCamelCase = '''
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
'''
UpperCamelCase = '''
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric("pearsonr")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results[\'pearsonr\'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric("pearsonr")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
[\'p-value\', \'pearsonr\']
>>> print(round(results[\'pearsonr\'], 2))
-0.74
>>> print(round(results[\'p-value\'], 2))
0.15
'''
UpperCamelCase = '''
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class snake_case_ ( datasets.Metric ):
def __UpperCamelCase ( self : List[str] ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Tuple=False ) -> Optional[Any]:
if return_pvalue:
lowercase__ : List[Any] = pearsonr(lowercase_ , lowercase_ )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(lowercase_ , lowercase_ )[0] )}
| 333 |
from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[Any] = ["flax"]
def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[int] = ["flax"]
def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[str] = ["flax"]
def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
| 333 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'''
),
}
class snake_case_ ( __A ):
__A : Optional[Any] = "dpr"
def __init__( self : List[Any] , lowercase_ : Union[str, Any]=3_05_22 , lowercase_ : List[str]=7_68 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : int=30_72 , lowercase_ : Dict="gelu" , lowercase_ : Dict=0.1 , lowercase_ : int=0.1 , lowercase_ : List[Any]=5_12 , lowercase_ : int=2 , lowercase_ : Tuple=0.02 , lowercase_ : Union[str, Any]=1E-12 , lowercase_ : str=0 , lowercase_ : Any="absolute" , lowercase_ : int = 0 , **lowercase_ : List[str] , ) -> str:
super().__init__(pad_token_id=lowercase_ , **lowercase_ )
lowercase__ : Optional[Any] = vocab_size
lowercase__ : Dict = hidden_size
lowercase__ : Tuple = num_hidden_layers
lowercase__ : Dict = num_attention_heads
lowercase__ : Optional[Any] = hidden_act
lowercase__ : Union[str, Any] = intermediate_size
lowercase__ : Dict = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : str = max_position_embeddings
lowercase__ : Optional[int] = type_vocab_size
lowercase__ : str = initializer_range
lowercase__ : List[str] = layer_norm_eps
lowercase__ : List[str] = projection_dim
lowercase__ : Any = position_embedding_type
| 333 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class snake_case_ ( __A ):
__A : List[str] = "vit_mae"
def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]:
super().__init__(**lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Any = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Any = num_channels
lowercase__ : str = qkv_bias
lowercase__ : Optional[Any] = decoder_num_attention_heads
lowercase__ : Any = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : Union[str, Any] = decoder_intermediate_size
lowercase__ : int = mask_ratio
lowercase__ : Tuple = norm_pix_loss
| 333 | 1 |
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class snake_case_ :
def __init__( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : Dict=13 , lowercase_ : str=3 , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[Any]=0.1 , lowercase_ : int=0.1 , lowercase_ : Dict=2_24 , lowercase_ : Dict=10_00 , lowercase_ : str=[3, 3, 6, 4] , lowercase_ : Dict=[48, 56, 1_12, 2_20] , ) -> Optional[Any]:
lowercase__ : Tuple = parent
lowercase__ : Any = batch_size
lowercase__ : Any = num_channels
lowercase__ : Optional[Any] = is_training
lowercase__ : Optional[int] = use_labels
lowercase__ : Optional[int] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Optional[Any] = num_labels
lowercase__ : Tuple = image_size
lowercase__ : int = layer_depths
lowercase__ : Tuple = embed_dims
def __UpperCamelCase ( self : int ) -> Union[str, Any]:
lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ : List[Any] = None
if self.use_labels:
lowercase__ : int = ids_tensor([self.batch_size] , self.num_labels )
lowercase__ : List[str] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self : List[str] ) -> Tuple:
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase_ , layer_scale_init_value=1E-5 , )
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ) -> int:
lowercase__ : str = SwiftFormerModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : str = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Union[str, Any] ) -> Optional[Any]:
lowercase__ : Tuple = self.num_labels
lowercase__ : List[Any] = SwiftFormerForImageClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : str = model(lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
lowercase__ : Optional[Any] = SwiftFormerForImageClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ : str = model(lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
((lowercase__) , (lowercase__) , (lowercase__)) : Optional[Any] = self.prepare_config_and_inputs()
lowercase__ : int = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class snake_case_ ( __A ,__A ,unittest.TestCase ):
__A : int = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
__A : List[Any] = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
__A : int = False
__A : Optional[int] = False
__A : Union[str, Any] = False
__A : List[str] = False
__A : Union[str, Any] = False
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
lowercase__ : Optional[int] = SwiftFormerModelTester(self )
lowercase__ : List[Any] = ConfigTester(
self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def __UpperCamelCase ( self : Dict ) -> Any:
self.config_tester.run_common_tests()
@unittest.skip(reason="SwiftFormer does not use inputs_embeds" )
def __UpperCamelCase ( self : str ) -> Optional[Any]:
pass
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : List[str] = model_class(lowercase_ )
lowercase__ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) )
def __UpperCamelCase ( self : Any ) -> int:
lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Union[str, Any] = model_class(lowercase_ )
lowercase__ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : Optional[Any] = [*signature.parameters.keys()]
lowercase__ : Optional[int] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowercase_ )
def __UpperCamelCase ( self : Dict ) -> int:
lowercase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def __UpperCamelCase ( self : Optional[Any] ) -> str:
lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
@slow
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Tuple = SwiftFormerModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@unittest.skip(reason="SwiftFormer does not output attentions" )
def __UpperCamelCase ( self : Dict ) -> int:
pass
def __UpperCamelCase ( self : int ) -> Dict:
def check_hidden_states_output(lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[str] ):
lowercase__ : Union[str, Any] = model_class(lowercase_ )
model.to(lowercase_ )
model.eval()
with torch.no_grad():
lowercase__ : List[str] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) )
lowercase__ : Union[str, Any] = outputs.hidden_states
lowercase__ : int = 8
self.assertEqual(len(lowercase_ ) , lowercase_ ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(lowercase_ ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Union[str, Any] = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ : Tuple = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
def __UpperCamelCase ( self : List[str] ) -> Optional[Any]:
def _config_zero_init(lowercase_ : List[str] ):
lowercase__ : str = copy.deepcopy(lowercase_ )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(lowercase_ , lowercase_ , 1E-10 )
if isinstance(getattr(lowercase_ , lowercase_ , lowercase_ ) , lowercase_ ):
lowercase__ : Tuple = _config_zero_init(getattr(lowercase_ , lowercase_ ) )
setattr(lowercase_ , lowercase_ , lowercase_ )
return configs_no_init
lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : Any = _config_zero_init(lowercase_ )
for model_class in self.all_model_classes:
lowercase__ : List[Any] = model_class(config=lowercase_ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def __UpperCamelCase ( self : Any ) -> Tuple:
pass
def lowercase_ ( ):
lowercase__ : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class snake_case_ ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None
@slow
def __UpperCamelCase ( self : Optional[int] ) -> int:
lowercase__ : str = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(lowercase_ )
lowercase__ : List[Any] = self.default_image_processor
lowercase__ : Optional[int] = prepare_img()
lowercase__ : Any = image_processor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ )
# forward pass
with torch.no_grad():
lowercase__ : str = model(**lowercase_ )
# verify the logits
lowercase__ : str = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowercase_ )
lowercase__ : Tuple = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(lowercase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
| 333 |
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while a != 0:
lowercase__ , lowercase__ : Dict = b % a, a
return b
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if gcd(_lowerCamelCase , _lowerCamelCase) != 1:
lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m
while va != 0:
lowercase__ : Tuple = ua // va
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 333 | 1 |
import sys
import turtle
def lowercase_ ( _lowerCamelCase : tuple[float, float] , _lowerCamelCase : tuple[float, float]):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowercase_ ( _lowerCamelCase : tuple[float, float] , _lowerCamelCase : tuple[float, float] , _lowerCamelCase : tuple[float, float] , _lowerCamelCase : int , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1])
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1])
my_pen.goto(vertexa[0] , vertexa[1])
my_pen.goto(vertexa[0] , vertexa[1])
if depth == 0:
return
triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase) , get_mid(_lowerCamelCase , _lowerCamelCase) , depth - 1)
triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase) , get_mid(_lowerCamelCase , _lowerCamelCase) , depth - 1)
triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase) , get_mid(_lowerCamelCase , _lowerCamelCase) , depth - 1)
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'''Correct format for using this script: '''
'''python fractals.py <int:depth_for_fractal>'''
)
UpperCamelCase = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('''red''')
UpperCamelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 333 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Optional[Any]:
lowercase__ : Union[str, Any] = "ZinengTang/tvlt-base"
lowercase__ : List[Any] = tempfile.mkdtemp()
def __UpperCamelCase ( self : int , **lowercase_ : Dict ) -> str:
return TvltImageProcessor.from_pretrained(self.checkpoint , **lowercase_ )
def __UpperCamelCase ( self : Tuple , **lowercase_ : List[str] ) -> Optional[Any]:
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowercase_ )
def __UpperCamelCase ( self : Dict ) -> Any:
shutil.rmtree(self.tmpdirname )
def __UpperCamelCase ( self : Optional[Any] ) -> str:
lowercase__ : List[Any] = self.get_image_processor()
lowercase__ : Union[str, Any] = self.get_feature_extractor()
lowercase__ : Union[str, Any] = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ )
processor.save_pretrained(self.tmpdirname )
lowercase__ : List[Any] = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , lowercase_ )
self.assertIsInstance(processor.image_processor , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
lowercase__ : Any = self.get_image_processor()
lowercase__ : Any = self.get_feature_extractor()
lowercase__ : int = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ )
lowercase__ : Dict = np.ones([1_20_00] )
lowercase__ : Tuple = feature_extractor(lowercase_ , return_tensors="np" )
lowercase__ : List[Any] = processor(audio=lowercase_ , return_tensors="np" )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
lowercase__ : int = self.get_image_processor()
lowercase__ : str = self.get_feature_extractor()
lowercase__ : Tuple = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ )
lowercase__ : List[Any] = np.ones([3, 2_24, 2_24] )
lowercase__ : Optional[Any] = image_processor(lowercase_ , return_tensors="np" )
lowercase__ : Any = processor(images=lowercase_ , return_tensors="np" )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
lowercase__ : Tuple = self.get_image_processor()
lowercase__ : List[Any] = self.get_feature_extractor()
lowercase__ : int = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ )
lowercase__ : str = np.ones([1_20_00] )
lowercase__ : Dict = np.ones([3, 2_24, 2_24] )
lowercase__ : str = processor(audio=lowercase_ , images=lowercase_ )
self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] )
# test if it raises when no input is passed
with pytest.raises(lowercase_ ):
processor()
def __UpperCamelCase ( self : List[Any] ) -> int:
lowercase__ : Optional[int] = self.get_image_processor()
lowercase__ : int = self.get_feature_extractor()
lowercase__ : Optional[Any] = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
| 333 |
import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 | 1 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class snake_case_ ( __A ):
def __init__( self : Dict , lowercase_ : Any , lowercase_ : str ) -> List[str]:
lowercase__ : Tuple = params
lowercase__ : int = np.array(lowercase_ )
lowercase__ : Tuple = np.array([len(lowercase_ ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : str , lowercase_ : List[str] ) -> List[str]:
return (self.token_ids[index], self.lengths[index])
def __len__( self : Tuple ) -> Optional[int]:
return len(self.lengths )
def __UpperCamelCase ( self : Optional[Any] ) -> List[str]:
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def __UpperCamelCase ( self : Optional[Any] ) -> Tuple:
lowercase__ : int = self.params.max_model_input_size
lowercase__ : Union[str, Any] = self.lengths > max_len
logger.info(F'''Splitting {sum(lowercase_ )} too long sequences.''' )
def divide_chunks(lowercase_ : List[str] , lowercase_ : Tuple ):
return [l[i : i + n] for i in range(0 , len(lowercase_ ) , lowercase_ )]
lowercase__ : List[str] = []
lowercase__ : str = []
if self.params.mlm:
lowercase__ , lowercase__ : int = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"]
else:
lowercase__ , lowercase__ : Dict = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"]
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
lowercase__ : Optional[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
lowercase__ : List[str] = np.insert(lowercase_ , 0 , lowercase_ )
if sub_s[-1] != sep_id:
lowercase__ : int = np.insert(lowercase_ , len(lowercase_ ) , lowercase_ )
assert len(lowercase_ ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(lowercase_ )
new_tok_ids.extend(lowercase_ )
new_lengths.extend([len(lowercase_ ) for l in sub_seqs] )
lowercase__ : List[str] = np.array(lowercase_ )
lowercase__ : str = np.array(lowercase_ )
def __UpperCamelCase ( self : Optional[int] ) -> str:
lowercase__ : Dict = len(self )
lowercase__ : Optional[Any] = self.lengths > 11
lowercase__ : int = self.token_ids[indices]
lowercase__ : Dict = self.lengths[indices]
lowercase__ : Optional[Any] = len(self )
logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' )
def __UpperCamelCase ( self : List[Any] ) -> Optional[int]:
if "unk_token" not in self.params.special_tok_ids:
return
else:
lowercase__ : Optional[Any] = self.params.special_tok_ids["unk_token"]
lowercase__ : Tuple = len(self )
lowercase__ : Any = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
lowercase__ : Optional[int] = (unk_occs / self.lengths) < 0.5
lowercase__ : List[str] = self.token_ids[indices]
lowercase__ : Optional[Any] = self.lengths[indices]
lowercase__ : Tuple = len(self )
logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' )
def __UpperCamelCase ( self : str ) -> List[str]:
if not self.params.is_master:
return
logger.info(F'''{len(self )} sequences''' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def __UpperCamelCase ( self : str , lowercase_ : List[str] ) -> int:
lowercase__ : Optional[int] = [t[0] for t in batch]
lowercase__ : Union[str, Any] = [t[1] for t in batch]
assert len(lowercase_ ) == len(lowercase_ )
# Max for paddings
lowercase__ : Optional[Any] = max(lowercase_ )
# Pad token ids
if self.params.mlm:
lowercase__ : Tuple = self.params.special_tok_ids["pad_token"]
else:
lowercase__ : Optional[Any] = self.params.special_tok_ids["unk_token"]
lowercase__ : int = [list(t.astype(lowercase_ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase_ )) for t in token_ids]
assert len(tk_ ) == len(lowercase_ )
assert all(len(lowercase_ ) == max_seq_len_ for t in tk_ )
lowercase__ : str = torch.tensor(tk_ ) # (bs, max_seq_len_)
lowercase__ : Union[str, Any] = torch.tensor(lowercase_ ) # (bs)
return tk_t, lg_t
| 333 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any]):
lowercase__ : str = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Optional[int] = 0
while b > 0:
if b & 1:
lowercase__ : Optional[int] = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 333 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class snake_case_ ( __A ):
__A : List[str] = "unispeech"
def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : Any = feat_extract_norm
lowercase__ : Optional[Any] = feat_extract_activation
lowercase__ : Dict = list(lowercase_ )
lowercase__ : Union[str, Any] = list(lowercase_ )
lowercase__ : List[str] = list(lowercase_ )
lowercase__ : List[str] = conv_bias
lowercase__ : Any = num_conv_pos_embeddings
lowercase__ : Dict = num_conv_pos_embedding_groups
lowercase__ : int = len(self.conv_dim )
lowercase__ : str = num_hidden_layers
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : Any = attention_dropout
lowercase__ : Union[str, Any] = activation_dropout
lowercase__ : Any = feat_proj_dropout
lowercase__ : str = final_dropout
lowercase__ : int = layerdrop
lowercase__ : Optional[int] = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = num_ctc_classes
lowercase__ : int = vocab_size
lowercase__ : str = do_stable_layer_norm
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : List[Any] = apply_spec_augment
lowercase__ : Dict = mask_time_prob
lowercase__ : Tuple = mask_time_length
lowercase__ : str = mask_time_min_masks
lowercase__ : List[Any] = mask_feature_prob
lowercase__ : int = mask_feature_length
lowercase__ : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__ : Optional[int] = num_codevectors_per_group
lowercase__ : List[str] = num_codevector_groups
lowercase__ : Dict = contrastive_logits_temperature
lowercase__ : Tuple = feat_quantizer_dropout
lowercase__ : Any = num_negatives
lowercase__ : Dict = codevector_dim
lowercase__ : Tuple = proj_codevector_dim
lowercase__ : List[str] = diversity_loss_weight
# ctc loss
lowercase__ : Tuple = ctc_loss_reduction
lowercase__ : Dict = ctc_zero_infinity
# pretraining loss
lowercase__ : Optional[Any] = replace_prob
@property
def __UpperCamelCase ( self : Dict ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 333 | 1 |
import requests
from bsa import BeautifulSoup
def lowercase_ ( _lowerCamelCase : str = "https://www.worldometers.info/coronavirus"):
lowercase__ : str = BeautifulSoup(requests.get(_lowerCamelCase).text , "html.parser")
lowercase__ : Union[str, Any] = soup.findAll("h1")
lowercase__ : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"})
keys += soup.findAll("span" , {"class": "panel-title"})
values += soup.findAll("div" , {"class": "number-table-main"})
return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase)}
if __name__ == "__main__":
print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''')
for key, value in world_covidaa_stats().items():
print(f"{key}\n{value}\n")
| 333 |
def lowercase_ ( _lowerCamelCase : list):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : int = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j]
lowercase__ : List[str] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 333 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] ) -> Any:
lowercase__ : List[Any] = tempfile.mkdtemp()
lowercase__ : Optional[Any] = SamImageProcessor()
lowercase__ : Dict = SamProcessor(lowercase_ )
processor.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self : Dict , **lowercase_ : List[Any] ) -> Dict:
return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor
def __UpperCamelCase ( self : Any ) -> Union[str, Any]:
shutil.rmtree(self.tmpdirname )
def __UpperCamelCase ( self : Tuple ) -> Dict:
lowercase__ : str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
lowercase__ : List[str] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __UpperCamelCase ( self : int ) -> Optional[Any]:
lowercase__ : Union[str, Any] = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase__ : List[str] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 )
lowercase__ : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase_ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase_ )
def __UpperCamelCase ( self : List[str] ) -> List[Any]:
lowercase__ : Optional[int] = self.get_image_processor()
lowercase__ : Any = SamProcessor(image_processor=lowercase_ )
lowercase__ : int = self.prepare_image_inputs()
lowercase__ : Tuple = image_processor(lowercase_ , return_tensors="np" )
lowercase__ : List[str] = processor(images=lowercase_ , return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def __UpperCamelCase ( self : Optional[int] ) -> List[Any]:
lowercase__ : Union[str, Any] = self.get_image_processor()
lowercase__ : Optional[int] = SamProcessor(image_processor=lowercase_ )
lowercase__ : Union[str, Any] = [torch.ones((1, 3, 5, 5) )]
lowercase__ : Optional[int] = [[17_64, 26_46]]
lowercase__ : str = [[6_83, 10_24]]
lowercase__ : List[Any] = processor.post_process_masks(lowercase_ , lowercase_ , lowercase_ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
lowercase__ : Optional[Any] = processor.post_process_masks(
lowercase_ , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
lowercase__ : Any = [np.ones((1, 3, 5, 5) )]
lowercase__ : Optional[int] = processor.post_process_masks(lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
lowercase__ : Optional[Any] = [[1, 0], [0, 1]]
with self.assertRaises(lowercase_ ):
lowercase__ : Union[str, Any] = processor.post_process_masks(lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) )
@require_vision
@require_tf
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Dict ) -> Dict:
lowercase__ : int = tempfile.mkdtemp()
lowercase__ : Dict = SamImageProcessor()
lowercase__ : Optional[int] = SamProcessor(lowercase_ )
processor.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self : List[Any] , **lowercase_ : Optional[Any] ) -> str:
return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor
def __UpperCamelCase ( self : str ) -> Dict:
shutil.rmtree(self.tmpdirname )
def __UpperCamelCase ( self : int ) -> Any:
lowercase__ : int = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
lowercase__ : int = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __UpperCamelCase ( self : Optional[Any] ) -> Dict:
lowercase__ : Optional[Any] = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase__ : Optional[int] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 )
lowercase__ : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowercase_ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase_ )
def __UpperCamelCase ( self : Any ) -> List[Any]:
lowercase__ : List[str] = self.get_image_processor()
lowercase__ : Tuple = SamProcessor(image_processor=lowercase_ )
lowercase__ : int = self.prepare_image_inputs()
lowercase__ : Optional[int] = image_processor(lowercase_ , return_tensors="np" )
lowercase__ : str = processor(images=lowercase_ , return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def __UpperCamelCase ( self : int ) -> Dict:
lowercase__ : List[str] = self.get_image_processor()
lowercase__ : str = SamProcessor(image_processor=lowercase_ )
lowercase__ : Dict = [tf.ones((1, 3, 5, 5) )]
lowercase__ : Optional[Any] = [[17_64, 26_46]]
lowercase__ : Any = [[6_83, 10_24]]
lowercase__ : List[Any] = processor.post_process_masks(lowercase_ , lowercase_ , lowercase_ , return_tensors="tf" )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
lowercase__ : Any = processor.post_process_masks(
lowercase_ , tf.convert_to_tensor(lowercase_ ) , tf.convert_to_tensor(lowercase_ ) , return_tensors="tf" , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
lowercase__ : Tuple = [np.ones((1, 3, 5, 5) )]
lowercase__ : Union[str, Any] = processor.post_process_masks(
lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) , return_tensors="tf" )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
lowercase__ : Tuple = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
lowercase__ : str = processor.post_process_masks(
lowercase_ , np.array(lowercase_ ) , np.array(lowercase_ ) , return_tensors="tf" )
@require_vision
@require_torchvision
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] ) -> Optional[int]:
lowercase__ : str = tempfile.mkdtemp()
lowercase__ : Tuple = SamImageProcessor()
lowercase__ : Dict = SamProcessor(lowercase_ )
processor.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self : List[Any] , **lowercase_ : Any ) -> int:
return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor
def __UpperCamelCase ( self : Any ) -> Optional[int]:
shutil.rmtree(self.tmpdirname )
def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
lowercase__ : Union[str, Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
lowercase__ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
lowercase__ : int = self.get_image_processor()
lowercase__ : Optional[int] = SamProcessor(image_processor=lowercase_ )
lowercase__ : int = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
lowercase__ : List[str] = [tf.convert_to_tensor(lowercase_ )]
lowercase__ : Dict = [torch.tensor(lowercase_ )]
lowercase__ : int = [[17_64, 26_46]]
lowercase__ : Dict = [[6_83, 10_24]]
lowercase__ : str = processor.post_process_masks(
lowercase_ , lowercase_ , lowercase_ , return_tensors="tf" )
lowercase__ : Tuple = processor.post_process_masks(
lowercase_ , lowercase_ , lowercase_ , return_tensors="pt" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
lowercase__ : List[str] = self.get_image_processor()
lowercase__ : Any = SamProcessor(image_processor=lowercase_ )
lowercase__ : Optional[int] = self.prepare_image_inputs()
lowercase__ : Any = image_processor(lowercase_ , return_tensors="pt" )["pixel_values"].numpy()
lowercase__ : str = processor(images=lowercase_ , return_tensors="pt" )["pixel_values"].numpy()
lowercase__ : Optional[int] = image_processor(lowercase_ , return_tensors="tf" )["pixel_values"].numpy()
lowercase__ : Any = processor(images=lowercase_ , return_tensors="tf" )["pixel_values"].numpy()
self.assertTrue(np.allclose(lowercase_ , lowercase_ ) )
self.assertTrue(np.allclose(lowercase_ , lowercase_ ) )
self.assertTrue(np.allclose(lowercase_ , lowercase_ ) )
| 333 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class snake_case_ ( __A ):
__A : int = "token-classification"
def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]:
if type(lowercase_ ) == dict:
lowercase__ : Dict = Namespace(**lowercase_ )
lowercase__ : str = import_module("tasks" )
try:
lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels )
lowercase__ : int = CrossEntropyLoss().ignore_index
super().__init__(lowercase_ , len(self.labels ) , self.mode )
def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any:
return self.model(**lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple:
lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : Tuple = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : Optional[int] = self(**lowercase_ )
lowercase__ : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
lowercase__ : Any = self._feature_file(lowercase_ )
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ )
lowercase__ : Dict = self.token_classification_task.convert_examples_to_features(
lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowercase_ )
torch.save(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader:
lowercase__ : str = self._feature_file(lowercase_ )
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str:
"""Compute validation""" ""
lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : int = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : List[Any] = self(**lowercase_ )
lowercase__ , lowercase__ : Any = outputs[:2]
lowercase__ : Optional[Any] = logits.detach().cpu().numpy()
lowercase__ : int = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]:
lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean()
lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 )
lowercase__ : Dict = np.argmax(lowercase_ , axis=2 )
lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 )
lowercase__ : Any = dict(enumerate(self.labels ) )
lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )]
lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
lowercase__ : Any = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase_ , lowercase_ ),
"precision": precision_score(lowercase_ , lowercase_ ),
"recall": recall_score(lowercase_ , lowercase_ ),
"f1": fa_score(lowercase_ , lowercase_ ),
}
lowercase__ : List[Any] = dict(results.items() )
lowercase__ : List[str] = results
return ret, preds_list, out_label_list
def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict:
# when stable
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
lowercase__ : Any = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int:
# updating to test_epoch_end instead of deprecated test_end
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
lowercase__ : Optional[int] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple:
# Add NER specific options
BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ )
parser.add_argument(
"--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=1_28 , type=lowercase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCamelCase = parser.parse_args()
UpperCamelCase = NERTransformer(args)
UpperCamelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
UpperCamelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 333 | 1 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class snake_case_ ( __A ):
def __get__( self : int , lowercase_ : Optional[Any] , lowercase_ : List[Any]=None ) -> Optional[Any]:
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError("unreadable attribute" )
lowercase__ : Any = "__cached_" + self.fget.__name__
lowercase__ : Optional[int] = getattr(lowercase_ , lowercase_ , lowercase_ )
if cached is None:
lowercase__ : Optional[Any] = self.fget(lowercase_ )
setattr(lowercase_ , lowercase_ , lowercase_ )
return cached
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
lowercase__ : str = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'''invalid truth value {val!r}''')
def lowercase_ ( _lowerCamelCase : Optional[int]):
if is_torch_fx_proxy(_lowerCamelCase):
return True
if is_torch_available():
import torch
if isinstance(_lowerCamelCase , torch.Tensor):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(_lowerCamelCase , tf.Tensor):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer)):
return True
return isinstance(_lowerCamelCase , np.ndarray)
def lowercase_ ( _lowerCamelCase : Optional[Any]):
return isinstance(_lowerCamelCase , np.ndarray)
def lowercase_ ( _lowerCamelCase : Any):
return _is_numpy(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Optional[int]):
import torch
return isinstance(_lowerCamelCase , torch.Tensor)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return False if not is_torch_available() else _is_torch(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Optional[int]):
import torch
return isinstance(_lowerCamelCase , torch.device)
def lowercase_ ( _lowerCamelCase : List[Any]):
return False if not is_torch_available() else _is_torch_device(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Optional[Any]):
import torch
if isinstance(_lowerCamelCase , _lowerCamelCase):
if hasattr(_lowerCamelCase , _lowerCamelCase):
lowercase__ : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase)
else:
return False
return isinstance(_lowerCamelCase , torch.dtype)
def lowercase_ ( _lowerCamelCase : int):
return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
import tensorflow as tf
return isinstance(_lowerCamelCase , tf.Tensor)
def lowercase_ ( _lowerCamelCase : List[Any]):
return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(_lowerCamelCase , "is_symbolic_tensor"):
return tf.is_symbolic_tensor(_lowerCamelCase)
return type(_lowerCamelCase) == tf.Tensor
def lowercase_ ( _lowerCamelCase : str):
return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
import jax.numpy as jnp # noqa: F811
return isinstance(_lowerCamelCase , jnp.ndarray)
def lowercase_ ( _lowerCamelCase : Any):
return False if not is_flax_available() else _is_jax(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
if isinstance(_lowerCamelCase , (dict, UserDict)):
return {k: to_py_obj(_lowerCamelCase) for k, v in obj.items()}
elif isinstance(_lowerCamelCase , (list, tuple)):
return [to_py_obj(_lowerCamelCase) for o in obj]
elif is_tf_tensor(_lowerCamelCase):
return obj.numpy().tolist()
elif is_torch_tensor(_lowerCamelCase):
return obj.detach().cpu().tolist()
elif is_jax_tensor(_lowerCamelCase):
return np.asarray(_lowerCamelCase).tolist()
elif isinstance(_lowerCamelCase , (np.ndarray, np.number)): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def lowercase_ ( _lowerCamelCase : Optional[int]):
if isinstance(_lowerCamelCase , (dict, UserDict)):
return {k: to_numpy(_lowerCamelCase) for k, v in obj.items()}
elif isinstance(_lowerCamelCase , (list, tuple)):
return np.array(_lowerCamelCase)
elif is_tf_tensor(_lowerCamelCase):
return obj.numpy()
elif is_torch_tensor(_lowerCamelCase):
return obj.detach().cpu().numpy()
elif is_jax_tensor(_lowerCamelCase):
return np.asarray(_lowerCamelCase)
else:
return obj
class snake_case_ ( __A ):
def __UpperCamelCase ( self : Optional[Any] ) -> Dict:
lowercase__ : Union[str, Any] = fields(self )
# Safety and consistency checks
if not len(lowercase_ ):
raise ValueError(F'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' )
lowercase__ : List[Any] = getattr(self , class_fields[0].name )
lowercase__ : int = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(lowercase_ ):
if isinstance(lowercase_ , lowercase_ ):
lowercase__ : Optional[int] = first_field.items()
lowercase__ : Optional[Any] = True
else:
try:
lowercase__ : str = iter(lowercase_ )
lowercase__ : Any = True
except TypeError:
lowercase__ : Optional[Any] = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(lowercase_ ):
if (
not isinstance(lowercase_ , (list, tuple) )
or not len(lowercase_ ) == 2
or not isinstance(element[0] , lowercase_ )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
lowercase__ : str = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
lowercase__ : Tuple = element[1]
elif first_field is not None:
lowercase__ : Optional[Any] = first_field
else:
for field in class_fields:
lowercase__ : List[Any] = getattr(self , field.name )
if v is not None:
lowercase__ : List[str] = v
def __delitem__( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Dict ) -> Optional[int]:
raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def __UpperCamelCase ( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : Union[str, Any] ) -> Tuple:
raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def __UpperCamelCase ( self : Union[str, Any] , *lowercase_ : Tuple , **lowercase_ : List[Any] ) -> Optional[int]:
raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def __UpperCamelCase ( self : List[str] , *lowercase_ : str , **lowercase_ : Dict ) -> str:
raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self : List[Any] , lowercase_ : List[str] ) -> Union[str, Any]:
if isinstance(lowercase_ , lowercase_ ):
lowercase__ : List[str] = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ) -> List[Any]:
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(lowercase_ , lowercase_ )
super().__setattr__(lowercase_ , lowercase_ )
def __setitem__( self : Union[str, Any] , lowercase_ : int , lowercase_ : str ) -> int:
# Will raise a KeyException if needed
super().__setitem__(lowercase_ , lowercase_ )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : str ) -> Tuple[Any]:
return tuple(self[k] for k in self.keys() )
class snake_case_ ( __A ,__A ):
@classmethod
def __UpperCamelCase ( cls : int , lowercase_ : Dict ) -> Optional[Any]:
raise ValueError(
F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class snake_case_ ( __A ):
__A : str = "longest"
__A : Any = "max_length"
__A : List[Any] = "do_not_pad"
class snake_case_ ( __A ):
__A : Dict = "pt"
__A : str = "tf"
__A : Optional[int] = "np"
__A : List[Any] = "jax"
class snake_case_ :
def __init__( self : Dict , lowercase_ : List[ContextManager] ) -> Optional[Any]:
lowercase__ : str = context_managers
lowercase__ : List[Any] = ExitStack()
def __enter__( self : Dict ) -> List[Any]:
for context_manager in self.context_managers:
self.stack.enter_context(lowercase_ )
def __exit__( self : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Optional[Any]:
self.stack.__exit__(*lowercase_ , **lowercase_ )
def lowercase_ ( _lowerCamelCase : Any):
lowercase__ : Optional[Any] = infer_framework(_lowerCamelCase)
if framework == "tf":
lowercase__ : List[str] = inspect.signature(model_class.call) # TensorFlow models
elif framework == "pt":
lowercase__ : List[str] = inspect.signature(model_class.forward) # PyTorch models
else:
lowercase__ : List[Any] = inspect.signature(model_class.__call__) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def lowercase_ ( _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = model_class.__name__
lowercase__ : Union[str, Any] = infer_framework(_lowerCamelCase)
if framework == "tf":
lowercase__ : Union[str, Any] = inspect.signature(model_class.call) # TensorFlow models
elif framework == "pt":
lowercase__ : Optional[int] = inspect.signature(model_class.forward) # PyTorch models
else:
lowercase__ : List[str] = inspect.signature(model_class.__call__) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def lowercase_ ( _lowerCamelCase : MutableMapping , _lowerCamelCase : str = "" , _lowerCamelCase : str = "."):
def _flatten_dict(_lowerCamelCase : Tuple , _lowerCamelCase : Any="" , _lowerCamelCase : int="."):
for k, v in d.items():
lowercase__ : Optional[Any] = str(_lowerCamelCase) + delimiter + str(_lowerCamelCase) if parent_key else k
if v and isinstance(_lowerCamelCase , _lowerCamelCase):
yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase).items()
else:
yield key, v
return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase))
@contextmanager
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : bool = False):
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[Any]=None):
if is_numpy_array(_lowerCamelCase):
return np.transpose(_lowerCamelCase , axes=_lowerCamelCase)
elif is_torch_tensor(_lowerCamelCase):
return array.T if axes is None else array.permute(*_lowerCamelCase)
elif is_tf_tensor(_lowerCamelCase):
import tensorflow as tf
return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase)
elif is_jax_tensor(_lowerCamelCase):
return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase)
else:
raise ValueError(f'''Type not supported for transpose: {type(_lowerCamelCase)}.''')
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple):
if is_numpy_array(_lowerCamelCase):
return np.reshape(_lowerCamelCase , _lowerCamelCase)
elif is_torch_tensor(_lowerCamelCase):
return array.reshape(*_lowerCamelCase)
elif is_tf_tensor(_lowerCamelCase):
import tensorflow as tf
return tf.reshape(_lowerCamelCase , _lowerCamelCase)
elif is_jax_tensor(_lowerCamelCase):
return jnp.reshape(_lowerCamelCase , _lowerCamelCase)
else:
raise ValueError(f'''Type not supported for reshape: {type(_lowerCamelCase)}.''')
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=None):
if is_numpy_array(_lowerCamelCase):
return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase)
elif is_torch_tensor(_lowerCamelCase):
return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase)
elif is_tf_tensor(_lowerCamelCase):
import tensorflow as tf
return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase)
elif is_jax_tensor(_lowerCamelCase):
return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase)
else:
raise ValueError(f'''Type not supported for squeeze: {type(_lowerCamelCase)}.''')
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]):
if is_numpy_array(_lowerCamelCase):
return np.expand_dims(_lowerCamelCase , _lowerCamelCase)
elif is_torch_tensor(_lowerCamelCase):
return array.unsqueeze(dim=_lowerCamelCase)
elif is_tf_tensor(_lowerCamelCase):
import tensorflow as tf
return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase)
elif is_jax_tensor(_lowerCamelCase):
return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase)
else:
raise ValueError(f'''Type not supported for expand_dims: {type(_lowerCamelCase)}.''')
def lowercase_ ( _lowerCamelCase : int):
if is_numpy_array(_lowerCamelCase):
return np.size(_lowerCamelCase)
elif is_torch_tensor(_lowerCamelCase):
return array.numel()
elif is_tf_tensor(_lowerCamelCase):
import tensorflow as tf
return tf.size(_lowerCamelCase)
elif is_jax_tensor(_lowerCamelCase):
return array.size
else:
raise ValueError(f'''Type not supported for expand_dims: {type(_lowerCamelCase)}.''')
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : int):
for key, value in auto_map.items():
if isinstance(_lowerCamelCase , (tuple, list)):
lowercase__ : Optional[Any] = [f'''{repo_id}--{v}''' if (v is not None and "--" not in v) else v for v in value]
elif value is not None and "--" not in value:
lowercase__ : Any = f'''{repo_id}--{value}'''
return auto_map
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
for base_class in inspect.getmro(_lowerCamelCase):
lowercase__ : List[str] = base_class.__module__
lowercase__ : Any = base_class.__name__
if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel":
return "tf"
elif module.startswith("torch") or name == "PreTrainedModel":
return "pt"
elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'''Could not infer framework from class {model_class}.''')
| 333 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 333 | 1 |
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
UpperCamelCase = 3
def lowercase_ ( _lowerCamelCase : int):
print("Generating primitive root of p")
while True:
lowercase__ : Any = random.randrange(3 , _lowerCamelCase)
if pow(_lowerCamelCase , 2 , _lowerCamelCase) == 1:
continue
if pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) == 1:
continue
return g
def lowercase_ ( _lowerCamelCase : int):
print("Generating prime p...")
lowercase__ : Optional[Any] = rabin_miller.generate_large_prime(_lowerCamelCase) # select large prime number.
lowercase__ : List[Any] = primitive_root(_lowerCamelCase) # one primitive root on modulo p.
lowercase__ : Optional[int] = random.randrange(3 , _lowerCamelCase) # private_key -> have to be greater than 2 for safety.
lowercase__ : List[Any] = cryptomath.find_mod_inverse(pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) , _lowerCamelCase)
lowercase__ : Tuple = (key_size, e_a, e_a, p)
lowercase__ : Dict = (key_size, d)
return public_key, private_key
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int):
if os.path.exists(f'''{name}_pubkey.txt''') or os.path.exists(f'''{name}_privkey.txt'''):
print("\nWARNING:")
print(
f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
"Use a different name or delete these files and re-run this program.")
sys.exit()
lowercase__ , lowercase__ : Optional[int] = generate_key(_lowerCamelCase)
print(f'''\nWriting public key to file {name}_pubkey.txt...''')
with open(f'''{name}_pubkey.txt''' , "w") as fo:
fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''')
print(f'''Writing private key to file {name}_privkey.txt...''')
with open(f'''{name}_privkey.txt''' , "w") as fo:
fo.write(f'''{private_key[0]},{private_key[1]}''')
def lowercase_ ( ):
print("Making key files...")
make_key_files("elgamal" , 2048)
print("Key files generation successful")
if __name__ == "__main__":
main()
| 333 |
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : List[str]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000):
lowercase__ : Optional[int] = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Tuple = sigmoid_function(_lowerCamelCase)
lowercase__ : Dict = np.dot(x.T , h - y) / y.size
lowercase__ : int = theta - alpha * gradient # updating the weights
lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : List[Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 333 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''openai/imagegpt-small''': '''''',
'''openai/imagegpt-medium''': '''''',
'''openai/imagegpt-large''': '''''',
}
class snake_case_ ( __A ):
__A : str = "imagegpt"
__A : Union[str, Any] = ["past_key_values"]
__A : Optional[Any] = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[Any] , lowercase_ : Union[str, Any]=5_12 + 1 , lowercase_ : Optional[int]=32 * 32 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=24 , lowercase_ : Any=8 , lowercase_ : List[str]=None , lowercase_ : Optional[Any]="quick_gelu" , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Optional[int]=1E-5 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Union[str, Any]=True , lowercase_ : Any=True , lowercase_ : List[str]=False , lowercase_ : Tuple=False , lowercase_ : Any=False , **lowercase_ : Dict , ) -> Any:
lowercase__ : Optional[Any] = vocab_size
lowercase__ : Optional[Any] = n_positions
lowercase__ : Tuple = n_embd
lowercase__ : List[str] = n_layer
lowercase__ : str = n_head
lowercase__ : Optional[int] = n_inner
lowercase__ : Any = activation_function
lowercase__ : Optional[Any] = resid_pdrop
lowercase__ : int = embd_pdrop
lowercase__ : Tuple = attn_pdrop
lowercase__ : Any = layer_norm_epsilon
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = scale_attn_weights
lowercase__ : Any = use_cache
lowercase__ : Tuple = scale_attn_by_inverse_layer_idx
lowercase__ : Union[str, Any] = reorder_and_upcast_attn
lowercase__ : int = tie_word_embeddings
super().__init__(tie_word_embeddings=lowercase_ , **lowercase_ )
class snake_case_ ( __A ):
@property
def __UpperCamelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : "FeatureExtractionMixin" , lowercase_ : int = 1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 3 , lowercase_ : int = 32 , lowercase_ : int = 32 , ) -> Mapping[str, Any]:
lowercase__ : Tuple = self._generate_dummy_images(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : Tuple = dict(preprocessor(images=lowercase_ , return_tensors=lowercase_ ) )
return inputs
| 333 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class snake_case_ ( __A ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__A : ClassVar[Features] = Features({"text": Value("string" )} )
__A : ClassVar[Features] = Features({"labels": ClassLabel} )
__A : str = "text"
__A : str = "labels"
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
lowercase__ : Optional[int] = copy.deepcopy(self )
lowercase__ : Tuple = self.label_schema.copy()
lowercase__ : Union[str, Any] = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 333 | 1 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class snake_case_ ( __A ):
__A : BigBirdConfig
__A : jnp.dtype = jnp.floataa
__A : bool = True
def __UpperCamelCase ( self : Optional[Any] ) -> int:
super().setup()
lowercase__ : int = nn.Dense(5 , dtype=self.dtype )
def __call__( self : Any , *lowercase_ : int , **lowercase_ : Any ) -> List[str]:
lowercase__ : List[Any] = super().__call__(*lowercase_ , **lowercase_ )
lowercase__ : Tuple = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class snake_case_ ( __A ):
__A : List[Any] = FlaxBigBirdForNaturalQuestionsModule
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int):
def cross_entropy(_lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any]=None):
lowercase__ : str = logits.shape[-1]
lowercase__ : Optional[int] = (labels[..., None] == jnp.arange(_lowerCamelCase)[None]).astype("f4")
lowercase__ : str = jax.nn.log_softmax(_lowerCamelCase , axis=-1)
lowercase__ : Tuple = -jnp.sum(labels * logits , axis=-1)
if reduction is not None:
lowercase__ : Tuple = reduction(_lowerCamelCase)
return loss
lowercase__ : Optional[int] = partial(_lowerCamelCase , reduction=jnp.mean)
lowercase__ : int = cross_entropy(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Any = cross_entropy(_lowerCamelCase , _lowerCamelCase)
lowercase__ : int = cross_entropy(_lowerCamelCase , _lowerCamelCase)
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class snake_case_ :
__A : str = "google/bigbird-roberta-base"
__A : int = 3000
__A : int = 1_0500
__A : int = 128
__A : int = 3
__A : int = 1
__A : int = 5
# tx_args
__A : float = 3e-5
__A : float = 0.0
__A : int = 2_0000
__A : float = 0.0095
__A : str = "bigbird-roberta-natural-questions"
__A : str = "training-expt"
__A : str = "data/nq-training.jsonl"
__A : str = "data/nq-validation.jsonl"
def __UpperCamelCase ( self : Tuple ) -> Dict:
os.makedirs(self.base_dir , exist_ok=lowercase_ )
lowercase__ : List[str] = os.path.join(self.base_dir , self.save_dir )
lowercase__ : str = self.batch_size_per_device * jax.device_count()
@dataclass
class snake_case_ :
__A : int
__A : int = 4096 # no dynamic padding on TPUs
def __call__( self : List[str] , lowercase_ : Any ) -> str:
lowercase__ : Dict = self.collate_fn(lowercase_ )
lowercase__ : Union[str, Any] = jax.tree_util.tree_map(lowercase_ , lowercase_ )
return batch
def __UpperCamelCase ( self : List[str] , lowercase_ : Optional[Any] ) -> List[str]:
lowercase__ , lowercase__ : Tuple = self.fetch_inputs(features["input_ids"] )
lowercase__ : List[str] = {
"input_ids": jnp.array(lowercase_ , dtype=jnp.intaa ),
"attention_mask": jnp.array(lowercase_ , dtype=jnp.intaa ),
"start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ),
"end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ),
"pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ),
}
return batch
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : list ) -> Dict:
lowercase__ : Union[str, Any] = [self._fetch_inputs(lowercase_ ) for ids in input_ids]
return zip(*lowercase_ )
def __UpperCamelCase ( self : List[Any] , lowercase_ : list ) -> Any:
lowercase__ : Tuple = [1 for _ in range(len(lowercase_ ) )]
while len(lowercase_ ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple=None):
if seed is not None:
lowercase__ : List[Any] = dataset.shuffle(seed=_lowerCamelCase)
for i in range(len(_lowerCamelCase) // batch_size):
lowercase__ : Any = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(_lowerCamelCase)
@partial(jax.pmap , axis_name="batch")
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , **_lowerCamelCase : Dict):
def loss_fn(_lowerCamelCase : Optional[int]):
lowercase__ : List[str] = model_inputs.pop("start_labels")
lowercase__ : List[str] = model_inputs.pop("end_labels")
lowercase__ : Any = model_inputs.pop("pooled_labels")
lowercase__ : List[Any] = state.apply_fn(**_lowerCamelCase , params=_lowerCamelCase , dropout_rng=_lowerCamelCase , train=_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Dict = outputs
return state.loss_fn(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , )
lowercase__ , lowercase__ : List[Any] = jax.random.split(_lowerCamelCase)
lowercase__ : Optional[int] = jax.value_and_grad(_lowerCamelCase)
lowercase__ , lowercase__ : Dict = grad_fn(state.params)
lowercase__ : Any = jax.lax.pmean({"loss": loss} , axis_name="batch")
lowercase__ : Dict = jax.lax.pmean(_lowerCamelCase , "batch")
lowercase__ : Tuple = state.apply_gradients(grads=_lowerCamelCase)
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="batch")
def lowercase_ ( _lowerCamelCase : Any , **_lowerCamelCase : Optional[Any]):
lowercase__ : int = model_inputs.pop("start_labels")
lowercase__ : Any = model_inputs.pop("end_labels")
lowercase__ : int = model_inputs.pop("pooled_labels")
lowercase__ : str = state.apply_fn(**_lowerCamelCase , params=state.params , train=_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : int = outputs
lowercase__ : Optional[Any] = state.loss_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
lowercase__ : int = jax.lax.pmean({"loss": loss} , axis_name="batch")
return metrics
class snake_case_ ( train_state.TrainState ):
__A : Callable = struct.field(pytree_node=__A )
@dataclass
class snake_case_ :
__A : Args
__A : Callable
__A : Callable
__A : Callable
__A : Callable
__A : wandb
__A : Callable = None
def __UpperCamelCase ( self : Any , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int]=None ) -> int:
lowercase__ : Tuple = model.params
lowercase__ : Union[str, Any] = TrainState.create(
apply_fn=model.__call__ , params=lowercase_ , tx=lowercase_ , loss_fn=lowercase_ , )
if ckpt_dir is not None:
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[str] = restore_checkpoint(lowercase_ , lowercase_ )
lowercase__ : Optional[int] = {
"lr": args.lr,
"init_lr": args.init_lr,
"warmup_steps": args.warmup_steps,
"num_train_steps": num_train_steps,
"weight_decay": args.weight_decay,
}
lowercase__ , lowercase__ : Dict = build_tx(**lowercase_ )
lowercase__ : Dict = train_state.TrainState(
step=lowercase_ , apply_fn=model.__call__ , params=lowercase_ , tx=lowercase_ , opt_state=lowercase_ , )
lowercase__ : Any = args
lowercase__ : Any = data_collator
lowercase__ : List[Any] = lr
lowercase__ : Optional[Any] = params
lowercase__ : Optional[Any] = jax_utils.replicate(lowercase_ )
return state
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Optional[Any] ) -> Union[str, Any]:
lowercase__ : str = self.args
lowercase__ : str = len(lowercase_ ) // args.batch_size
lowercase__ : Union[str, Any] = jax.random.PRNGKey(0 )
lowercase__ : List[Any] = jax.random.split(lowercase_ , jax.device_count() )
for epoch in range(args.max_epochs ):
lowercase__ : Any = jnp.array(0 , dtype=jnp.floataa )
lowercase__ : Union[str, Any] = get_batched_dataset(lowercase_ , args.batch_size , seed=lowercase_ )
lowercase__ : List[Any] = 0
for batch in tqdm(lowercase_ , total=lowercase_ , desc=F'''Running EPOCH-{epoch}''' ):
lowercase__ : str = self.data_collator(lowercase_ )
lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.train_step_fn(lowercase_ , lowercase_ , **lowercase_ )
running_loss += jax_utils.unreplicate(metrics["loss"] )
i += 1
if i % args.logging_steps == 0:
lowercase__ : Optional[int] = jax_utils.unreplicate(state.step )
lowercase__ : str = running_loss.item() / i
lowercase__ : Optional[int] = self.scheduler_fn(state_step - 1 )
lowercase__ : List[Any] = self.evaluate(lowercase_ , lowercase_ )
lowercase__ : Dict = {
"step": state_step.item(),
"eval_loss": eval_loss.item(),
"tr_loss": tr_loss,
"lr": lr.item(),
}
tqdm.write(str(lowercase_ ) )
self.logger.log(lowercase_ , commit=lowercase_ )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=lowercase_ )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : List[str] ) -> Optional[int]:
lowercase__ : Optional[int] = get_batched_dataset(lowercase_ , self.args.batch_size )
lowercase__ : Optional[Any] = len(lowercase_ ) // self.args.batch_size
lowercase__ : Optional[Any] = jnp.array(0 , dtype=jnp.floataa )
lowercase__ : Dict = 0
for batch in tqdm(lowercase_ , total=lowercase_ , desc="Evaluating ... " ):
lowercase__ : Optional[int] = self.data_collator(lowercase_ )
lowercase__ : List[str] = self.val_step_fn(lowercase_ , **lowercase_ )
running_loss += jax_utils.unreplicate(metrics["loss"] )
i += 1
return running_loss / i
def __UpperCamelCase ( self : List[str] , lowercase_ : Dict , lowercase_ : Optional[int] ) -> Dict:
lowercase__ : Dict = jax_utils.unreplicate(lowercase_ )
print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=" ... " )
self.model_save_fn(lowercase_ , params=state.params )
with open(os.path.join(lowercase_ , "opt_state.msgpack" ) , "wb" ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(lowercase_ , "args.joblib" ) )
joblib.dump(self.data_collator , os.path.join(lowercase_ , "data_collator.joblib" ) )
with open(os.path.join(lowercase_ , "training_state.json" ) , "w" ) as f:
json.dump({"step": state.step.item()} , lowercase_ )
print("DONE" )
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : int):
print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=" ... ")
with open(os.path.join(_lowerCamelCase , "flax_model.msgpack") , "rb") as f:
lowercase__ : Union[str, Any] = from_bytes(state.params , f.read())
with open(os.path.join(_lowerCamelCase , "opt_state.msgpack") , "rb") as f:
lowercase__ : List[Any] = from_bytes(state.opt_state , f.read())
lowercase__ : Dict = joblib.load(os.path.join(_lowerCamelCase , "args.joblib"))
lowercase__ : List[Any] = joblib.load(os.path.join(_lowerCamelCase , "data_collator.joblib"))
with open(os.path.join(_lowerCamelCase , "training_state.json") , "r") as f:
lowercase__ : Optional[Any] = json.load(_lowerCamelCase)
lowercase__ : Dict = training_state["step"]
print("DONE")
return params, opt_state, step, args, data_collator
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any]):
lowercase__ : str = num_train_steps - warmup_steps
lowercase__ : List[Any] = optax.linear_schedule(init_value=_lowerCamelCase , end_value=_lowerCamelCase , transition_steps=_lowerCamelCase)
lowercase__ : str = optax.linear_schedule(init_value=_lowerCamelCase , end_value=1E-7 , transition_steps=_lowerCamelCase)
lowercase__ : Union[str, Any] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps])
return lr
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : str):
def weight_decay_mask(_lowerCamelCase : Any):
lowercase__ : Optional[int] = traverse_util.flatten_dict(_lowerCamelCase)
lowercase__ : str = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()}
return traverse_util.unflatten_dict(_lowerCamelCase)
lowercase__ : List[Any] = scheduler_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
lowercase__ : Dict = optax.adamw(learning_rate=_lowerCamelCase , weight_decay=_lowerCamelCase , mask=_lowerCamelCase)
return tx, lr
| 333 |
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((number_a + number_a) / 2)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(_lowerCamelCase : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
lowercase__ : Optional[int] = lower
lowercase__ : List[Any] = higher
lowercase__ : Dict = []
while True:
lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase)
last_numbers.append(_lowerCamelCase)
if answer(_lowerCamelCase) == "low":
lowercase__ : List[str] = number
elif answer(_lowerCamelCase) == "high":
lowercase__ : Optional[int] = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''')
print(f'''details : {last_numbers!s}''')
def lowercase_ ( ):
lowercase__ : Tuple = int(input("Enter lower value : ").strip())
lowercase__ : Optional[int] = int(input("Enter high value : ").strip())
lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip())
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
main()
| 333 | 1 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
UpperCamelCase = '''2.13.1'''
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse('''3.7'''):
raise ImportWarning(
'''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.'''
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
'''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n'''
'''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.'''
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
UpperCamelCase = concatenate_datasets
UpperCamelCase = DownloadConfig
UpperCamelCase = DownloadManager
UpperCamelCase = DownloadMode
UpperCamelCase = DownloadConfig
UpperCamelCase = DownloadMode
UpperCamelCase = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 333 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCamelCase = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : str ) -> List[str]:
lowercase__ : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
lowercase__ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : Dict = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ )
lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" )
with open(lowercase_ , "w" , newline="\n" ) as f:
f.write(lowercase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowercase_ )
with open(lowercase_ , "r" ) as f:
self.assertTrue(f.read() , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : int ) -> str:
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , )
# Copy consistency with a really long name
lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
| 333 | 1 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class snake_case_ ( __A ):
def __UpperCamelCase ( self : int , lowercase_ : str ) -> Optional[Any]:
with open(lowercase_ , encoding="utf-8" ) as input_file:
lowercase__ : List[str] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" )
lowercase__ : List[str] = input_file.read()
lowercase__ : Optional[Any] = regexp.search(lowercase_ )
return match
def __UpperCamelCase ( self : Tuple , lowercase_ : str ) -> Dict:
with open(lowercase_ , encoding="utf-8" ) as input_file:
lowercase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL )
lowercase__ : Union[str, Any] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
lowercase__ : Union[str, Any] = regexp.finditer(lowercase_ )
lowercase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def __UpperCamelCase ( self : Any ) -> List[str]:
lowercase__ : List[str] = Path("./datasets" )
lowercase__ : Union[str, Any] = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(lowercase_ ) ):
raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' )
def __UpperCamelCase ( self : List[str] ) -> str:
lowercase__ : Dict = Path("./datasets" )
lowercase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) )
for dataset in dataset_files:
if self._no_print_statements(str(lowercase_ ) ):
raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
| 333 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True):
model.train()
lowercase__ : Tuple = model(_lowerCamelCase)
lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False):
set_seed(42)
lowercase__ : Dict = RegressionModel()
lowercase__ : int = deepcopy(_lowerCamelCase)
lowercase__ : str = RegressionDataset(length=80)
lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16)
model.to(accelerator.device)
if sched:
lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3)
lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3)
lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
# Make a copy of `model`
if sched:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( _lowerCamelCase : Tuple):
# Test when on a single CPU or GPU that the context manager does nothing
lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Any):
# Test on distributed setup that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False):
lowercase__ : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))]
GradientState._reset_state()
def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False):
lowercase__ : Dict = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowercase_ ( ):
lowercase__ : List[str] = Accelerator()
lowercase__ : List[Any] = RegressionDataset(length=80)
lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ : int = RegressionDataset(length=96)
lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if iteration < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if batch_num < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ):
lowercase__ : str = Accelerator()
lowercase__ : Dict = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
test_noop_sync(_lowerCamelCase)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**")
test_distributed_sync(_lowerCamelCase)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 1 |
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
# Initialise PyTorch model
lowercase__ : List[Any] = FunnelConfig.from_json_file(_lowerCamelCase)
print(f'''Building PyTorch model from configuration: {config}''')
lowercase__ : Dict = FunnelBaseModel(_lowerCamelCase) if base_model else FunnelModel(_lowerCamelCase)
# Load weights from tf checkpoint
load_tf_weights_in_funnel(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''')
torch.save(model.state_dict() , _lowerCamelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.'''
)
UpperCamelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 333 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str):
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase)
lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase)
lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase)
lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
lowercase__ : Any = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowercase__ : int = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Dict = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global].")
# Encoder
for layer_index in range(config.num_layers):
lowercase__ : str = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : Any = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[str] = tax_attention_value
lowercase__ : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Any = tax_global_layer_norm
if split_mlp_wi:
lowercase__ : Tuple = tax_mlp_wi_a
lowercase__ : str = tax_mlp_wi_a
else:
lowercase__ : List[Any] = tax_mlp_wi
lowercase__ : str = tax_mlp_wo
lowercase__ : int = tax_mlp_layer_norm
lowercase__ : List[str] = flax_model_encoder_layer_block
# Only for layer 0:
lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : Optional[int] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_encoder_global_rel_embedding
# Assigning
lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
lowercase__ : Union[str, Any] = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"]
lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"]
lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"]
lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : List[Any] = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[Any] = tax_attention_value
lowercase__ : List[str] = tax_pre_attention_layer_norm
lowercase__ : List[Any] = tax_enc_dec_attention_key
lowercase__ : Optional[Any] = tax_enc_dec_attention_out
lowercase__ : str = tax_enc_dec_attention_query
lowercase__ : Union[str, Any] = tax_enc_dec_attention_value
lowercase__ : Tuple = tax_cross_layer_norm
if split_mlp_wi:
lowercase__ : List[str] = tax_mlp_wi_a
lowercase__ : List[Any] = tax_mlp_wi_a
else:
lowercase__ : Tuple = tax_mlp_wi
lowercase__ : Any = tax_mlp_wo
lowercase__ : Tuple = txa_mlp_layer_norm
lowercase__ : int = flax_model_decoder_layer_block
# Decoder Normalization
lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
lowercase__ : List[Any] = txa_decoder_norm
# Only for layer 0:
lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_decoder_rel_embedding
# Token Embeddings
lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"]
lowercase__ : Optional[Any] = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(_lowerCamelCase)
print("T5X Model was sucessfully converted!")
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
UpperCamelCase = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 333 | 1 |
from typing import Union
import fire
import torch
from tqdm import tqdm
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str = "cpu" , _lowerCamelCase : Union[str, None] = None):
lowercase__ : Optional[int] = torch.load(_lowerCamelCase , map_location=_lowerCamelCase)
for k, v in tqdm(state_dict.items()):
if not isinstance(_lowerCamelCase , torch.Tensor):
raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin")
lowercase__ : List[str] = v.half()
if save_path is None: # overwrite src_path
lowercase__ : Optional[int] = src_path
torch.save(_lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
fire.Fire(convert)
| 333 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[int] = "rwkv"
__A : List[str] = {"max_position_embeddings": "context_length"}
def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int:
lowercase__ : List[str] = vocab_size
lowercase__ : str = context_length
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : str = rescale_every
lowercase__ : Optional[int] = use_cache
lowercase__ : int = bos_token_id
lowercase__ : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | 1 |
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
'''The `image_to_image.py` script is outdated. Please use directly `from diffusers import'''
''' StableDiffusionImg2ImgPipeline` instead.'''
)
| 333 |
class snake_case_ :
def __init__( self : int ) -> Optional[int]:
lowercase__ : Optional[int] = 0
lowercase__ : List[str] = 0
lowercase__ : Any = {}
def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]:
if vertex not in self.adjacency:
lowercase__ : List[Any] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]:
self.add_vertex(lowercase_ )
self.add_vertex(lowercase_ )
if head == tail:
return
lowercase__ : int = weight
lowercase__ : Any = weight
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[Any] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
edges.remove((tail, head, weight) )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(lowercase_ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : int = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge
lowercase__ : Union[str, Any] = weight
lowercase__ : Dict = weight
def __str__( self : str ) -> Any:
lowercase__ : str = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Optional[Any] = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Any = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[str] ) -> Dict:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]:
lowercase__ : Any = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : List[Any] = []
for vertex in vertices:
g.add_vertex(lowercase_ )
for edge in edges:
g.add_edge(*lowercase_ )
return g
class snake_case_ :
def __init__( self : int ) -> List[str]:
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
def __len__( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.parent )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple:
if item in self.parent:
return self.find(lowercase_ )
lowercase__ : Union[str, Any] = item
lowercase__ : int = 0
return item
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any:
if item not in self.parent:
return self.make_set(lowercase_ )
if item != self.parent[item]:
lowercase__ : Union[str, Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]:
lowercase__ : Dict = self.find(lowercase_ )
lowercase__ : Optional[int] = self.find(lowercase_ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Dict = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : int = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]:
lowercase__ : List[Any] = graph.num_vertices
lowercase__ : Optional[Any] = Graph.UnionFind()
lowercase__ : int = []
while num_components > 1:
lowercase__ : List[Any] = {}
for vertex in graph.get_vertices():
lowercase__ : Any = -1
lowercase__ : List[str] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : str = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[str] = edge
lowercase__ : List[str] = union_find.find(lowercase_ )
lowercase__ : Union[str, Any] = union_find.find(lowercase_ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Dict = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex]
if union_find.find(lowercase_ ) != union_find.find(lowercase_ ):
union_find.union(lowercase_ , lowercase_ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : Optional[Any] = num_components - 1
lowercase__ : List[Any] = Graph.build(edges=lowercase_ )
return mst
| 333 | 1 |
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''')
UpperCamelCase = logging.getLogger(__name__)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=128 ,metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} ,)
__A : bool = field(
default=__A ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
__A : bool = field(
default=__A ,metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} ,)
__A : Optional[int] = field(
default=__A ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} ,)
__A : Optional[int] = field(
default=__A ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} ,)
__A : Optional[int] = field(
default=__A ,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} ,)
@dataclass
class snake_case_ :
__A : str = field(
default=__A ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__A : str = field(
default=__A ,metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} )
__A : Optional[str] = field(
default=__A ,metadata={"help": "Train language if it is different from the evaluation language."} )
__A : Optional[str] = field(
default=__A ,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__A : Optional[str] = field(
default=__A ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__A : Optional[str] = field(
default=__A ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,)
__A : Optional[bool] = field(
default=__A ,metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} ,)
__A : bool = field(
default=__A ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,)
__A : str = field(
default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,)
__A : bool = field(
default=__A ,metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} ,)
__A : bool = field(
default=__A ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,)
def lowercase_ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowercase__ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_xnli" , _lowerCamelCase)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowercase__ : Any = training_args.get_process_log_level()
logger.setLevel(_lowerCamelCase)
datasets.utils.logging.set_verbosity(_lowerCamelCase)
transformers.utils.logging.set_verbosity(_lowerCamelCase)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}''')
logger.info(f'''Training/evaluation parameters {training_args}''')
# Detecting last checkpoint.
lowercase__ : int = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
lowercase__ : Optional[Any] = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"Use --overwrite_output_dir to overcome.")
elif last_checkpoint is not None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch.")
# Set seed before initializing model.
set_seed(training_args.seed)
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
lowercase__ : List[Any] = load_dataset(
"xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
lowercase__ : Optional[int] = load_dataset(
"xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : Dict = train_dataset.features["label"].names
if training_args.do_eval:
lowercase__ : Union[str, Any] = load_dataset(
"xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : str = eval_dataset.features["label"].names
if training_args.do_predict:
lowercase__ : Any = load_dataset(
"xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : List[str] = predict_dataset.features["label"].names
# Labels
lowercase__ : Optional[int] = len(_lowerCamelCase)
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCamelCase , idalabel={str(_lowerCamelCase): label for i, label in enumerate(_lowerCamelCase)} , labelaid={label: i for i, label in enumerate(_lowerCamelCase)} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : Tuple = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowercase__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
lowercase__ : Dict = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowercase__ : Union[str, Any] = False
def preprocess_function(_lowerCamelCase : Any):
# Tokenize the texts
return tokenizer(
examples["premise"] , examples["hypothesis"] , padding=_lowerCamelCase , max_length=data_args.max_seq_length , truncation=_lowerCamelCase , )
if training_args.do_train:
if data_args.max_train_samples is not None:
lowercase__ : Optional[Any] = min(len(_lowerCamelCase) , data_args.max_train_samples)
lowercase__ : str = train_dataset.select(range(_lowerCamelCase))
with training_args.main_process_first(desc="train dataset map pre-processing"):
lowercase__ : int = train_dataset.map(
_lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , )
# Log a few random samples from the training set:
for index in random.sample(range(len(_lowerCamelCase)) , 3):
logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''')
if training_args.do_eval:
if data_args.max_eval_samples is not None:
lowercase__ : List[str] = min(len(_lowerCamelCase) , data_args.max_eval_samples)
lowercase__ : Optional[Any] = eval_dataset.select(range(_lowerCamelCase))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
lowercase__ : List[str] = eval_dataset.map(
_lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
lowercase__ : Optional[int] = min(len(_lowerCamelCase) , data_args.max_predict_samples)
lowercase__ : List[str] = predict_dataset.select(range(_lowerCamelCase))
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
lowercase__ : Tuple = predict_dataset.map(
_lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , )
# Get the metric function
lowercase__ : Optional[int] = evaluate.load("xnli")
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_lowerCamelCase : EvalPrediction):
lowercase__ : int = p.predictions[0] if isinstance(p.predictions , _lowerCamelCase) else p.predictions
lowercase__ : Optional[int] = np.argmax(_lowerCamelCase , axis=1)
return metric.compute(predictions=_lowerCamelCase , references=p.label_ids)
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowercase__ : Optional[Any] = default_data_collator
elif training_args.fpaa:
lowercase__ : Union[str, Any] = DataCollatorWithPadding(_lowerCamelCase , pad_to_multiple_of=8)
else:
lowercase__ : Any = None
# Initialize our Trainer
lowercase__ : Optional[int] = Trainer(
model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , )
# Training
if training_args.do_train:
lowercase__ : Tuple = None
if training_args.resume_from_checkpoint is not None:
lowercase__ : str = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowercase__ : List[Any] = last_checkpoint
lowercase__ : int = trainer.train(resume_from_checkpoint=_lowerCamelCase)
lowercase__ : Optional[Any] = train_result.metrics
lowercase__ : Dict = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCamelCase)
)
lowercase__ : Optional[int] = min(_lowerCamelCase , len(_lowerCamelCase))
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train" , _lowerCamelCase)
trainer.save_metrics("train" , _lowerCamelCase)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
lowercase__ : List[Any] = trainer.evaluate(eval_dataset=_lowerCamelCase)
lowercase__ : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCamelCase)
lowercase__ : int = min(_lowerCamelCase , len(_lowerCamelCase))
trainer.log_metrics("eval" , _lowerCamelCase)
trainer.save_metrics("eval" , _lowerCamelCase)
# Prediction
if training_args.do_predict:
logger.info("*** Predict ***")
lowercase__ , lowercase__ , lowercase__ : int = trainer.predict(_lowerCamelCase , metric_key_prefix="predict")
lowercase__ : int = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_lowerCamelCase)
)
lowercase__ : Optional[Any] = min(_lowerCamelCase , len(_lowerCamelCase))
trainer.log_metrics("predict" , _lowerCamelCase)
trainer.save_metrics("predict" , _lowerCamelCase)
lowercase__ : str = np.argmax(_lowerCamelCase , axis=1)
lowercase__ : List[Any] = os.path.join(training_args.output_dir , "predictions.txt")
if trainer.is_world_process_zero():
with open(_lowerCamelCase , "w") as writer:
writer.write("index\tprediction\n")
for index, item in enumerate(_lowerCamelCase):
lowercase__ : List[Any] = label_list[item]
writer.write(f'''{index}\t{item}\n''')
if __name__ == "__main__":
main()
| 333 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
UpperCamelCase = None
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
},
'''tokenizer_file''': {
'''google/bigbird-roberta-base''': (
'''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'''
),
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'''
),
},
}
UpperCamelCase = {
'''google/bigbird-roberta-base''': 4096,
'''google/bigbird-roberta-large''': 4096,
'''google/bigbird-base-trivia-itc''': 4096,
}
UpperCamelCase = '''▁'''
class snake_case_ ( __A ):
__A : Optional[Any] = VOCAB_FILES_NAMES
__A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
__A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Tuple = BigBirdTokenizer
__A : Tuple = ["input_ids", "attention_mask"]
__A : List[int] = []
def __init__( self : Dict , lowercase_ : Dict=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]="<unk>" , lowercase_ : Any="<s>" , lowercase_ : List[Any]="</s>" , lowercase_ : int="<pad>" , lowercase_ : Optional[Any]="[SEP]" , lowercase_ : int="[MASK]" , lowercase_ : Dict="[CLS]" , **lowercase_ : List[str] , ) -> str:
lowercase__ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token
lowercase__ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token
lowercase__ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token
lowercase__ : Union[str, Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token
lowercase__ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token
lowercase__ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase__ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token
super().__init__(
lowercase_ , tokenizer_file=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , )
lowercase__ : List[Any] = vocab_file
lowercase__ : Dict = False if not self.vocab_file else True
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]:
lowercase__ : Any = [self.sep_token_id]
lowercase__ : Any = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __UpperCamelCase ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(lowercase_ )) + [1]
return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1]
def __UpperCamelCase ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]:
lowercase__ : str = [self.sep_token_id]
lowercase__ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCamelCase ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(lowercase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ : str = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ):
copyfile(self.vocab_file , lowercase_ )
return (out_vocab_file,)
| 333 |
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 1
lowercase__ : int = 0
for divide_by_number in range(_lowerCamelCase , digit + 1):
lowercase__ : list[int] = []
lowercase__ : Dict = numerator
for _ in range(1 , digit + 1):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase):
lowercase__ : Union[str, Any] = len(_lowerCamelCase)
lowercase__ : Optional[int] = divide_by_number
else:
has_been_divided.append(_lowerCamelCase)
lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 1 |
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class snake_case_ ( __A ):
__A : torch.FloatTensor
class snake_case_ ( nn.Module ):
def __init__( self : Any , lowercase_ : str=3 , lowercase_ : List[str]=3 , lowercase_ : List[Any]=("DownEncoderBlock2D",) , lowercase_ : Optional[int]=(64,) , lowercase_ : int=2 , lowercase_ : Optional[Any]=32 , lowercase_ : str="silu" , lowercase_ : Tuple=True , ) -> Optional[int]:
super().__init__()
lowercase__ : Tuple = layers_per_block
lowercase__ : Any = torch.nn.Convad(
lowercase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
lowercase__ : Union[str, Any] = None
lowercase__ : Any = nn.ModuleList([] )
# down
lowercase__ : Dict = block_out_channels[0]
for i, down_block_type in enumerate(lowercase_ ):
lowercase__ : List[str] = output_channel
lowercase__ : List[Any] = block_out_channels[i]
lowercase__ : Optional[int] = i == len(lowercase_ ) - 1
lowercase__ : Optional[int] = get_down_block(
lowercase_ , num_layers=self.layers_per_block , in_channels=lowercase_ , out_channels=lowercase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowercase_ , resnet_groups=lowercase_ , attention_head_dim=lowercase_ , temb_channels=lowercase_ , )
self.down_blocks.append(lowercase_ )
# mid
lowercase__ : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase_ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase_ , temb_channels=lowercase_ , )
# out
lowercase__ : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase_ , eps=1E-6 )
lowercase__ : str = nn.SiLU()
lowercase__ : List[Any] = 2 * out_channels if double_z else out_channels
lowercase__ : Optional[int] = nn.Convad(block_out_channels[-1] , lowercase_ , 3 , padding=1 )
lowercase__ : Tuple = False
def __UpperCamelCase ( self : Any , lowercase_ : Optional[int] ) -> str:
lowercase__ : int = x
lowercase__ : Dict = self.conv_in(lowercase_ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowercase_ : Tuple ):
def custom_forward(*lowercase_ : List[str] ):
return module(*lowercase_ )
return custom_forward
# down
if is_torch_version(">=" , "1.11.0" ):
for down_block in self.down_blocks:
lowercase__ : Tuple = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowercase_ ) , lowercase_ , use_reentrant=lowercase_ )
# middle
lowercase__ : Any = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase_ , use_reentrant=lowercase_ )
else:
for down_block in self.down_blocks:
lowercase__ : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase_ ) , lowercase_ )
# middle
lowercase__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase_ )
else:
# down
for down_block in self.down_blocks:
lowercase__ : Optional[Any] = down_block(lowercase_ )
# middle
lowercase__ : List[str] = self.mid_block(lowercase_ )
# post-process
lowercase__ : Any = self.conv_norm_out(lowercase_ )
lowercase__ : int = self.conv_act(lowercase_ )
lowercase__ : Tuple = self.conv_out(lowercase_ )
return sample
class snake_case_ ( nn.Module ):
def __init__( self : int , lowercase_ : Dict=3 , lowercase_ : Any=3 , lowercase_ : Tuple=("UpDecoderBlock2D",) , lowercase_ : List[str]=(64,) , lowercase_ : Optional[Any]=2 , lowercase_ : int=32 , lowercase_ : Optional[Any]="silu" , lowercase_ : Union[str, Any]="group" , ) -> Tuple:
super().__init__()
lowercase__ : Optional[Any] = layers_per_block
lowercase__ : List[Any] = nn.Convad(
lowercase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
lowercase__ : Dict = None
lowercase__ : str = nn.ModuleList([] )
lowercase__ : Dict = in_channels if norm_type == "spatial" else None
# mid
lowercase__ : str = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase_ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase_ , temb_channels=lowercase_ , )
# up
lowercase__ : Any = list(reversed(lowercase_ ) )
lowercase__ : Dict = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowercase_ ):
lowercase__ : int = output_channel
lowercase__ : Tuple = reversed_block_out_channels[i]
lowercase__ : Union[str, Any] = i == len(lowercase_ ) - 1
lowercase__ : List[str] = get_up_block(
lowercase_ , num_layers=self.layers_per_block + 1 , in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowercase_ , resnet_groups=lowercase_ , attention_head_dim=lowercase_ , temb_channels=lowercase_ , resnet_time_scale_shift=lowercase_ , )
self.up_blocks.append(lowercase_ )
lowercase__ : Any = output_channel
# out
if norm_type == "spatial":
lowercase__ : List[str] = SpatialNorm(block_out_channels[0] , lowercase_ )
else:
lowercase__ : int = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase_ , eps=1E-6 )
lowercase__ : Any = nn.SiLU()
lowercase__ : Any = nn.Convad(block_out_channels[0] , lowercase_ , 3 , padding=1 )
lowercase__ : List[str] = False
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any]=None ) -> List[Any]:
lowercase__ : Optional[Any] = z
lowercase__ : Union[str, Any] = self.conv_in(lowercase_ )
lowercase__ : str = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowercase_ : List[str] ):
def custom_forward(*lowercase_ : Union[str, Any] ):
return module(*lowercase_ )
return custom_forward
if is_torch_version(">=" , "1.11.0" ):
# middle
lowercase__ : Optional[int] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase_ , lowercase_ , use_reentrant=lowercase_ )
lowercase__ : int = sample.to(lowercase_ )
# up
for up_block in self.up_blocks:
lowercase__ : Any = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowercase_ ) , lowercase_ , lowercase_ , use_reentrant=lowercase_ )
else:
# middle
lowercase__ : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase_ , lowercase_ )
lowercase__ : Any = sample.to(lowercase_ )
# up
for up_block in self.up_blocks:
lowercase__ : List[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase_ ) , lowercase_ , lowercase_ )
else:
# middle
lowercase__ : str = self.mid_block(lowercase_ , lowercase_ )
lowercase__ : Dict = sample.to(lowercase_ )
# up
for up_block in self.up_blocks:
lowercase__ : Union[str, Any] = up_block(lowercase_ , lowercase_ )
# post-process
if latent_embeds is None:
lowercase__ : Any = self.conv_norm_out(lowercase_ )
else:
lowercase__ : List[Any] = self.conv_norm_out(lowercase_ , lowercase_ )
lowercase__ : Optional[Any] = self.conv_act(lowercase_ )
lowercase__ : Tuple = self.conv_out(lowercase_ )
return sample
class snake_case_ ( nn.Module ):
def __init__( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[str]=None , lowercase_ : str="random" , lowercase_ : Tuple=False , lowercase_ : Dict=True ) -> str:
super().__init__()
lowercase__ : int = n_e
lowercase__ : List[Any] = vq_embed_dim
lowercase__ : Optional[Any] = beta
lowercase__ : Dict = legacy
lowercase__ : int = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
lowercase__ : List[Any] = remap
if self.remap is not None:
self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) )
lowercase__ : Optional[Any] = self.used.shape[0]
lowercase__ : Any = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
lowercase__ : Optional[Any] = self.re_embed
lowercase__ : Optional[Any] = self.re_embed + 1
print(
F'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
F'''Using {self.unknown_index} for unknown indices.''' )
else:
lowercase__ : List[str] = n_e
lowercase__ : Tuple = sane_index_shape
def __UpperCamelCase ( self : List[str] , lowercase_ : int ) -> List[str]:
lowercase__ : Tuple = inds.shape
assert len(lowercase_ ) > 1
lowercase__ : Optional[Any] = inds.reshape(ishape[0] , -1 )
lowercase__ : Optional[Any] = self.used.to(lowercase_ )
lowercase__ : List[str] = (inds[:, :, None] == used[None, None, ...]).long()
lowercase__ : Optional[Any] = match.argmax(-1 )
lowercase__ : Optional[Any] = match.sum(2 ) < 1
if self.unknown_index == "random":
lowercase__ : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
lowercase__ : Dict = self.unknown_index
return new.reshape(lowercase_ )
def __UpperCamelCase ( self : Any , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : Optional[Any] = inds.shape
assert len(lowercase_ ) > 1
lowercase__ : List[Any] = inds.reshape(ishape[0] , -1 )
lowercase__ : Optional[int] = self.used.to(lowercase_ )
if self.re_embed > self.used.shape[0]: # extra token
lowercase__ : List[str] = 0 # simply set to zero
lowercase__ : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase_ )
return back.reshape(lowercase_ )
def __UpperCamelCase ( self : Any , lowercase_ : List[str] ) -> int:
# reshape z -> (batch, height, width, channel) and flatten
lowercase__ : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous()
lowercase__ : Optional[Any] = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
lowercase__ : Tuple = torch.argmin(torch.cdist(lowercase_ , self.embedding.weight ) , dim=1 )
lowercase__ : List[str] = self.embedding(lowercase_ ).view(z.shape )
lowercase__ : Optional[Any] = None
lowercase__ : Optional[int] = None
# compute loss for embedding
if not self.legacy:
lowercase__ : int = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
lowercase__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
lowercase__ : Dict = z + (z_q - z).detach()
# reshape back to match original input shape
lowercase__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
lowercase__ : Union[str, Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
lowercase__ : Union[str, Any] = self.remap_to_used(lowercase_ )
lowercase__ : Any = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
lowercase__ : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] ) -> List[str]:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
lowercase__ : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
lowercase__ : Tuple = self.unmap_to_all(lowercase_ )
lowercase__ : List[Any] = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
lowercase__ : Optional[int] = self.embedding(lowercase_ )
if shape is not None:
lowercase__ : Any = z_q.view(lowercase_ )
# reshape back to match original input shape
lowercase__ : Any = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class snake_case_ ( __A ):
def __init__( self : List[str] , lowercase_ : Tuple , lowercase_ : Union[str, Any]=False ) -> int:
lowercase__ : Any = parameters
lowercase__ , lowercase__ : Tuple = torch.chunk(lowercase_ , 2 , dim=1 )
lowercase__ : str = torch.clamp(self.logvar , -30.0 , 20.0 )
lowercase__ : str = deterministic
lowercase__ : Any = torch.exp(0.5 * self.logvar )
lowercase__ : List[Any] = torch.exp(self.logvar )
if self.deterministic:
lowercase__ : List[Any] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[torch.Generator] = None ) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
lowercase__ : Tuple = randn_tensor(
self.mean.shape , generator=lowercase_ , device=self.parameters.device , dtype=self.parameters.dtype )
lowercase__ : Union[str, Any] = self.mean + self.std * sample
return x
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any]=None ) -> List[Any]:
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __UpperCamelCase ( self : Dict , lowercase_ : int , lowercase_ : int=[1, 2, 3] ) -> List[str]:
if self.deterministic:
return torch.Tensor([0.0] )
lowercase__ : List[str] = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
return self.mean
| 333 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class snake_case_ ( __A ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__A : ClassVar[Features] = Features({"text": Value("string" )} )
__A : ClassVar[Features] = Features({"labels": ClassLabel} )
__A : str = "text"
__A : str = "labels"
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
lowercase__ : Optional[int] = copy.deepcopy(self )
lowercase__ : Tuple = self.label_schema.copy()
lowercase__ : Union[str, Any] = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 333 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False):
try:
lowercase__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''')
return _value
UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skip("Test was skipped")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None):
if test_case is None:
return partial(_lowerCamelCase , version=_lowerCamelCase)
return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase)
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase)
class snake_case_ ( unittest.TestCase ):
__A : int = True
@classmethod
def __UpperCamelCase ( cls : str ) -> str:
lowercase__ : str = tempfile.mkdtemp()
@classmethod
def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCamelCase ( self : str ) -> Optional[int]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowercase_ )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str:
lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Optional[int] = tensor[None].clone().to(state.device)
lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu()
lowercase__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowerCamelCase):
return False
return True
class snake_case_ :
def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : int = returncode
lowercase__ : Dict = stdout
lowercase__ : List[Any] = stderr
async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str):
while True:
lowercase__ : int = await stream.readline()
if line:
callback(_lowerCamelCase)
else:
break
async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False):
if echo:
print("\nRunning: " , " ".join(_lowerCamelCase))
lowercase__ : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Tuple = []
lowercase__ : List[Any] = []
def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""):
lowercase__ : Optional[int] = line.decode("utf-8").rstrip()
sink.append(_lowerCamelCase)
if not quiet:
print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))),
] , timeout=_lowerCamelCase , )
return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True):
lowercase__ : Optional[Any] = asyncio.get_event_loop()
lowercase__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase))
lowercase__ : str = " ".join(_lowerCamelCase)
if result.returncode > 0:
lowercase__ : Dict = "\n".join(result.stderr)
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False):
try:
lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowerCamelCase , "decode"):
lowercase__ : Optional[Any] = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 333 | 1 |
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
UpperCamelCase = logging.get_logger(__name__)
class snake_case_ ( __A ):
__A : Any = "linear"
__A : Any = "cosine"
__A : Dict = "cosine_with_restarts"
__A : Any = "polynomial"
__A : Optional[Any] = "constant"
__A : Any = "constant_with_warmup"
__A : Any = "piecewise_constant"
def lowercase_ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int = -1):
return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase: 1 , last_epoch=_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int = -1):
def lr_lambda(_lowerCamelCase : int):
if current_step < num_warmup_steps:
return float(_lowerCamelCase) / float(max(1.0 , _lowerCamelCase))
return 1.0
return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Optimizer , _lowerCamelCase : str , _lowerCamelCase : int = -1):
lowercase__ : Dict = {}
lowercase__ : Union[str, Any] = step_rules.split(",")
for rule_str in rule_list[:-1]:
lowercase__ , lowercase__ : List[str] = rule_str.split(":")
lowercase__ : int = int(_lowerCamelCase)
lowercase__ : List[str] = float(_lowerCamelCase)
lowercase__ : Dict = value
lowercase__ : int = float(rule_list[-1])
def create_rules_function(_lowerCamelCase : Optional[int] , _lowerCamelCase : Any):
def rule_func(_lowerCamelCase : int) -> float:
lowercase__ : Optional[int] = sorted(rules_dict.keys())
for i, sorted_step in enumerate(_lowerCamelCase):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
lowercase__ : Tuple = create_rules_function(_lowerCamelCase , _lowerCamelCase)
return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]=-1):
def lr_lambda(_lowerCamelCase : int):
if current_step < num_warmup_steps:
return float(_lowerCamelCase) / float(max(1 , _lowerCamelCase))
return max(
0.0 , float(num_training_steps - current_step) / float(max(1 , num_training_steps - num_warmup_steps)))
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float = 0.5 , _lowerCamelCase : int = -1):
def lr_lambda(_lowerCamelCase : str):
if current_step < num_warmup_steps:
return float(_lowerCamelCase) / float(max(1 , _lowerCamelCase))
lowercase__ : Optional[Any] = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps))
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase) * 2.0 * progress)))
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Optimizer , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int = 1 , _lowerCamelCase : int = -1):
def lr_lambda(_lowerCamelCase : List[Any]):
if current_step < num_warmup_steps:
return float(_lowerCamelCase) / float(max(1 , _lowerCamelCase))
lowercase__ : Tuple = float(current_step - num_warmup_steps) / float(max(1 , num_training_steps - num_warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase) * progress) % 1.0))))
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[Any]=1E-7 , _lowerCamelCase : Union[str, Any]=1.0 , _lowerCamelCase : List[Any]=-1):
lowercase__ : Any = optimizer.defaults["lr"]
if not (lr_init > lr_end):
raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''')
def lr_lambda(_lowerCamelCase : int):
if current_step < num_warmup_steps:
return float(_lowerCamelCase) / float(max(1 , _lowerCamelCase))
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lowercase__ : List[str] = lr_init - lr_end
lowercase__ : Optional[Any] = num_training_steps - num_warmup_steps
lowercase__ : Tuple = 1 - (current_step - num_warmup_steps) / decay_steps
lowercase__ : List[str] = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
UpperCamelCase = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def lowercase_ ( _lowerCamelCase : Union[str, SchedulerType] , _lowerCamelCase : Optimizer , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : int = 1 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : int = -1 , ):
lowercase__ : Optional[int] = SchedulerType(_lowerCamelCase)
lowercase__ : Optional[Any] = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase)
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase)
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''')
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''')
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
_lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
_lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , )
return schedule_func(
_lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase)
| 333 |
from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[Any] = ["flax"]
def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[int] = ["flax"]
def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[str] = ["flax"]
def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
| 333 | 1 |
import os
def lowercase_ ( _lowerCamelCase : str = "input.txt"):
with open(os.path.join(os.path.dirname(_lowerCamelCase) , _lowerCamelCase)) as input_file:
lowercase__ : Tuple = [
[int(_lowerCamelCase) for element in line.split(",")]
for line in input_file.readlines()
]
lowercase__ : Optional[Any] = len(_lowerCamelCase)
lowercase__ : int = len(matrix[0])
lowercase__ : Dict = [[-1 for _ in range(_lowerCamelCase)] for _ in range(_lowerCamelCase)]
for i in range(_lowerCamelCase):
lowercase__ : int = matrix[i][0]
for j in range(1 , _lowerCamelCase):
for i in range(_lowerCamelCase):
lowercase__ : Optional[int] = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _lowerCamelCase):
lowercase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j])
for i in range(rows - 2 , -1 , -1):
lowercase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j])
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums)
if __name__ == "__main__":
print(f"{solution() = }")
| 333 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class snake_case_ ( __A ):
__A : List[str] = "vit_mae"
def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]:
super().__init__(**lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Any = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Any = num_channels
lowercase__ : str = qkv_bias
lowercase__ : Optional[Any] = decoder_num_attention_heads
lowercase__ : Any = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : Union[str, Any] = decoder_intermediate_size
lowercase__ : int = mask_ratio
lowercase__ : Tuple = norm_pix_loss
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : list , _lowerCamelCase : list , _lowerCamelCase : int):
lowercase__ : Tuple = len(_lowerCamelCase)
lowercase__ : Any = [[0] * n for i in range(_lowerCamelCase)]
for i in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = y_points[i]
for i in range(2 , _lowerCamelCase):
for j in range(_lowerCamelCase , _lowerCamelCase):
lowercase__ : Tuple = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 |
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while a != 0:
lowercase__ , lowercase__ : Dict = b % a, a
return b
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if gcd(_lowerCamelCase , _lowerCamelCase) != 1:
lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m
while va != 0:
lowercase__ : Tuple = ua // va
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 333 | 1 |
from ...configuration_utils import PretrainedConfig
UpperCamelCase = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class snake_case_ ( __A ):
__A : Any = "tapas"
def __init__( self : List[str] , lowercase_ : Union[str, Any]=3_05_22 , lowercase_ : List[Any]=7_68 , lowercase_ : Optional[Any]=12 , lowercase_ : int=12 , lowercase_ : Dict=30_72 , lowercase_ : str="gelu" , lowercase_ : str=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , lowercase_ : List[str]=0.02 , lowercase_ : List[Any]=1E-12 , lowercase_ : str=0 , lowercase_ : Optional[int]=10.0 , lowercase_ : int=0 , lowercase_ : str=1.0 , lowercase_ : Optional[Any]=None , lowercase_ : List[Any]=1.0 , lowercase_ : List[Any]=False , lowercase_ : Optional[Any]=None , lowercase_ : Any=1.0 , lowercase_ : Optional[int]=1.0 , lowercase_ : Dict=False , lowercase_ : Any=False , lowercase_ : Dict="ratio" , lowercase_ : List[str]=None , lowercase_ : List[str]=None , lowercase_ : Dict=64 , lowercase_ : List[Any]=32 , lowercase_ : Optional[Any]=False , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : Optional[Any]=False , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=False , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , **lowercase_ : Any , ) -> Optional[int]:
super().__init__(pad_token_id=lowercase_ , **lowercase_ )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
lowercase__ : Any = vocab_size
lowercase__ : Dict = hidden_size
lowercase__ : Optional[int] = num_hidden_layers
lowercase__ : str = num_attention_heads
lowercase__ : int = hidden_act
lowercase__ : Optional[int] = intermediate_size
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Tuple = attention_probs_dropout_prob
lowercase__ : List[str] = max_position_embeddings
lowercase__ : Union[str, Any] = type_vocab_sizes
lowercase__ : str = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
# Fine-tuning task hyperparameters
lowercase__ : List[str] = positive_label_weight
lowercase__ : Union[str, Any] = num_aggregation_labels
lowercase__ : Optional[Any] = aggregation_loss_weight
lowercase__ : List[str] = use_answer_as_supervision
lowercase__ : str = answer_loss_importance
lowercase__ : List[str] = use_normalized_answer_loss
lowercase__ : Tuple = huber_loss_delta
lowercase__ : List[Any] = temperature
lowercase__ : Optional[Any] = aggregation_temperature
lowercase__ : List[Any] = use_gumbel_for_cells
lowercase__ : Tuple = use_gumbel_for_aggregation
lowercase__ : int = average_approximation_function
lowercase__ : Optional[int] = cell_selection_preference
lowercase__ : List[Any] = answer_loss_cutoff
lowercase__ : str = max_num_rows
lowercase__ : List[Any] = max_num_columns
lowercase__ : List[Any] = average_logits_per_cell
lowercase__ : List[str] = select_one_column
lowercase__ : Any = allow_empty_column_selection
lowercase__ : Union[str, Any] = init_cell_selection_weights_to_zero
lowercase__ : Union[str, Any] = reset_position_index_per_cell
lowercase__ : str = disable_per_token_loss
# Aggregation hyperparameters
lowercase__ : List[Any] = aggregation_labels
lowercase__ : Union[str, Any] = no_aggregation_label_index
if isinstance(self.aggregation_labels , lowercase_ ):
lowercase__ : int = {int(lowercase_ ): v for k, v in aggregation_labels.items()}
| 333 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class snake_case_ :
__A : int
__A : int
class snake_case_ :
def __init__( self : str , lowercase_ : int ) -> str:
lowercase__ : list[list[Edge]] = [[] for _ in range(lowercase_ )]
lowercase__ : str = size
def __getitem__( self : Union[str, Any] , lowercase_ : int ) -> Iterator[Edge]:
return iter(self._graph[vertex] )
@property
def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
return self._size
def __UpperCamelCase ( self : Optional[int] , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> Union[str, Any]:
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(lowercase_ , lowercase_ ) )
def __UpperCamelCase ( self : List[Any] , lowercase_ : int , lowercase_ : int ) -> int | None:
lowercase__ : Optional[Any] = deque([start_vertex] )
lowercase__ : list[int | None] = [None] * self.size
lowercase__ : List[Any] = 0
while queue:
lowercase__ : Dict = queue.popleft()
lowercase__ : List[Any] = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowercase__ : Optional[int] = current_distance + edge.weight
lowercase__ : int = distances[edge.destination_vertex]
if (
isinstance(lowercase_ , lowercase_ )
and new_distance >= dest_vertex_distance
):
continue
lowercase__ : Optional[int] = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 |
import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 | 1 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''nvidia/segformer-b0-finetuned-ade-512-512''': (
'''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json'''
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class snake_case_ ( __A ):
__A : Tuple = "segformer"
def __init__( self : Tuple , lowercase_ : List[str]=3 , lowercase_ : int=4 , lowercase_ : List[str]=[2, 2, 2, 2] , lowercase_ : Union[str, Any]=[8, 4, 2, 1] , lowercase_ : Optional[Any]=[32, 64, 1_60, 2_56] , lowercase_ : List[str]=[7, 3, 3, 3] , lowercase_ : str=[4, 2, 2, 2] , lowercase_ : Dict=[1, 2, 5, 8] , lowercase_ : Optional[Any]=[4, 4, 4, 4] , lowercase_ : Tuple="gelu" , lowercase_ : str=0.0 , lowercase_ : Dict=0.0 , lowercase_ : Tuple=0.1 , lowercase_ : List[str]=0.02 , lowercase_ : List[Any]=0.1 , lowercase_ : Optional[int]=1E-6 , lowercase_ : Any=2_56 , lowercase_ : Union[str, Any]=2_55 , **lowercase_ : Any , ) -> str:
super().__init__(**lowercase_ )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"
" removed, as the behaviour will default to that of reshape_last_stage = True." , lowercase_ , )
lowercase__ : Any = num_channels
lowercase__ : Any = num_encoder_blocks
lowercase__ : Any = depths
lowercase__ : str = sr_ratios
lowercase__ : Any = hidden_sizes
lowercase__ : List[Any] = patch_sizes
lowercase__ : Any = strides
lowercase__ : List[str] = mlp_ratios
lowercase__ : List[Any] = num_attention_heads
lowercase__ : Optional[int] = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : List[Any] = attention_probs_dropout_prob
lowercase__ : Union[str, Any] = classifier_dropout_prob
lowercase__ : List[Any] = initializer_range
lowercase__ : List[Any] = drop_path_rate
lowercase__ : Union[str, Any] = layer_norm_eps
lowercase__ : Optional[int] = decoder_hidden_size
lowercase__ : int = kwargs.get("reshape_last_stage" , lowercase_ )
lowercase__ : str = semantic_loss_ignore_index
class snake_case_ ( __A ):
__A : List[str] = version.parse("1.11" )
@property
def __UpperCamelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __UpperCamelCase ( self : str ) -> float:
return 1E-4
@property
def __UpperCamelCase ( self : Dict ) -> int:
return 12
| 333 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
UpperCamelCase = ['''gpt2''']
UpperCamelCase = '''gpt2'''
if is_tf_available():
class snake_case_ ( tf.Module ):
def __init__( self : Optional[int] , lowercase_ : Optional[int] ) -> Dict:
super().__init__()
lowercase__ : List[str] = tokenizer
lowercase__ : Any = AutoConfig.from_pretrained(lowercase_ )
lowercase__ : str = TFGPTaLMHeadModel.from_config(lowercase_ )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) )
def __UpperCamelCase ( self : List[str] , lowercase_ : Tuple ) -> str:
lowercase__ : Dict = self.tokenizer(lowercase_ )
lowercase__ : Any = tokenized["input_ids"].to_tensor()
lowercase__ : Dict = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
lowercase__ : List[Any] = self.model(input_ids=lowercase_ , attention_mask=lowercase_ )["logits"]
return outputs
@require_tf
@require_keras_nlp
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Any ) -> List[Any]:
super().setUp()
lowercase__ : Optional[Any] = [GPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
lowercase__ : Optional[Any] = [TFGPTaTokenizer.from_pretrained(lowercase_ ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
lowercase__ : List[str] = [
"This is a straightforward English test sentence.",
"This one has some weird characters\rto\nsee\r\nif those\u00E9break things.",
"Now we're going to add some Chinese: 一 二 三 一二三",
"And some much more rare Chinese: 齉 堃 齉堃",
"Je vais aussi écrire en français pour tester les accents",
"Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ",
]
lowercase__ : Dict = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def __UpperCamelCase ( self : Any ) -> Optional[Any]:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
lowercase__ : Tuple = tokenizer([test_inputs] , return_tensors="tf" )
lowercase__ : str = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
lowercase__ : List[Any] = python_outputs[key].numpy()
lowercase__ : Optional[Any] = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(lowercase_ , tf.intaa ) == tf_outputs_values ) )
@slow
def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
for tf_tokenizer in self.tf_tokenizers:
lowercase__ : Union[str, Any] = tf.function(lowercase_ )
for test_inputs in self.test_sentences:
lowercase__ : str = tf.constant(lowercase_ )
lowercase__ : List[str] = compiled_tokenizer(lowercase_ )
lowercase__ : Dict = tf_tokenizer(lowercase_ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def __UpperCamelCase ( self : List[str] ) -> Any:
for tf_tokenizer in self.tf_tokenizers:
lowercase__ : str = ModelToSave(tokenizer=lowercase_ )
lowercase__ : Dict = tf.convert_to_tensor([self.test_sentences[0]] )
lowercase__ : str = model.serving(lowercase_ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
lowercase__ : List[str] = Path(lowercase_ ) / "saved.model"
tf.saved_model.save(lowercase_ , lowercase_ , signatures={"serving_default": model.serving} )
lowercase__ : str = tf.saved_model.load(lowercase_ )
lowercase__ : List[str] = loaded_model.signatures["serving_default"](lowercase_ )["output_0"]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
for tf_tokenizer in self.tf_tokenizers:
lowercase__ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] )
lowercase__ : List[str] = tf_tokenizer(lowercase_ ) # Build model with some sample inputs
lowercase__ : str = tf_tokenizer.get_config()
lowercase__ : List[Any] = TFGPTaTokenizer.from_config(lowercase_ )
lowercase__ : Any = model_from_config(lowercase_ )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def __UpperCamelCase ( self : str ) -> Optional[Any]:
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
lowercase__ : List[str] = 12_31_23
for max_length in [3, 5, 10_24]:
lowercase__ : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] )
lowercase__ : List[Any] = tf_tokenizer(lowercase_ , max_length=lowercase_ )
lowercase__ : List[str] = out["input_ids"].numpy().shape[1]
assert out_length == max_length
| 333 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class snake_case_ ( __A ):
__A : List[str] = "unispeech"
def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : Any = feat_extract_norm
lowercase__ : Optional[Any] = feat_extract_activation
lowercase__ : Dict = list(lowercase_ )
lowercase__ : Union[str, Any] = list(lowercase_ )
lowercase__ : List[str] = list(lowercase_ )
lowercase__ : List[str] = conv_bias
lowercase__ : Any = num_conv_pos_embeddings
lowercase__ : Dict = num_conv_pos_embedding_groups
lowercase__ : int = len(self.conv_dim )
lowercase__ : str = num_hidden_layers
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : Any = attention_dropout
lowercase__ : Union[str, Any] = activation_dropout
lowercase__ : Any = feat_proj_dropout
lowercase__ : str = final_dropout
lowercase__ : int = layerdrop
lowercase__ : Optional[int] = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = num_ctc_classes
lowercase__ : int = vocab_size
lowercase__ : str = do_stable_layer_norm
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : List[Any] = apply_spec_augment
lowercase__ : Dict = mask_time_prob
lowercase__ : Tuple = mask_time_length
lowercase__ : str = mask_time_min_masks
lowercase__ : List[Any] = mask_feature_prob
lowercase__ : int = mask_feature_length
lowercase__ : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__ : Optional[int] = num_codevectors_per_group
lowercase__ : List[str] = num_codevector_groups
lowercase__ : Dict = contrastive_logits_temperature
lowercase__ : Tuple = feat_quantizer_dropout
lowercase__ : Any = num_negatives
lowercase__ : Dict = codevector_dim
lowercase__ : Tuple = proj_codevector_dim
lowercase__ : List[str] = diversity_loss_weight
# ctc loss
lowercase__ : Tuple = ctc_loss_reduction
lowercase__ : Dict = ctc_zero_infinity
# pretraining loss
lowercase__ : Optional[Any] = replace_prob
@property
def __UpperCamelCase ( self : Dict ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 333 | 1 |
from math import log
from scipy.constants import Boltzmann, physical_constants
UpperCamelCase = 300 # TEMPERATURE (unit = K)
def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , ):
if donor_conc <= 0:
raise ValueError("Donor concentration should be positive")
elif acceptor_conc <= 0:
raise ValueError("Acceptor concentration should be positive")
elif intrinsic_conc <= 0:
raise ValueError("Intrinsic concentration should be positive")
elif donor_conc <= intrinsic_conc:
raise ValueError(
"Donor concentration should be greater than intrinsic concentration")
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"Acceptor concentration should be greater than intrinsic concentration")
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2)
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 |
def lowercase_ ( _lowerCamelCase : list):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : int = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j]
lowercase__ : List[str] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 333 | 1 |
import functools
def lowercase_ ( _lowerCamelCase : list[int] , _lowerCamelCase : list[int]):
# Validation
if not isinstance(_lowerCamelCase , _lowerCamelCase) or not all(isinstance(_lowerCamelCase , _lowerCamelCase) for day in days):
raise ValueError("The parameter days should be a list of integers")
if len(_lowerCamelCase) != 3 or not all(isinstance(_lowerCamelCase , _lowerCamelCase) for cost in costs):
raise ValueError("The parameter costs should be a list of three integers")
if len(_lowerCamelCase) == 0:
return 0
if min(_lowerCamelCase) <= 0:
raise ValueError("All days elements should be greater than 0")
if max(_lowerCamelCase) >= 366:
raise ValueError("All days elements should be less than 366")
lowercase__ : List[str] = set(_lowerCamelCase)
@functools.cache
def dynamic_programming(_lowerCamelCase : int) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1)
return min(
costs[0] + dynamic_programming(index + 1) , costs[1] + dynamic_programming(index + 7) , costs[2] + dynamic_programming(index + 30) , )
return dynamic_programming(1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class snake_case_ ( __A ):
__A : int = "token-classification"
def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]:
if type(lowercase_ ) == dict:
lowercase__ : Dict = Namespace(**lowercase_ )
lowercase__ : str = import_module("tasks" )
try:
lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels )
lowercase__ : int = CrossEntropyLoss().ignore_index
super().__init__(lowercase_ , len(self.labels ) , self.mode )
def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any:
return self.model(**lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple:
lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : Tuple = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : Optional[int] = self(**lowercase_ )
lowercase__ : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
lowercase__ : Any = self._feature_file(lowercase_ )
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ )
lowercase__ : Dict = self.token_classification_task.convert_examples_to_features(
lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowercase_ )
torch.save(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader:
lowercase__ : str = self._feature_file(lowercase_ )
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str:
"""Compute validation""" ""
lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : int = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : List[Any] = self(**lowercase_ )
lowercase__ , lowercase__ : Any = outputs[:2]
lowercase__ : Optional[Any] = logits.detach().cpu().numpy()
lowercase__ : int = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]:
lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean()
lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 )
lowercase__ : Dict = np.argmax(lowercase_ , axis=2 )
lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 )
lowercase__ : Any = dict(enumerate(self.labels ) )
lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )]
lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
lowercase__ : Any = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase_ , lowercase_ ),
"precision": precision_score(lowercase_ , lowercase_ ),
"recall": recall_score(lowercase_ , lowercase_ ),
"f1": fa_score(lowercase_ , lowercase_ ),
}
lowercase__ : List[Any] = dict(results.items() )
lowercase__ : List[str] = results
return ret, preds_list, out_label_list
def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict:
# when stable
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
lowercase__ : Any = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int:
# updating to test_epoch_end instead of deprecated test_end
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
lowercase__ : Optional[int] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple:
# Add NER specific options
BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ )
parser.add_argument(
"--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=1_28 , type=lowercase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCamelCase = parser.parse_args()
UpperCamelCase = NERTransformer(args)
UpperCamelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
UpperCamelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 333 | 1 |
from __future__ import annotations
UpperCamelCase = 10
def lowercase_ ( _lowerCamelCase : list[int]):
lowercase__ : List[Any] = 1
lowercase__ : int = max(_lowerCamelCase)
while placement <= max_digit:
# declare and initialize empty buckets
lowercase__ : list[list] = [[] for _ in range(_lowerCamelCase)]
# split list_of_ints between the buckets
for i in list_of_ints:
lowercase__ : List[Any] = int((i / placement) % RADIX)
buckets[tmp].append(_lowerCamelCase)
# put each buckets' contents into list_of_ints
lowercase__ : Optional[int] = 0
for b in range(_lowerCamelCase):
for i in buckets[b]:
lowercase__ : str = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 333 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 |
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : List[str]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000):
lowercase__ : Optional[int] = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Tuple = sigmoid_function(_lowerCamelCase)
lowercase__ : Dict = np.dot(x.T , h - y) / y.size
lowercase__ : int = theta - alpha * gradient # updating the weights
lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : List[Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((number_a + number_a) / 2)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(_lowerCamelCase : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
lowercase__ : Optional[int] = lower
lowercase__ : List[Any] = higher
lowercase__ : Dict = []
while True:
lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase)
last_numbers.append(_lowerCamelCase)
if answer(_lowerCamelCase) == "low":
lowercase__ : List[str] = number
elif answer(_lowerCamelCase) == "high":
lowercase__ : Optional[int] = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''')
print(f'''details : {last_numbers!s}''')
def lowercase_ ( ):
lowercase__ : Tuple = int(input("Enter lower value : ").strip())
lowercase__ : Optional[int] = int(input("Enter high value : ").strip())
lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip())
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
main()
| 333 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class snake_case_ ( __A ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__A : ClassVar[Features] = Features({"text": Value("string" )} )
__A : ClassVar[Features] = Features({"labels": ClassLabel} )
__A : str = "text"
__A : str = "labels"
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
lowercase__ : Optional[int] = copy.deepcopy(self )
lowercase__ : Tuple = self.label_schema.copy()
lowercase__ : Union[str, Any] = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 333 | 1 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def lowercase_ ( _lowerCamelCase : dict):
return (data["data"], data["target"])
def lowercase_ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : np.ndarray , _lowerCamelCase : np.ndarray):
lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42)
xgb.fit(_lowerCamelCase , _lowerCamelCase)
# Predict target for test data
lowercase__ : Tuple = xgb.predict(_lowerCamelCase)
lowercase__ : Optional[int] = predictions.reshape(len(_lowerCamelCase) , 1)
return predictions
def lowercase_ ( ):
lowercase__ : Tuple = fetch_california_housing()
lowercase__ , lowercase__ : Optional[Any] = data_handling(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = train_test_split(
_lowerCamelCase , _lowerCamelCase , test_size=0.25 , random_state=1)
lowercase__ : Any = xgboost(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(_lowerCamelCase , _lowerCamelCase)}''')
print(f'''Mean Square Error : {mean_squared_error(_lowerCamelCase , _lowerCamelCase)}''')
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 333 |
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((number_a + number_a) / 2)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(_lowerCamelCase : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
lowercase__ : Optional[int] = lower
lowercase__ : List[Any] = higher
lowercase__ : Dict = []
while True:
lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase)
last_numbers.append(_lowerCamelCase)
if answer(_lowerCamelCase) == "low":
lowercase__ : List[str] = number
elif answer(_lowerCamelCase) == "high":
lowercase__ : Optional[int] = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''')
print(f'''details : {last_numbers!s}''')
def lowercase_ ( ):
lowercase__ : Tuple = int(input("Enter lower value : ").strip())
lowercase__ : Optional[int] = int(input("Enter high value : ").strip())
lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip())
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
main()
| 333 | 1 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
UpperCamelCase = '''tiny-wmt19-en-ru'''
# Build
# borrowed from a test
UpperCamelCase = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
UpperCamelCase = dict(zip(vocab, range(len(vocab))))
UpperCamelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase = Path(tmpdirname)
UpperCamelCase = build_dir / VOCAB_FILES_NAMES['''src_vocab_file''']
UpperCamelCase = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file''']
UpperCamelCase = build_dir / VOCAB_FILES_NAMES['''merges_file''']
with open(src_vocab_file, '''w''') as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, '''w''') as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, '''w''') as fp:
fp.write('''\n'''.join(merges))
UpperCamelCase = FSMTTokenizer(
langs=['''en''', '''ru'''],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
UpperCamelCase = FSMTConfig(
langs=['''ru''', '''en'''],
src_vocab_size=1000,
tgt_vocab_size=1000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
UpperCamelCase = FSMTForConditionalGeneration(config)
print(f"num of params {tiny_model.num_parameters()}")
# Test
UpperCamelCase = tokenizer(['''Making tiny model'''], return_tensors='''pt''')
UpperCamelCase = tiny_model(**batch)
print('''test output:''', len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(f"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 333 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCamelCase = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : str ) -> List[str]:
lowercase__ : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
lowercase__ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : Dict = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ )
lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" )
with open(lowercase_ , "w" , newline="\n" ) as f:
f.write(lowercase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowercase_ )
with open(lowercase_ , "r" ) as f:
self.assertTrue(f.read() , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : int ) -> str:
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , )
# Copy consistency with a really long name
lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
| 333 | 1 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
UpperCamelCase = {
'''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''',
'''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''',
'''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''',
'''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''',
'''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''',
'''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''',
'''mask_downscaling.0''': '''mask_embed.conv1''',
'''mask_downscaling.1''': '''mask_embed.layer_norm1''',
'''mask_downscaling.3''': '''mask_embed.conv2''',
'''mask_downscaling.4''': '''mask_embed.layer_norm2''',
'''mask_downscaling.6''': '''mask_embed.conv3''',
'''point_embeddings''': '''point_embed''',
'''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''',
'''image_encoder''': '''vision_encoder''',
'''neck.0''': '''neck.conv1''',
'''neck.1''': '''neck.layer_norm1''',
'''neck.2''': '''neck.conv2''',
'''neck.3''': '''neck.layer_norm2''',
'''patch_embed.proj''': '''patch_embed.projection''',
'''.norm''': '''.layer_norm''',
'''blocks''': '''layers''',
}
def lowercase_ ( _lowerCamelCase : Dict):
lowercase__ : Optional[Any] = {}
state_dict.pop("pixel_mean" , _lowerCamelCase)
state_dict.pop("pixel_std" , _lowerCamelCase)
lowercase__ : Union[str, Any] = R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
lowercase__ : Tuple = key.replace(_lowerCamelCase , _lowerCamelCase)
if re.match(_lowerCamelCase , _lowerCamelCase):
lowercase__ : Dict = int(re.match(_lowerCamelCase , _lowerCamelCase).group(2))
if layer_nb == 0:
lowercase__ : str = key.replace("layers.0" , "proj_in")
elif layer_nb == 1:
lowercase__ : Optional[Any] = key.replace("layers.1" , "layers.0")
elif layer_nb == 2:
lowercase__ : Optional[int] = key.replace("layers.2" , "proj_out")
lowercase__ : int = value
lowercase__ : Tuple = model_state_dict[
"prompt_encoder.shared_embedding.positional_embedding"
]
return model_state_dict
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : str="ybelkada/segment-anything"):
lowercase__ : List[str] = hf_hub_download(_lowerCamelCase , f'''checkpoints/{model_name}.pth''')
if "sam_vit_b" in model_name:
lowercase__ : Tuple = SamConfig()
elif "sam_vit_l" in model_name:
lowercase__ : Dict = SamVisionConfig(
hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
lowercase__ : List[Any] = SamConfig(
vision_config=_lowerCamelCase , )
elif "sam_vit_h" in model_name:
lowercase__ : Optional[Any] = SamVisionConfig(
hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
lowercase__ : List[Any] = SamConfig(
vision_config=_lowerCamelCase , )
lowercase__ : Tuple = torch.load(_lowerCamelCase , map_location="cpu")
lowercase__ : List[str] = replace_keys(_lowerCamelCase)
lowercase__ : Dict = SamImageProcessor()
lowercase__ : Any = SamProcessor(image_processor=_lowerCamelCase)
lowercase__ : str = SamModel(_lowerCamelCase)
hf_model.load_state_dict(_lowerCamelCase)
lowercase__ : Dict = hf_model.to("cuda")
lowercase__ : List[Any] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
lowercase__ : Dict = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw).convert("RGB")
lowercase__ : List[Any] = [[[400, 650]]]
lowercase__ : List[str] = [[1]]
lowercase__ : Tuple = processor(images=np.array(_lowerCamelCase) , return_tensors="pt").to("cuda")
with torch.no_grad():
lowercase__ : Optional[int] = hf_model(**_lowerCamelCase)
lowercase__ : int = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579890251159668
lowercase__ : Dict = processor(
images=np.array(_lowerCamelCase) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="pt").to("cuda")
with torch.no_grad():
lowercase__ : Union[str, Any] = hf_model(**_lowerCamelCase)
lowercase__ : Any = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9712603092193604
lowercase__ : Tuple = ((75, 275, 1725, 850),)
lowercase__ : Union[str, Any] = processor(images=np.array(_lowerCamelCase) , input_boxes=_lowerCamelCase , return_tensors="pt").to("cuda")
with torch.no_grad():
lowercase__ : Union[str, Any] = hf_model(**_lowerCamelCase)
lowercase__ : Union[str, Any] = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8686015605926514
# Test with 2 points and 1 image.
lowercase__ : Union[str, Any] = [[[400, 650], [800, 650]]]
lowercase__ : Dict = [[1, 1]]
lowercase__ : List[Any] = processor(
images=np.array(_lowerCamelCase) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="pt").to("cuda")
with torch.no_grad():
lowercase__ : List[str] = hf_model(**_lowerCamelCase)
lowercase__ : Union[str, Any] = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9936047792434692
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
UpperCamelCase = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195''']
parser.add_argument(
'''--model_name''',
default='''sam_vit_h_4b8939''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
parser.add_argument(
'''--model_hub_id''',
default='''ybelkada/segment-anything''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
UpperCamelCase = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 333 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True):
model.train()
lowercase__ : Tuple = model(_lowerCamelCase)
lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False):
set_seed(42)
lowercase__ : Dict = RegressionModel()
lowercase__ : int = deepcopy(_lowerCamelCase)
lowercase__ : str = RegressionDataset(length=80)
lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16)
model.to(accelerator.device)
if sched:
lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3)
lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3)
lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
# Make a copy of `model`
if sched:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( _lowerCamelCase : Tuple):
# Test when on a single CPU or GPU that the context manager does nothing
lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Any):
# Test on distributed setup that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False):
lowercase__ : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))]
GradientState._reset_state()
def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False):
lowercase__ : Dict = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowercase_ ( ):
lowercase__ : List[str] = Accelerator()
lowercase__ : List[Any] = RegressionDataset(length=80)
lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ : int = RegressionDataset(length=96)
lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if iteration < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if batch_num < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ):
lowercase__ : str = Accelerator()
lowercase__ : Dict = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
test_noop_sync(_lowerCamelCase)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**")
test_distributed_sync(_lowerCamelCase)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 1 |
import os
import numpy
import onnx
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]):
lowercase__ : str = a.name
lowercase__ : str = b.name
lowercase__ : Any = ""
lowercase__ : Optional[int] = ""
lowercase__ : List[Any] = a == b
lowercase__ : str = name_a
lowercase__ : str = name_b
return res
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : int):
for i, input_name in enumerate(node_proto.input):
if input_name == name:
node_proto.input.insert(_lowerCamelCase , _lowerCamelCase)
node_proto.input.pop(i + 1)
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase)
_graph_replace_input_with(node_proto.attribute[1].g , _lowerCamelCase , _lowerCamelCase)
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any]):
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : str):
lowercase__ : int = list(model.graph.initializer)
lowercase__ : Any = list(model_without_ext.graph.initializer)
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
lowercase__ : int = inits[i].name
lowercase__ : Optional[int] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i])
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Tuple = os.path.dirname(_lowerCamelCase)
lowercase__ : Tuple = os.path.basename(_lowerCamelCase)
lowercase__ : Tuple = onnx.load(os.path.join(_lowerCamelCase , _lowerCamelCase))
lowercase__ : int = list(model.graph.initializer)
lowercase__ : List[str] = set()
lowercase__ : List[Any] = {}
lowercase__ : List[str] = []
lowercase__ : Optional[int] = 0
for i in range(len(_lowerCamelCase)):
if i in dup_set:
continue
for j in range(i + 1 , len(_lowerCamelCase)):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j]):
dup_set.add(_lowerCamelCase)
dup_set.add(_lowerCamelCase)
lowercase__ : Tuple = inits[j].data_type
lowercase__ : int = numpy.prod(inits[j].dims)
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("unexpected data type: " , _lowerCamelCase)
total_reduced_size += mem_size
lowercase__ : Dict = inits[i].name
lowercase__ : Tuple = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase)
else:
lowercase__ : str = [name_j]
ind_to_replace.append((j, i))
print("total reduced size: " , total_reduced_size / 1024 / 1024 / 1024 , "GB")
lowercase__ : Tuple = sorted(_lowerCamelCase)
_remove_dup_initializers_from_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
lowercase__ : List[Any] = "optimized_" + model_file_name
lowercase__ : str = os.path.join(_lowerCamelCase , _lowerCamelCase)
onnx.save(_lowerCamelCase , _lowerCamelCase)
return new_model
| 333 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str):
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase)
lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase)
lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase)
lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
lowercase__ : Any = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowercase__ : int = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Dict = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global].")
# Encoder
for layer_index in range(config.num_layers):
lowercase__ : str = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : Any = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[str] = tax_attention_value
lowercase__ : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Any = tax_global_layer_norm
if split_mlp_wi:
lowercase__ : Tuple = tax_mlp_wi_a
lowercase__ : str = tax_mlp_wi_a
else:
lowercase__ : List[Any] = tax_mlp_wi
lowercase__ : str = tax_mlp_wo
lowercase__ : int = tax_mlp_layer_norm
lowercase__ : List[str] = flax_model_encoder_layer_block
# Only for layer 0:
lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : Optional[int] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_encoder_global_rel_embedding
# Assigning
lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
lowercase__ : Union[str, Any] = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"]
lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"]
lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"]
lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : List[Any] = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[Any] = tax_attention_value
lowercase__ : List[str] = tax_pre_attention_layer_norm
lowercase__ : List[Any] = tax_enc_dec_attention_key
lowercase__ : Optional[Any] = tax_enc_dec_attention_out
lowercase__ : str = tax_enc_dec_attention_query
lowercase__ : Union[str, Any] = tax_enc_dec_attention_value
lowercase__ : Tuple = tax_cross_layer_norm
if split_mlp_wi:
lowercase__ : List[str] = tax_mlp_wi_a
lowercase__ : List[Any] = tax_mlp_wi_a
else:
lowercase__ : Tuple = tax_mlp_wi
lowercase__ : Any = tax_mlp_wo
lowercase__ : Tuple = txa_mlp_layer_norm
lowercase__ : int = flax_model_decoder_layer_block
# Decoder Normalization
lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
lowercase__ : List[Any] = txa_decoder_norm
# Only for layer 0:
lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_decoder_rel_embedding
# Token Embeddings
lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"]
lowercase__ : Optional[Any] = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(_lowerCamelCase)
print("T5X Model was sucessfully converted!")
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
UpperCamelCase = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 333 | 1 |
from __future__ import annotations
import math
class snake_case_ :
def __init__( self : List[Any] , lowercase_ : int ) -> None:
lowercase__ : Tuple = size
# approximate the overall size of segment tree with given value
lowercase__ : Union[str, Any] = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
lowercase__ : List[Any] = [0 for i in range(0 , 4 * size )]
lowercase__ : Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update
def __UpperCamelCase ( self : Dict , lowercase_ : int ) -> int:
return idx * 2
def __UpperCamelCase ( self : Any , lowercase_ : int ) -> int:
return idx * 2 + 1
def __UpperCamelCase ( self : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : list[int] ) -> None:
if left_element == right_element:
lowercase__ : Optional[int] = a[left_element - 1]
else:
lowercase__ : Union[str, Any] = (left_element + right_element) // 2
self.build(self.left(lowercase_ ) , lowercase_ , lowercase_ , lowercase_ )
self.build(self.right(lowercase_ ) , mid + 1 , lowercase_ , lowercase_ )
lowercase__ : List[str] = max(
self.segment_tree[self.left(lowercase_ )] , self.segment_tree[self.right(lowercase_ )] )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> bool:
if self.flag[idx] is True:
lowercase__ : Dict = self.lazy[idx]
lowercase__ : List[Any] = False
if left_element != right_element:
lowercase__ : List[str] = self.lazy[idx]
lowercase__ : Optional[int] = self.lazy[idx]
lowercase__ : Optional[int] = True
lowercase__ : Optional[int] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
lowercase__ : Any = val
if left_element != right_element:
lowercase__ : int = val
lowercase__ : List[str] = val
lowercase__ : Optional[int] = True
lowercase__ : List[str] = True
return True
lowercase__ : Tuple = (left_element + right_element) // 2
self.update(self.left(lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
self.update(self.right(lowercase_ ) , mid + 1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : Union[str, Any] = max(
self.segment_tree[self.left(lowercase_ )] , self.segment_tree[self.right(lowercase_ )] )
return True
def __UpperCamelCase ( self : List[str] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> int | float:
if self.flag[idx] is True:
lowercase__ : str = self.lazy[idx]
lowercase__ : Any = False
if left_element != right_element:
lowercase__ : Dict = self.lazy[idx]
lowercase__ : Optional[int] = self.lazy[idx]
lowercase__ : Union[str, Any] = True
lowercase__ : Optional[int] = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
lowercase__ : Dict = (left_element + right_element) // 2
lowercase__ : List[str] = self.query(self.left(lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
lowercase__ : Dict = self.query(self.right(lowercase_ ) , mid + 1 , lowercase_ , lowercase_ , lowercase_ )
return max(lowercase_ , lowercase_ )
def __str__( self : List[Any] ) -> str:
return str([self.query(1 , 1 , self.size , lowercase_ , lowercase_ ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
UpperCamelCase = 15
UpperCamelCase = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 333 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[int] = "rwkv"
__A : List[str] = {"max_position_embeddings": "context_length"}
def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int:
lowercase__ : List[str] = vocab_size
lowercase__ : str = context_length
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : str = rescale_every
lowercase__ : Optional[int] = use_cache
lowercase__ : int = bos_token_id
lowercase__ : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase = {
'''vocab_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''',
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'''
),
},
'''tokenizer_file''': {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''',
'''roberta-base-openai-detector''': (
'''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'''
),
'''roberta-large-openai-detector''': (
'''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'''
),
},
}
UpperCamelCase = {
'''roberta-base''': 512,
'''roberta-large''': 512,
'''roberta-large-mnli''': 512,
'''distilroberta-base''': 512,
'''roberta-base-openai-detector''': 512,
'''roberta-large-openai-detector''': 512,
}
class snake_case_ ( __A ):
__A : Optional[Any] = VOCAB_FILES_NAMES
__A : Any = PRETRAINED_VOCAB_FILES_MAP
__A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : List[str] = ["input_ids", "attention_mask"]
__A : Dict = RobertaTokenizer
def __init__( self : Optional[int] , lowercase_ : List[Any]=None , lowercase_ : Tuple=None , lowercase_ : Tuple=None , lowercase_ : List[Any]="replace" , lowercase_ : Union[str, Any]="<s>" , lowercase_ : Any="</s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : List[Any]="<s>" , lowercase_ : Tuple="<unk>" , lowercase_ : Dict="<pad>" , lowercase_ : Optional[int]="<mask>" , lowercase_ : List[Any]=False , lowercase_ : Optional[Any]=True , **lowercase_ : List[str] , ) -> Any:
super().__init__(
lowercase_ , lowercase_ , tokenizer_file=lowercase_ , errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , **lowercase_ , )
lowercase__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowercase_ ) != add_prefix_space:
lowercase__ : Optional[Any] = getattr(lowercase_ , pre_tok_state.pop("type" ) )
lowercase__ : Optional[int] = add_prefix_space
lowercase__ : int = pre_tok_class(**lowercase_ )
lowercase__ : List[Any] = add_prefix_space
lowercase__ : Optional[Any] = "post_processor"
lowercase__ : List[Any] = getattr(self.backend_tokenizer , lowercase_ , lowercase_ )
if tokenizer_component_instance:
lowercase__ : str = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase__ : str = tuple(state["sep"] )
if "cls" in state:
lowercase__ : List[str] = tuple(state["cls"] )
lowercase__ : Optional[int] = False
if state.get("add_prefix_space" , lowercase_ ) != add_prefix_space:
lowercase__ : List[Any] = add_prefix_space
lowercase__ : str = True
if state.get("trim_offsets" , lowercase_ ) != trim_offsets:
lowercase__ : List[str] = trim_offsets
lowercase__ : Tuple = True
if changes_to_apply:
lowercase__ : Dict = getattr(lowercase_ , state.pop("type" ) )
lowercase__ : List[Any] = component_class(**lowercase_ )
setattr(self.backend_tokenizer , lowercase_ , lowercase_ )
@property
def __UpperCamelCase ( self : List[Any] ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def __UpperCamelCase ( self : Any , lowercase_ : Tuple ) -> Optional[int]:
lowercase__ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else value
lowercase__ : str = value
def __UpperCamelCase ( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[Any] ) -> BatchEncoding:
lowercase__ : Dict = kwargs.get("is_split_into_words" , lowercase_ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowercase_ , **lowercase_ )
def __UpperCamelCase ( self : Dict , *lowercase_ : Any , **lowercase_ : Any ) -> BatchEncoding:
lowercase__ : Optional[Any] = kwargs.get("is_split_into_words" , lowercase_ )
assert self.add_prefix_space or not is_split_into_words, (
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowercase_ , **lowercase_ )
def __UpperCamelCase ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]:
lowercase__ : Any = self._tokenizer.model.save(lowercase_ , name=lowercase_ )
return tuple(lowercase_ )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any , lowercase_ : Tuple=None ) -> Optional[Any]:
lowercase__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]:
lowercase__ : Tuple = [self.sep_token_id]
lowercase__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 333 |
class snake_case_ :
def __init__( self : int ) -> Optional[int]:
lowercase__ : Optional[int] = 0
lowercase__ : List[str] = 0
lowercase__ : Any = {}
def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]:
if vertex not in self.adjacency:
lowercase__ : List[Any] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]:
self.add_vertex(lowercase_ )
self.add_vertex(lowercase_ )
if head == tail:
return
lowercase__ : int = weight
lowercase__ : Any = weight
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[Any] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
edges.remove((tail, head, weight) )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(lowercase_ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : int = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge
lowercase__ : Union[str, Any] = weight
lowercase__ : Dict = weight
def __str__( self : str ) -> Any:
lowercase__ : str = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Optional[Any] = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Any = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[str] ) -> Dict:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]:
lowercase__ : Any = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : List[Any] = []
for vertex in vertices:
g.add_vertex(lowercase_ )
for edge in edges:
g.add_edge(*lowercase_ )
return g
class snake_case_ :
def __init__( self : int ) -> List[str]:
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
def __len__( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.parent )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple:
if item in self.parent:
return self.find(lowercase_ )
lowercase__ : Union[str, Any] = item
lowercase__ : int = 0
return item
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any:
if item not in self.parent:
return self.make_set(lowercase_ )
if item != self.parent[item]:
lowercase__ : Union[str, Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]:
lowercase__ : Dict = self.find(lowercase_ )
lowercase__ : Optional[int] = self.find(lowercase_ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Dict = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : int = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]:
lowercase__ : List[Any] = graph.num_vertices
lowercase__ : Optional[Any] = Graph.UnionFind()
lowercase__ : int = []
while num_components > 1:
lowercase__ : List[Any] = {}
for vertex in graph.get_vertices():
lowercase__ : Any = -1
lowercase__ : List[str] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : str = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[str] = edge
lowercase__ : List[str] = union_find.find(lowercase_ )
lowercase__ : Union[str, Any] = union_find.find(lowercase_ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Dict = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex]
if union_find.find(lowercase_ ) != union_find.find(lowercase_ ):
union_find.union(lowercase_ , lowercase_ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : Optional[Any] = num_components - 1
lowercase__ : List[Any] = Graph.build(edges=lowercase_ )
return mst
| 333 | 1 |
class snake_case_ :
def __init__( self : Optional[Any] , lowercase_ : int ) -> Any:
lowercase__ : Optional[int] = n
lowercase__ : List[str] = [None] * self.n
lowercase__ : Tuple = 0 # index of the first element
lowercase__ : str = 0
lowercase__ : int = 0
def __len__( self : Any ) -> int:
return self.size
def __UpperCamelCase ( self : str ) -> bool:
return self.size == 0
def __UpperCamelCase ( self : str ) -> Tuple:
return False if self.is_empty() else self.array[self.front]
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int ) -> List[str]:
if self.size >= self.n:
raise Exception("QUEUE IS FULL" )
lowercase__ : Any = data
lowercase__ : Dict = (self.rear + 1) % self.n
self.size += 1
return self
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
if self.size == 0:
raise Exception("UNDERFLOW" )
lowercase__ : Tuple = self.array[self.front]
lowercase__ : int = None
lowercase__ : Optional[Any] = (self.front + 1) % self.n
self.size -= 1
return temp
| 333 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : list[int] , _lowerCamelCase : list[int]):
# Check if the input is valid
if not len(_lowerCamelCase) == len(_lowerCamelCase) == 3:
raise ValueError("Please enter a valid equation.")
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError("Both a & b of two equations can't be zero.")
# Extract the coefficients
lowercase__ , lowercase__ , lowercase__ : List[Any] = equationa
lowercase__ , lowercase__ , lowercase__ : str = equationa
# Calculate the determinants of the matrices
lowercase__ : Optional[int] = aa * ba - aa * ba
lowercase__ : Dict = ca * ba - ca * ba
lowercase__ : List[str] = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError("Infinite solutions. (Consistent system)")
else:
raise ValueError("No solution. (Inconsistent system)")
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
lowercase__ : List[str] = determinant_x / determinant
lowercase__ : str = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
| 333 |
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 1
lowercase__ : int = 0
for divide_by_number in range(_lowerCamelCase , digit + 1):
lowercase__ : list[int] = []
lowercase__ : Dict = numerator
for _ in range(1 , digit + 1):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase):
lowercase__ : Union[str, Any] = len(_lowerCamelCase)
lowercase__ : Optional[int] = divide_by_number
else:
has_been_divided.append(_lowerCamelCase)
lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def lowercase_ ( _lowerCamelCase : Optional[int]):
return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device)
def lowercase_ ( _lowerCamelCase : List[str]):
lowercase__ : List[Any] = create_tensor(_lowerCamelCase)
lowercase__ : Any = gather(_lowerCamelCase)
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1))
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : List[str] = [state.process_index]
lowercase__ : Tuple = gather_object(_lowerCamelCase)
assert len(_lowerCamelCase) == state.num_processes, f'''{gathered_obj}, {len(_lowerCamelCase)} != {state.num_processes}'''
assert gathered_obj == list(range(state.num_processes)), f'''{gathered_obj} != {list(range(state.num_processes))}'''
def lowercase_ ( _lowerCamelCase : Optional[Any]):
lowercase__ : Optional[int] = create_tensor(_lowerCamelCase)
lowercase__ : Optional[Any] = broadcast(_lowerCamelCase)
assert broadcasted_tensor.shape == torch.Size([state.num_processes])
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1))
def lowercase_ ( _lowerCamelCase : str):
# We need to pad the tensor with one more element if we are the main process
# to ensure that we can pad
if state.is_main_process:
lowercase__ : int = torch.arange(state.num_processes + 1).to(state.device)
else:
lowercase__ : int = torch.arange(state.num_processes).to(state.device)
lowercase__ : Tuple = pad_across_processes(_lowerCamelCase)
assert padded_tensor.shape == torch.Size([state.num_processes + 1])
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes)) + [0]
def lowercase_ ( _lowerCamelCase : List[Any]):
# For now runs on only two processes
if state.num_processes != 2:
return
lowercase__ : List[Any] = create_tensor(_lowerCamelCase)
lowercase__ : List[str] = reduce(_lowerCamelCase , "sum")
lowercase__ : Union[str, Any] = torch.tensor([4.0, 6]).to(state.device)
assert torch.allclose(_lowerCamelCase , _lowerCamelCase), f'''{reduced_tensor} != {truth_tensor}'''
def lowercase_ ( _lowerCamelCase : str):
# For now runs on only two processes
if state.num_processes != 2:
return
lowercase__ : Optional[Any] = create_tensor(_lowerCamelCase)
lowercase__ : List[str] = reduce(_lowerCamelCase , "mean")
lowercase__ : List[Any] = torch.tensor([2.0, 3]).to(state.device)
assert torch.allclose(_lowerCamelCase , _lowerCamelCase), f'''{reduced_tensor} != {truth_tensor}'''
def lowercase_ ( _lowerCamelCase : List[Any]):
# For xla_spawn (TPUs)
main()
def lowercase_ ( ):
lowercase__ : Union[str, Any] = PartialState()
state.print(f'''State: {state}''')
state.print("testing gather")
test_gather(_lowerCamelCase)
state.print("testing gather_object")
test_gather_object(_lowerCamelCase)
state.print("testing broadcast")
test_broadcast(_lowerCamelCase)
state.print("testing pad_across_processes")
test_pad_across_processes(_lowerCamelCase)
state.print("testing reduce_sum")
test_reduce_sum(_lowerCamelCase)
state.print("testing reduce_mean")
test_reduce_mean(_lowerCamelCase)
if __name__ == "__main__":
main()
| 333 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase = {
'''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''],
'''tokenization_canine''': ['''CanineTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CanineForMultipleChoice''',
'''CanineForQuestionAnswering''',
'''CanineForSequenceClassification''',
'''CanineForTokenClassification''',
'''CanineLayer''',
'''CanineModel''',
'''CaninePreTrainedModel''',
'''load_tf_weights_in_canine''',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 333 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False):
try:
lowercase__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''')
return _value
UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skip("Test was skipped")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None):
if test_case is None:
return partial(_lowerCamelCase , version=_lowerCamelCase)
return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase)
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase)
class snake_case_ ( unittest.TestCase ):
__A : int = True
@classmethod
def __UpperCamelCase ( cls : str ) -> str:
lowercase__ : str = tempfile.mkdtemp()
@classmethod
def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCamelCase ( self : str ) -> Optional[int]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowercase_ )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str:
lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Optional[int] = tensor[None].clone().to(state.device)
lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu()
lowercase__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowerCamelCase):
return False
return True
class snake_case_ :
def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : int = returncode
lowercase__ : Dict = stdout
lowercase__ : List[Any] = stderr
async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str):
while True:
lowercase__ : int = await stream.readline()
if line:
callback(_lowerCamelCase)
else:
break
async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False):
if echo:
print("\nRunning: " , " ".join(_lowerCamelCase))
lowercase__ : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Tuple = []
lowercase__ : List[Any] = []
def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""):
lowercase__ : Optional[int] = line.decode("utf-8").rstrip()
sink.append(_lowerCamelCase)
if not quiet:
print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))),
] , timeout=_lowerCamelCase , )
return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True):
lowercase__ : Optional[Any] = asyncio.get_event_loop()
lowercase__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase))
lowercase__ : str = " ".join(_lowerCamelCase)
if result.returncode > 0:
lowercase__ : Dict = "\n".join(result.stderr)
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False):
try:
lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowerCamelCase , "decode"):
lowercase__ : Optional[Any] = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 333 | 1 |
class snake_case_ :
def __init__( self : List[Any] , lowercase_ : str = "" , lowercase_ : bool = False ) -> None:
# Mapping from the first character of the prefix of the node
lowercase__ : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
lowercase__ : Union[str, Any] = is_leaf
lowercase__ : Union[str, Any] = prefix
def __UpperCamelCase ( self : str , lowercase_ : str ) -> tuple[str, str, str]:
lowercase__ : List[str] = 0
for q, w in zip(self.prefix , lowercase_ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def __UpperCamelCase ( self : List[Any] , lowercase_ : list[str] ) -> None:
for word in words:
self.insert(lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str ) -> None:
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
lowercase__ : Dict = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowercase__ : List[str] = RadixNode(prefix=lowercase_ , is_leaf=lowercase_ )
else:
lowercase__ : Dict = self.nodes[word[0]]
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = incoming_node.match(
lowercase_ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowercase_ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowercase__ : Optional[Any] = remaining_prefix
lowercase__ : Dict = self.nodes[matching_string[0]]
lowercase__ : Optional[Any] = RadixNode(lowercase_ , lowercase_ )
lowercase__ : Tuple = aux_node
if remaining_word == "":
lowercase__ : int = True
else:
self.nodes[matching_string[0]].insert(lowercase_ )
def __UpperCamelCase ( self : Any , lowercase_ : str ) -> bool:
lowercase__ : Optional[int] = self.nodes.get(word[0] , lowercase_ )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = incoming_node.match(
lowercase_ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowercase_ )
def __UpperCamelCase ( self : int , lowercase_ : str ) -> bool:
lowercase__ : Dict = self.nodes.get(word[0] , lowercase_ )
if not incoming_node:
return False
else:
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = incoming_node.match(
lowercase_ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowercase_ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowercase__ : Optional[int] = list(self.nodes.values() )[0]
lowercase__ : Dict = merging_node.is_leaf
self.prefix += merging_node.prefix
lowercase__ : int = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowercase__ : Union[str, Any] = False
# If there is 1 edge, we merge it with its child
else:
lowercase__ : Optional[int] = list(incoming_node.nodes.values() )[0]
lowercase__ : Optional[Any] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowercase__ : Any = merging_node.nodes
return True
def __UpperCamelCase ( self : Tuple , lowercase_ : int = 0 ) -> None:
if self.prefix != "":
print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" )
for value in self.nodes.values():
value.print_tree(height + 1 )
def lowercase_ ( ):
lowercase__ : Optional[int] = "banana bananas bandana band apple all beast".split()
lowercase__ : List[Any] = RadixNode()
root.insert_many(_lowerCamelCase)
assert all(root.find(_lowerCamelCase) for word in words)
assert not root.find("bandanas")
assert not root.find("apps")
root.delete("all")
assert not root.find("all")
root.delete("banana")
assert not root.find("banana")
assert root.find("bananas")
return True
def lowercase_ ( ):
assert test_trie()
def lowercase_ ( ):
lowercase__ : str = RadixNode()
lowercase__ : List[Any] = "banana bananas bandanas bandana band apple all beast".split()
root.insert_many(_lowerCamelCase)
print("Words:" , _lowerCamelCase)
print("Tree:")
root.print_tree()
if __name__ == "__main__":
main()
| 333 |
from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[Any] = ["flax"]
def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[int] = ["flax"]
def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[str] = ["flax"]
def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
| 333 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class snake_case_ ( __A ):
__A : Dict = "facebook/bart-large-mnli"
__A : Any = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
__A : Tuple = "text_classifier"
__A : int = AutoTokenizer
__A : List[Any] = AutoModelForSequenceClassification
__A : List[str] = ["text", ["text"]]
__A : int = ["text"]
def __UpperCamelCase ( self : Dict ) -> Any:
super().setup()
lowercase__ : Any = self.model.config
lowercase__ : Tuple = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
lowercase__ : Any = int(lowercase_ )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ) -> Dict:
lowercase__ : Any = labels
return self.pre_processor(
[text] * len(lowercase_ ) , [F'''This example is {label}''' for label in labels] , return_tensors="pt" , padding="max_length" , )
def __UpperCamelCase ( self : int , lowercase_ : str ) -> Optional[int]:
lowercase__ : Dict = outputs.logits
lowercase__ : str = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 333 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class snake_case_ ( __A ):
__A : List[str] = "vit_mae"
def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]:
super().__init__(**lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Any = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Any = num_channels
lowercase__ : str = qkv_bias
lowercase__ : Optional[Any] = decoder_num_attention_heads
lowercase__ : Any = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : Union[str, Any] = decoder_intermediate_size
lowercase__ : int = mask_ratio
lowercase__ : Tuple = norm_pix_loss
| 333 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''',
}
class snake_case_ ( __A ):
__A : int = "open-llama"
def __init__( self : List[Any] , lowercase_ : Optional[int]=10_00_00 , lowercase_ : int=40_96 , lowercase_ : Union[str, Any]=1_10_08 , lowercase_ : List[Any]=32 , lowercase_ : List[Any]=32 , lowercase_ : Tuple="silu" , lowercase_ : List[Any]=20_48 , lowercase_ : str=0.02 , lowercase_ : Tuple=1E-6 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : int=2 , lowercase_ : Optional[Any]=False , lowercase_ : List[str]=True , lowercase_ : List[str]=0.1 , lowercase_ : str=0.1 , lowercase_ : Optional[int]=True , lowercase_ : Dict=True , lowercase_ : str=None , **lowercase_ : Optional[Any] , ) -> int:
lowercase__ : Union[str, Any] = vocab_size
lowercase__ : int = max_position_embeddings
lowercase__ : Tuple = hidden_size
lowercase__ : int = intermediate_size
lowercase__ : List[str] = num_hidden_layers
lowercase__ : Optional[Any] = num_attention_heads
lowercase__ : str = hidden_act
lowercase__ : List[str] = initializer_range
lowercase__ : str = rms_norm_eps
lowercase__ : str = use_cache
lowercase__ : Any = kwargs.pop(
"use_memorry_efficient_attention" , lowercase_ )
lowercase__ : Any = hidden_dropout_prob
lowercase__ : int = attention_dropout_prob
lowercase__ : Dict = use_stable_embedding
lowercase__ : Any = shared_input_output_embedding
lowercase__ : Any = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ , )
def __UpperCamelCase ( self : Any ) -> Any:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , lowercase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
F'''got {self.rope_scaling}''' )
lowercase__ : int = self.rope_scaling.get("type" , lowercase_ )
lowercase__ : Union[str, Any] = self.rope_scaling.get("factor" , lowercase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(lowercase_ , lowercase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 333 |
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while a != 0:
lowercase__ , lowercase__ : Dict = b % a, a
return b
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if gcd(_lowerCamelCase , _lowerCamelCase) != 1:
lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m
while va != 0:
lowercase__ : Tuple = ua // va
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 333 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class snake_case_ ( __A ):
__A : Any = ["image_processor", "tokenizer"]
__A : List[Any] = "CLIPImageProcessor"
__A : List[Any] = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=None , lowercase_ : Tuple=None , **lowercase_ : Tuple ) -> Any:
lowercase__ : Dict = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , lowercase_ , )
lowercase__ : Any = kwargs.pop("feature_extractor" )
lowercase__ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(lowercase_ , lowercase_ )
def __call__( self : int , lowercase_ : List[str]=None , lowercase_ : Tuple=None , lowercase_ : Dict=None , **lowercase_ : Union[str, Any] ) -> Dict:
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
lowercase__ : Optional[int] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ )
if images is not None:
lowercase__ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ )
if text is not None and images is not None:
lowercase__ : Optional[int] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ )
def __UpperCamelCase ( self : Tuple , *lowercase_ : Dict , **lowercase_ : Optional[Any] ) -> int:
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ )
def __UpperCamelCase ( self : Any , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Tuple:
return self.tokenizer.decode(*lowercase_ , **lowercase_ )
@property
def __UpperCamelCase ( self : Any ) -> Optional[int]:
lowercase__ : Optional[int] = self.tokenizer.model_input_names
lowercase__ : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __UpperCamelCase ( self : Tuple ) -> List[Any]:
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , )
return self.image_processor_class
@property
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , )
return self.image_processor
| 333 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive")
lowercase__ : Tuple = str(bin(_lowerCamelCase))[2:] # remove the leading "0b"
lowercase__ : List[Any] = str(bin(_lowerCamelCase))[2:]
lowercase__ : Any = max(len(_lowerCamelCase) , len(_lowerCamelCase))
return "0b" + "".join(
str(int("1" in (char_a, char_b)))
for char_a, char_b in zip(a_binary.zfill(_lowerCamelCase) , b_binary.zfill(_lowerCamelCase)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 |
import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 | 1 |
import functools
from typing import Any
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : list[str]):
# Validation
if not isinstance(_lowerCamelCase , _lowerCamelCase) or len(_lowerCamelCase) == 0:
raise ValueError("the string should be not empty string")
if not isinstance(_lowerCamelCase , _lowerCamelCase) or not all(
isinstance(_lowerCamelCase , _lowerCamelCase) and len(_lowerCamelCase) > 0 for item in words):
raise ValueError("the words should be a list of non-empty strings")
# Build trie
lowercase__ : dict[str, Any] = {}
lowercase__ : Any = "WORD_KEEPER"
for word in words:
lowercase__ : int = trie
for c in word:
if c not in trie_node:
lowercase__ : Optional[int] = {}
lowercase__ : Any = trie_node[c]
lowercase__ : Union[str, Any] = True
lowercase__ : int = len(_lowerCamelCase)
# Dynamic programming method
@functools.cache
def is_breakable(_lowerCamelCase : int) -> bool:
if index == len_string:
return True
lowercase__ : Any = trie
for i in range(_lowerCamelCase , _lowerCamelCase):
lowercase__ : Any = trie_node.get(string[i] , _lowerCamelCase)
if trie_node is None:
return False
if trie_node.get(_lowerCamelCase , _lowerCamelCase) and is_breakable(i + 1):
return True
return False
return is_breakable(0)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 1 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True):
model.train()
lowercase__ : Tuple = model(_lowerCamelCase)
lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False):
set_seed(42)
lowercase__ : Dict = RegressionModel()
lowercase__ : int = deepcopy(_lowerCamelCase)
lowercase__ : str = RegressionDataset(length=80)
lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16)
model.to(accelerator.device)
if sched:
lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3)
lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3)
lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
# Make a copy of `model`
if sched:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( _lowerCamelCase : Tuple):
# Test when on a single CPU or GPU that the context manager does nothing
lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Any):
# Test on distributed setup that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False):
lowercase__ : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))]
GradientState._reset_state()
def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False):
lowercase__ : Dict = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowercase_ ( ):
lowercase__ : List[str] = Accelerator()
lowercase__ : List[Any] = RegressionDataset(length=80)
lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ : int = RegressionDataset(length=96)
lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if iteration < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if batch_num < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ):
lowercase__ : str = Accelerator()
lowercase__ : Dict = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
test_noop_sync(_lowerCamelCase)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**")
test_distributed_sync(_lowerCamelCase)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class snake_case_ ( __A ):
__A : List[str] = "unispeech"
def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : Any = feat_extract_norm
lowercase__ : Optional[Any] = feat_extract_activation
lowercase__ : Dict = list(lowercase_ )
lowercase__ : Union[str, Any] = list(lowercase_ )
lowercase__ : List[str] = list(lowercase_ )
lowercase__ : List[str] = conv_bias
lowercase__ : Any = num_conv_pos_embeddings
lowercase__ : Dict = num_conv_pos_embedding_groups
lowercase__ : int = len(self.conv_dim )
lowercase__ : str = num_hidden_layers
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : Any = attention_dropout
lowercase__ : Union[str, Any] = activation_dropout
lowercase__ : Any = feat_proj_dropout
lowercase__ : str = final_dropout
lowercase__ : int = layerdrop
lowercase__ : Optional[int] = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = num_ctc_classes
lowercase__ : int = vocab_size
lowercase__ : str = do_stable_layer_norm
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : List[Any] = apply_spec_augment
lowercase__ : Dict = mask_time_prob
lowercase__ : Tuple = mask_time_length
lowercase__ : str = mask_time_min_masks
lowercase__ : List[Any] = mask_feature_prob
lowercase__ : int = mask_feature_length
lowercase__ : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__ : Optional[int] = num_codevectors_per_group
lowercase__ : List[str] = num_codevector_groups
lowercase__ : Dict = contrastive_logits_temperature
lowercase__ : Tuple = feat_quantizer_dropout
lowercase__ : Any = num_negatives
lowercase__ : Dict = codevector_dim
lowercase__ : Tuple = proj_codevector_dim
lowercase__ : List[str] = diversity_loss_weight
# ctc loss
lowercase__ : Tuple = ctc_loss_reduction
lowercase__ : Dict = ctc_zero_infinity
# pretraining loss
lowercase__ : Optional[Any] = replace_prob
@property
def __UpperCamelCase ( self : Dict ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 333 | 1 |
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class snake_case_ ( yaml.SafeLoader ):
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : List[str] ) -> Union[str, Any]:
lowercase__ : int = [self.constructed_objects[key_node] for key_node, _ in node.value]
lowercase__ : Dict = [tuple(lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else key for key in keys]
lowercase__ : Optional[Any] = Counter(lowercase_ )
lowercase__ : Any = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' )
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Any=False ) -> int:
lowercase__ : Union[str, Any] = super().construct_mapping(lowercase_ , deep=lowercase_ )
self._check_no_duplicates_on_constructed_node(lowercase_ )
return mapping
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Union[str, Any] = list(readme_content.splitlines())
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
lowercase__ : List[Any] = full_content[1:].index("---") + 1
lowercase__ : Any = "\n".join(full_content[1:sep_idx])
return yamlblock, "\n".join(full_content[sep_idx + 1 :])
return None, "\n".join(_lowerCamelCase)
class snake_case_ ( __A ):
# class attributes
__A : List[str] = {"train_eval_index"} # train-eval-index in the YAML metadata
@classmethod
def __UpperCamelCase ( cls : str , lowercase_ : Path ) -> "DatasetMetadata":
with open(lowercase_ , encoding="utf-8" ) as readme_file:
lowercase__ , lowercase__ : str = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(lowercase_ )
else:
return cls()
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Path ) -> str:
if path.exists():
with open(lowercase_ , encoding="utf-8" ) as readme_file:
lowercase__ : Any = readme_file.read()
else:
lowercase__ : Union[str, Any] = None
lowercase__ : List[str] = self._to_readme(lowercase_ )
with open(lowercase_ , "w" , encoding="utf-8" ) as readme_file:
readme_file.write(lowercase_ )
def __UpperCamelCase ( self : List[Any] , lowercase_ : Optional[str] = None ) -> str:
if readme_content is not None:
lowercase__ , lowercase__ : Tuple = _split_yaml_from_readme(lowercase_ )
lowercase__ : Any = "---\n" + self.to_yaml_string() + "---\n" + content
else:
lowercase__ : int = "---\n" + self.to_yaml_string() + "---\n"
return full_content
@classmethod
def __UpperCamelCase ( cls : Optional[int] , lowercase_ : str ) -> "DatasetMetadata":
lowercase__ : int = yaml.load(lowercase_ , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
lowercase__ : List[str] = {
(key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**lowercase_ )
def __UpperCamelCase ( self : Optional[int] ) -> str:
return yaml.safe_dump(
{
(key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=lowercase_ , allow_unicode=lowercase_ , encoding="utf-8" , ).decode("utf-8" )
UpperCamelCase = {
'''image-classification''': [],
'''translation''': [],
'''image-segmentation''': [],
'''fill-mask''': [],
'''automatic-speech-recognition''': [],
'''token-classification''': [],
'''sentence-similarity''': [],
'''audio-classification''': [],
'''question-answering''': [],
'''summarization''': [],
'''zero-shot-classification''': [],
'''table-to-text''': [],
'''feature-extraction''': [],
'''other''': [],
'''multiple-choice''': [],
'''text-classification''': [],
'''text-to-image''': [],
'''text2text-generation''': [],
'''zero-shot-image-classification''': [],
'''tabular-classification''': [],
'''tabular-regression''': [],
'''image-to-image''': [],
'''tabular-to-text''': [],
'''unconditional-image-generation''': [],
'''text-retrieval''': [],
'''text-to-speech''': [],
'''object-detection''': [],
'''audio-to-audio''': [],
'''text-generation''': [],
'''conversational''': [],
'''table-question-answering''': [],
'''visual-question-answering''': [],
'''image-to-text''': [],
'''reinforcement-learning''': [],
'''voice-activity-detection''': [],
'''time-series-forecasting''': [],
'''document-question-answering''': [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
UpperCamelCase = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''')
ap.add_argument('''readme_filepath''')
UpperCamelCase = ap.parse_args()
UpperCamelCase = Path(args.readme_filepath)
UpperCamelCase = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath)
| 333 |
def lowercase_ ( _lowerCamelCase : list):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : int = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j]
lowercase__ : List[str] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 333 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'''
),
'''distilbert-base-uncased-finetuned-sst-2-english''': (
'''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'''
),
}
class snake_case_ ( __A ):
__A : int = "distilbert"
__A : int = {
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__( self : List[str] , lowercase_ : int=3_05_22 , lowercase_ : Any=5_12 , lowercase_ : Tuple=False , lowercase_ : Any=6 , lowercase_ : int=12 , lowercase_ : List[str]=7_68 , lowercase_ : Dict=4 * 7_68 , lowercase_ : List[str]=0.1 , lowercase_ : int=0.1 , lowercase_ : int="gelu" , lowercase_ : Any=0.02 , lowercase_ : Optional[Any]=0.1 , lowercase_ : str=0.2 , lowercase_ : List[Any]=0 , **lowercase_ : Any , ) -> List[str]:
lowercase__ : Optional[Any] = vocab_size
lowercase__ : Optional[int] = max_position_embeddings
lowercase__ : Dict = sinusoidal_pos_embds
lowercase__ : int = n_layers
lowercase__ : Tuple = n_heads
lowercase__ : Any = dim
lowercase__ : List[Any] = hidden_dim
lowercase__ : Optional[Any] = dropout
lowercase__ : Optional[Any] = attention_dropout
lowercase__ : str = activation
lowercase__ : Dict = initializer_range
lowercase__ : Tuple = qa_dropout
lowercase__ : Tuple = seq_classif_dropout
super().__init__(**lowercase_ , pad_token_id=lowercase_ )
class snake_case_ ( __A ):
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
lowercase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowercase__ : Optional[int] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 333 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class snake_case_ ( __A ):
__A : int = "token-classification"
def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]:
if type(lowercase_ ) == dict:
lowercase__ : Dict = Namespace(**lowercase_ )
lowercase__ : str = import_module("tasks" )
try:
lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels )
lowercase__ : int = CrossEntropyLoss().ignore_index
super().__init__(lowercase_ , len(self.labels ) , self.mode )
def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any:
return self.model(**lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple:
lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : Tuple = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : Optional[int] = self(**lowercase_ )
lowercase__ : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
lowercase__ : Any = self._feature_file(lowercase_ )
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ )
lowercase__ : Dict = self.token_classification_task.convert_examples_to_features(
lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowercase_ )
torch.save(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader:
lowercase__ : str = self._feature_file(lowercase_ )
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str:
"""Compute validation""" ""
lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : int = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : List[Any] = self(**lowercase_ )
lowercase__ , lowercase__ : Any = outputs[:2]
lowercase__ : Optional[Any] = logits.detach().cpu().numpy()
lowercase__ : int = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]:
lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean()
lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 )
lowercase__ : Dict = np.argmax(lowercase_ , axis=2 )
lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 )
lowercase__ : Any = dict(enumerate(self.labels ) )
lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )]
lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
lowercase__ : Any = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase_ , lowercase_ ),
"precision": precision_score(lowercase_ , lowercase_ ),
"recall": recall_score(lowercase_ , lowercase_ ),
"f1": fa_score(lowercase_ , lowercase_ ),
}
lowercase__ : List[Any] = dict(results.items() )
lowercase__ : List[str] = results
return ret, preds_list, out_label_list
def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict:
# when stable
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
lowercase__ : Any = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int:
# updating to test_epoch_end instead of deprecated test_end
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
lowercase__ : Optional[int] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple:
# Add NER specific options
BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ )
parser.add_argument(
"--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=1_28 , type=lowercase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCamelCase = parser.parse_args()
UpperCamelCase = NERTransformer(args)
UpperCamelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
UpperCamelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 333 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase = {
'''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''],
'''tokenization_roc_bert''': ['''RoCBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RoCBertForCausalLM''',
'''RoCBertForMaskedLM''',
'''RoCBertForMultipleChoice''',
'''RoCBertForPreTraining''',
'''RoCBertForQuestionAnswering''',
'''RoCBertForSequenceClassification''',
'''RoCBertForTokenClassification''',
'''RoCBertLayer''',
'''RoCBertModel''',
'''RoCBertPreTrainedModel''',
'''load_tf_weights_in_roc_bert''',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 333 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 333 | 1 |
from __future__ import annotations
from typing import Any
def lowercase_ ( _lowerCamelCase : list[Any]):
create_state_space_tree(_lowerCamelCase , [] , 0)
def lowercase_ ( _lowerCamelCase : list[Any] , _lowerCamelCase : list[Any] , _lowerCamelCase : int):
if index == len(_lowerCamelCase):
print(_lowerCamelCase)
return
create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1)
current_subsequence.append(sequence[index])
create_state_space_tree(_lowerCamelCase , _lowerCamelCase , index + 1)
current_subsequence.pop()
if __name__ == "__main__":
UpperCamelCase = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(['''A''', '''B''', '''C'''])
generate_all_subsequences(seq)
| 333 |
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : List[str]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000):
lowercase__ : Optional[int] = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Tuple = sigmoid_function(_lowerCamelCase)
lowercase__ : Dict = np.dot(x.T , h - y) / y.size
lowercase__ : int = theta - alpha * gradient # updating the weights
lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : List[Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 333 | 1 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''nielsr/canine-s''': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
UpperCamelCase = 111_4112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
UpperCamelCase = 0
UpperCamelCase = 0xe_0_0_0
UpperCamelCase = 0xe_0_0_1
UpperCamelCase = 0xe_0_0_2
UpperCamelCase = 0xe_0_0_3
UpperCamelCase = 0xe_0_0_4
# Maps special codepoints to human-readable names.
UpperCamelCase = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
UpperCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class snake_case_ ( __A ):
__A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : str , lowercase_ : Union[str, Any]=chr(lowercase_ ) , lowercase_ : Tuple=chr(lowercase_ ) , lowercase_ : str=chr(lowercase_ ) , lowercase_ : Optional[int]=chr(lowercase_ ) , lowercase_ : List[Any]=chr(lowercase_ ) , lowercase_ : int=chr(lowercase_ ) , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=20_48 , **lowercase_ : Dict , ) -> List[str]:
lowercase__ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token
lowercase__ : str = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token
lowercase__ : Any = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token
lowercase__ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token
lowercase__ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowercase__ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , model_max_length=lowercase_ , **lowercase_ , )
# Creates a mapping for looking up the IDs of special symbols.
lowercase__ : Dict[str, int] = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
lowercase__ : Any = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
lowercase__ : Dict[int, str] = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
lowercase__ : Dict = UNICODE_VOCAB_SIZE
lowercase__ : Optional[Any] = len(self._special_codepoints )
@property
def __UpperCamelCase ( self : Tuple ) -> int:
return self._unicode_vocab_size
def __UpperCamelCase ( self : str , lowercase_ : str ) -> List[str]:
return list(lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : str ) -> int:
try:
return ord(lowercase_ )
except TypeError:
raise ValueError(F'''invalid token: \'{token}\'''' )
def __UpperCamelCase ( self : int , lowercase_ : int ) -> str:
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(lowercase_ )
except TypeError:
raise ValueError(F'''invalid id: {index}''' )
def __UpperCamelCase ( self : Any , lowercase_ : List[str] ) -> List[str]:
return "".join(lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]:
lowercase__ : Optional[int] = [self.sep_token_id]
lowercase__ : Dict = [self.cls_token_id]
lowercase__ : str = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def __UpperCamelCase ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
lowercase__ : Tuple = [1] + ([0] * len(lowercase_ )) + [1]
if token_ids_a is not None:
result += ([0] * len(lowercase_ )) + [1]
return result
def __UpperCamelCase ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]:
lowercase__ : Any = [self.sep_token_id]
lowercase__ : Optional[int] = [self.cls_token_id]
lowercase__ : Any = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def __UpperCamelCase ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None ) -> List[str]:
return ()
| 333 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class snake_case_ ( __A ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__A : ClassVar[Features] = Features({"text": Value("string" )} )
__A : ClassVar[Features] = Features({"labels": ClassLabel} )
__A : str = "text"
__A : str = "labels"
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
lowercase__ : Optional[int] = copy.deepcopy(self )
lowercase__ : Tuple = self.label_schema.copy()
lowercase__ : Union[str, Any] = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 333 | 1 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str):
lowercase__ : Optional[int] = RobertaPreLayerNormConfig.from_pretrained(
_lowerCamelCase , architectures=["RobertaPreLayerNormForMaskedLM"])
# convert state_dict
lowercase__ : List[str] = torch.load(hf_hub_download(repo_id=_lowerCamelCase , filename="pytorch_model.bin"))
lowercase__ : Tuple = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta."):
lowercase__ : Dict = "roberta_prelayernorm." + tensor_key[len("roberta.") :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight") or tensor_key.endswith(".self.LayerNorm.bias"):
continue
lowercase__ : Dict = tensor_value
lowercase__ : Optional[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=_lowerCamelCase , config=_lowerCamelCase , state_dict=_lowerCamelCase)
model.save_pretrained(_lowerCamelCase)
# convert tokenizer
lowercase__ : Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase)
tokenizer.save_pretrained(_lowerCamelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
UpperCamelCase = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 333 |
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((number_a + number_a) / 2)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(_lowerCamelCase : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
lowercase__ : Optional[int] = lower
lowercase__ : List[Any] = higher
lowercase__ : Dict = []
while True:
lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase)
last_numbers.append(_lowerCamelCase)
if answer(_lowerCamelCase) == "low":
lowercase__ : List[str] = number
elif answer(_lowerCamelCase) == "high":
lowercase__ : Optional[int] = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''')
print(f'''details : {last_numbers!s}''')
def lowercase_ ( ):
lowercase__ : Tuple = int(input("Enter lower value : ").strip())
lowercase__ : Optional[int] = int(input("Enter high value : ").strip())
lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip())
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
main()
| 333 | 1 |
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class snake_case_ :
def __init__( self : Any , lowercase_ : Optional[Any] , lowercase_ : Dict=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Dict=True , lowercase_ : Any=True , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Union[str, Any]=99 , lowercase_ : int=64 , lowercase_ : List[Any]=32 , lowercase_ : List[Any]=5 , lowercase_ : Optional[Any]=4 , lowercase_ : Dict=37 , lowercase_ : int="gelu" , lowercase_ : Any=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Union[str, Any]=5_12 , lowercase_ : str=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[Any]=0.02 , lowercase_ : Dict=3 , lowercase_ : Tuple=4 , lowercase_ : Any=None , ) -> List[str]:
lowercase__ : List[str] = parent
lowercase__ : Dict = batch_size
lowercase__ : str = seq_length
lowercase__ : Any = is_training
lowercase__ : Tuple = use_input_mask
lowercase__ : List[str] = use_token_type_ids
lowercase__ : int = use_labels
lowercase__ : List[str] = vocab_size
lowercase__ : int = hidden_size
lowercase__ : List[str] = embedding_size
lowercase__ : Tuple = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : str = intermediate_size
lowercase__ : Tuple = hidden_act
lowercase__ : Optional[int] = hidden_dropout_prob
lowercase__ : Tuple = attention_probs_dropout_prob
lowercase__ : str = max_position_embeddings
lowercase__ : Optional[Any] = type_vocab_size
lowercase__ : Dict = type_sequence_label_size
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : List[Any] = num_labels
lowercase__ : Union[str, Any] = num_choices
lowercase__ : Optional[int] = scope
def __UpperCamelCase ( self : List[str] ) -> Dict:
lowercase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ : str = None
if self.use_input_mask:
lowercase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ : Dict = None
if self.use_token_type_ids:
lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase__ : Optional[int] = None
lowercase__ : List[str] = None
lowercase__ : Optional[Any] = None
if self.use_labels:
lowercase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
lowercase__ : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase ( self : Dict ) -> Union[str, Any]:
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self : int , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str ) -> Any:
lowercase__ : Optional[Any] = MegatronBertModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Any = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ )
lowercase__ : List[str] = model(lowercase_ , token_type_ids=lowercase_ )
lowercase__ : List[str] = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : str , lowercase_ : Optional[Any] ) -> Optional[int]:
lowercase__ : Dict = MegatronBertForMaskedLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Dict = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Union[str, Any] ) -> Union[str, Any]:
lowercase__ : Tuple = MegatronBertForCausalLM(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Any ) -> Any:
lowercase__ : Tuple = MegatronBertForNextSentencePrediction(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Optional[Any] = model(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] ) -> str:
lowercase__ : List[Any] = MegatronBertForPreTraining(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : str = model(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , next_sentence_label=lowercase_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __UpperCamelCase ( self : Tuple , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> Dict:
lowercase__ : List[Any] = MegatronBertForQuestionAnswering(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Any = model(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : List[Any] ) -> Tuple:
lowercase__ : Optional[Any] = self.num_labels
lowercase__ : List[Any] = MegatronBertForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : str = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[Any] ) -> str:
lowercase__ : List[Any] = self.num_labels
lowercase__ : Optional[int] = MegatronBertForTokenClassification(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self : int , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ) -> Union[str, Any]:
lowercase__ : Dict = self.num_choices
lowercase__ : Dict = MegatronBertForMultipleChoice(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ : List[Any] = model(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCamelCase ( self : Any ) -> Optional[int]:
lowercase__ : List[str] = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) : Optional[int] = config_and_inputs
lowercase__ : Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class snake_case_ ( __A ,__A ,unittest.TestCase ):
__A : int = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
__A : str = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__A : Optional[int] = True
# test_resize_embeddings = False
__A : int = False
def __UpperCamelCase ( self : int , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : str=False ) -> Union[str, Any]:
lowercase__ : List[str] = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ )
if return_labels:
if model_class in get_values(lowercase_ ):
lowercase__ : Dict = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ )
lowercase__ : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase_ )
return inputs_dict
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
lowercase__ : List[str] = MegatronBertModelTester(self )
lowercase__ : str = ConfigTester(self , config_class=lowercase_ , hidden_size=37 )
def __UpperCamelCase ( self : Tuple ) -> int:
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : List[Any] ) -> str:
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*lowercase_ )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowercase_ )
def __UpperCamelCase ( self : int ) -> Dict:
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowercase_ )
def __UpperCamelCase ( self : Dict ) -> Any:
lowercase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowercase_ )
def __UpperCamelCase ( self : Optional[int] ) -> List[Any]:
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowercase_ )
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> Optional[int]:
lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowercase_ )
def lowercase_ ( _lowerCamelCase : Dict):
return torch.tensor(
_lowerCamelCase , dtype=torch.long , device=_lowerCamelCase , )
UpperCamelCase = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
class snake_case_ ( unittest.TestCase ):
@slow
@unittest.skip("Model is not available." )
def __UpperCamelCase ( self : str ) -> Any:
lowercase__ : str = "nvidia/megatron-bert-uncased-345m"
if "MYDIR" in os.environ:
lowercase__ : Union[str, Any] = os.path.join(os.environ["MYDIR"] , lowercase_ )
lowercase__ : Any = MegatronBertModel.from_pretrained(lowercase_ )
model.to(lowercase_ )
model.half()
lowercase__ : str = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] )
with torch.no_grad():
lowercase__ : Any = model(lowercase_ )[0]
lowercase__ : Tuple = torch.Size((1, 9, 10_24) )
self.assertEqual(output.shape , lowercase_ )
lowercase__ : Dict = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28]
for ii in range(3 ):
for jj in range(3 ):
lowercase__ : Dict = output[0, ii, jj]
lowercase__ : Tuple = expected[3 * ii + jj]
lowercase__ : Dict = "ii={} jj={} a={} b={}".format(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
self.assertTrue(math.isclose(lowercase_ , lowercase_ , rel_tol=lowercase_ , abs_tol=lowercase_ ) , msg=lowercase_ )
| 333 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCamelCase = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : str ) -> List[str]:
lowercase__ : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
lowercase__ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : Dict = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ )
lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" )
with open(lowercase_ , "w" , newline="\n" ) as f:
f.write(lowercase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowercase_ )
with open(lowercase_ , "r" ) as f:
self.assertTrue(f.read() , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : int ) -> str:
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , )
# Copy consistency with a really long name
lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
| 333 | 1 |
import requests
from bsa import BeautifulSoup
def lowercase_ ( _lowerCamelCase : str = "AAPL"):
lowercase__ : int = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
lowercase__ : Optional[Any] = BeautifulSoup(requests.get(_lowerCamelCase).text , "html.parser")
lowercase__ : List[str] = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" , class_=class_).find("span").text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 333 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True):
model.train()
lowercase__ : Tuple = model(_lowerCamelCase)
lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False):
set_seed(42)
lowercase__ : Dict = RegressionModel()
lowercase__ : int = deepcopy(_lowerCamelCase)
lowercase__ : str = RegressionDataset(length=80)
lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16)
model.to(accelerator.device)
if sched:
lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3)
lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3)
lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
# Make a copy of `model`
if sched:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( _lowerCamelCase : Tuple):
# Test when on a single CPU or GPU that the context manager does nothing
lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Any):
# Test on distributed setup that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False):
lowercase__ : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))]
GradientState._reset_state()
def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False):
lowercase__ : Dict = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowercase_ ( ):
lowercase__ : List[str] = Accelerator()
lowercase__ : List[Any] = RegressionDataset(length=80)
lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ : int = RegressionDataset(length=96)
lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if iteration < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if batch_num < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ):
lowercase__ : str = Accelerator()
lowercase__ : Dict = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
test_noop_sync(_lowerCamelCase)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**")
test_distributed_sync(_lowerCamelCase)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = [
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
lowercase__ : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase)
if k.startswith("encoder"):
lowercase__ : Tuple = k.replace(".attn" , ".self_attn")
lowercase__ : Optional[Any] = k.replace("norm1" , "self_attn_layer_norm")
lowercase__ : Optional[Any] = k.replace("norm2" , "final_layer_norm")
elif k.startswith("decoder"):
lowercase__ : Dict = k.replace("norm1" , "self_attn_layer_norm")
lowercase__ : Tuple = k.replace("norm2" , "encoder_attn_layer_norm")
lowercase__ : Any = k.replace("norm3" , "final_layer_norm")
return k
def lowercase_ ( _lowerCamelCase : Optional[Any]):
lowercase__ : List[str] = [
"model.encoder.layernorm_embedding.weight",
"model.encoder.layernorm_embedding.bias",
"model.decoder.layernorm_embedding.weight",
"model.decoder.layernorm_embedding.bias",
]
for k in keys:
lowercase__ : Optional[int] = sd.pop(_lowerCamelCase)
lowercase__ : Optional[Any] = k.replace("layernorm_embedding" , "layer_norm")
assert new_k not in sd
lowercase__ : Optional[int] = v
UpperCamelCase = ['''START''']
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any):
lowercase__ : Tuple = torch.load(_lowerCamelCase , map_location="cpu")
lowercase__ : Dict = model["model"]
lowercase__ : Optional[Any] = BlenderbotConfig.from_json_file(_lowerCamelCase)
lowercase__ : Any = BlenderbotForConditionalGeneration(_lowerCamelCase)
lowercase__ : Optional[Any] = m.model.state_dict().keys()
lowercase__ : Optional[int] = []
lowercase__ : Any = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
lowercase__ : Optional[Any] = rename_state_dict_key(_lowerCamelCase)
if new_k not in valid_keys:
failures.append([k, new_k])
else:
lowercase__ : int = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(_lowerCamelCase)
m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase)
m.half()
m.save_pretrained(_lowerCamelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
UpperCamelCase = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 333 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str):
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase)
lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase)
lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase)
lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
lowercase__ : Any = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowercase__ : int = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Dict = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global].")
# Encoder
for layer_index in range(config.num_layers):
lowercase__ : str = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : Any = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[str] = tax_attention_value
lowercase__ : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Any = tax_global_layer_norm
if split_mlp_wi:
lowercase__ : Tuple = tax_mlp_wi_a
lowercase__ : str = tax_mlp_wi_a
else:
lowercase__ : List[Any] = tax_mlp_wi
lowercase__ : str = tax_mlp_wo
lowercase__ : int = tax_mlp_layer_norm
lowercase__ : List[str] = flax_model_encoder_layer_block
# Only for layer 0:
lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : Optional[int] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_encoder_global_rel_embedding
# Assigning
lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
lowercase__ : Union[str, Any] = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"]
lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"]
lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"]
lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : List[Any] = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[Any] = tax_attention_value
lowercase__ : List[str] = tax_pre_attention_layer_norm
lowercase__ : List[Any] = tax_enc_dec_attention_key
lowercase__ : Optional[Any] = tax_enc_dec_attention_out
lowercase__ : str = tax_enc_dec_attention_query
lowercase__ : Union[str, Any] = tax_enc_dec_attention_value
lowercase__ : Tuple = tax_cross_layer_norm
if split_mlp_wi:
lowercase__ : List[str] = tax_mlp_wi_a
lowercase__ : List[Any] = tax_mlp_wi_a
else:
lowercase__ : Tuple = tax_mlp_wi
lowercase__ : Any = tax_mlp_wo
lowercase__ : Tuple = txa_mlp_layer_norm
lowercase__ : int = flax_model_decoder_layer_block
# Decoder Normalization
lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
lowercase__ : List[Any] = txa_decoder_norm
# Only for layer 0:
lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_decoder_rel_embedding
# Token Embeddings
lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"]
lowercase__ : Optional[Any] = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(_lowerCamelCase)
print("T5X Model was sucessfully converted!")
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
UpperCamelCase = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 333 | 1 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class snake_case_ ( __A ):
__A : Dict = (DDIMParallelScheduler,)
__A : int = (("eta", 0.0), ("num_inference_steps", 50))
def __UpperCamelCase ( self : Optional[Any] , **lowercase_ : str ) -> Union[str, Any]:
lowercase__ : Dict = {
"num_train_timesteps": 10_00,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**lowercase_ )
return config
def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[Any] ) -> int:
lowercase__ : Any = self.scheduler_classes[0]
lowercase__ : Any = self.get_scheduler_config(**lowercase_ )
lowercase__ : Optional[int] = scheduler_class(**lowercase_ )
lowercase__ , lowercase__ : Any = 10, 0.0
lowercase__ : List[str] = self.dummy_model()
lowercase__ : Optional[int] = self.dummy_sample_deter
scheduler.set_timesteps(lowercase_ )
for t in scheduler.timesteps:
lowercase__ : List[Any] = model(lowercase_ , lowercase_ )
lowercase__ : str = scheduler.step(lowercase_ , lowercase_ , lowercase_ , lowercase_ ).prev_sample
return sample
def __UpperCamelCase ( self : str ) -> Dict:
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowercase_ )
def __UpperCamelCase ( self : List[str] ) -> List[Any]:
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowercase_ )
lowercase__ : List[str] = self.scheduler_classes[0]
lowercase__ : str = self.get_scheduler_config(steps_offset=1 )
lowercase__ : List[Any] = scheduler_class(**lowercase_ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def __UpperCamelCase ( self : List[str] ) -> Dict:
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ )
def __UpperCamelCase ( self : str ) -> Tuple:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowercase_ )
def __UpperCamelCase ( self : int ) -> int:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowercase_ )
def __UpperCamelCase ( self : List[str] ) -> List[Any]:
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=lowercase_ )
def __UpperCamelCase ( self : List[str] ) -> List[str]:
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
self.check_over_configs(thresholding=lowercase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , )
def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]:
for t in [1, 10, 49]:
self.check_over_forward(time_step=lowercase_ )
def __UpperCamelCase ( self : int ) -> List[Any]:
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ):
self.check_over_forward(time_step=lowercase_ , num_inference_steps=lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[Any]:
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=lowercase_ , eta=lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : int = self.get_scheduler_config()
lowercase__ : Optional[int] = scheduler_class(**lowercase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_47_71 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_24_60 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_09_79 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1E-5
def __UpperCamelCase ( self : Tuple ) -> Dict:
lowercase__ : List[Any] = self.scheduler_classes[0]
lowercase__ : Optional[int] = self.get_scheduler_config()
lowercase__ : str = scheduler_class(**lowercase_ )
lowercase__ , lowercase__ : Dict = 10, 0.0
scheduler.set_timesteps(lowercase_ )
lowercase__ : int = self.dummy_model()
lowercase__ : Union[str, Any] = self.dummy_sample_deter
lowercase__ : Optional[Any] = self.dummy_sample_deter + 0.1
lowercase__ : int = self.dummy_sample_deter - 0.1
lowercase__ : Any = samplea.shape[0]
lowercase__ : Any = torch.stack([samplea, samplea, samplea] , dim=0 )
lowercase__ : List[Any] = torch.arange(lowercase_ )[0:3, None].repeat(1 , lowercase_ )
lowercase__ : Any = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
lowercase__ : List[Any] = scheduler.batch_step_no_noise(lowercase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase_ )
lowercase__ : Union[str, Any] = torch.sum(torch.abs(lowercase_ ) )
lowercase__ : List[str] = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2
assert abs(result_mean.item() - 0.49_82 ) < 1E-3
def __UpperCamelCase ( self : List[str] ) -> Dict:
lowercase__ : Dict = self.full_loop()
lowercase__ : Dict = torch.sum(torch.abs(lowercase_ ) )
lowercase__ : int = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3
def __UpperCamelCase ( self : List[str] ) -> Tuple:
lowercase__ : List[str] = self.full_loop(prediction_type="v_prediction" )
lowercase__ : List[str] = torch.sum(torch.abs(lowercase_ ) )
lowercase__ : str = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 52.53_02 ) < 1E-2
assert abs(result_mean.item() - 0.06_84 ) < 1E-3
def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]:
# We specify different beta, so that the first alpha is 0.99
lowercase__ : Optional[Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
lowercase__ : int = torch.sum(torch.abs(lowercase_ ) )
lowercase__ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2
assert abs(result_mean.item() - 0.19_51 ) < 1E-3
def __UpperCamelCase ( self : List[Any] ) -> List[Any]:
# We specify different beta, so that the first alpha is 0.99
lowercase__ : List[Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 )
lowercase__ : str = torch.sum(torch.abs(lowercase_ ) )
lowercase__ : Tuple = torch.mean(torch.abs(lowercase_ ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2
assert abs(result_mean.item() - 0.19_41 ) < 1E-3
| 333 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[int] = "rwkv"
__A : List[str] = {"max_position_embeddings": "context_length"}
def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int:
lowercase__ : List[str] = vocab_size
lowercase__ : str = context_length
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : str = rescale_every
lowercase__ : Optional[int] = use_cache
lowercase__ : int = bos_token_id
lowercase__ : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | 1 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Optional[int]=None):
lowercase__ : int = None
if token is not None:
lowercase__ : Any = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''}
lowercase__ : Optional[Any] = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
lowercase__ : int = requests.get(_lowerCamelCase , headers=_lowerCamelCase).json()
lowercase__ : str = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]})
lowercase__ : Tuple = math.ceil((result["total_count"] - 100) / 100)
for i in range(_lowerCamelCase):
lowercase__ : Optional[int] = requests.get(url + f'''&page={i + 2}''' , headers=_lowerCamelCase).json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]})
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''')
return {}
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any]=None):
lowercase__ : Dict = None
if token is not None:
lowercase__ : Any = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''}
lowercase__ : Union[str, Any] = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
lowercase__ : str = requests.get(_lowerCamelCase , headers=_lowerCamelCase).json()
lowercase__ : List[str] = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]})
lowercase__ : str = math.ceil((result["total_count"] - 100) / 100)
for i in range(_lowerCamelCase):
lowercase__ : Any = requests.get(url + f'''&page={i + 2}''' , headers=_lowerCamelCase).json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]})
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''')
return {}
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Dict):
lowercase__ : Optional[Any] = None
if token is not None:
lowercase__ : Tuple = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''}
lowercase__ : Any = requests.get(_lowerCamelCase , headers=_lowerCamelCase , allow_redirects=_lowerCamelCase)
lowercase__ : List[Any] = result.headers["Location"]
lowercase__ : str = requests.get(_lowerCamelCase , allow_redirects=_lowerCamelCase)
lowercase__ : str = os.path.join(_lowerCamelCase , f'''{artifact_name}.zip''')
with open(_lowerCamelCase , "wb") as fp:
fp.write(response.content)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Dict=None):
lowercase__ : str = []
lowercase__ : str = []
lowercase__ : List[str] = None
with zipfile.ZipFile(_lowerCamelCase) as z:
for filename in z.namelist():
if not os.path.isdir(_lowerCamelCase):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_lowerCamelCase) as f:
for line in f:
lowercase__ : Any = line.decode("UTF-8").strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowercase__ : List[str] = line[: line.index(": ")]
lowercase__ : Tuple = line[line.index(": ") + len(": ") :]
errors.append([error_line, error])
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED "):
# `test` is the test method that failed
lowercase__ : Union[str, Any] = line[len("FAILED ") :]
failed_tests.append(_lowerCamelCase)
elif filename == "job_name.txt":
lowercase__ : List[str] = line
if len(_lowerCamelCase) != len(_lowerCamelCase):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCamelCase)} for `errors` '''
f'''and {len(_lowerCamelCase)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
" problem.")
lowercase__ : Any = None
if job_name and job_links:
lowercase__ : Optional[Any] = job_links.get(_lowerCamelCase , _lowerCamelCase)
# A list with elements of the form (line of error, error, failed test)
lowercase__ : Any = [x + [y] + [job_link] for x, y in zip(_lowerCamelCase , _lowerCamelCase)]
return result
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]=None):
lowercase__ : Union[str, Any] = []
lowercase__ : Optional[int] = [os.path.join(_lowerCamelCase , _lowerCamelCase) for p in os.listdir(_lowerCamelCase) if p.endswith(".zip")]
for p in paths:
errors.extend(get_errors_from_single_artifact(_lowerCamelCase , job_links=_lowerCamelCase))
return errors
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any=None):
lowercase__ : List[str] = Counter()
counter.update([x[1] for x in logs])
lowercase__ : Tuple = counter.most_common()
lowercase__ : Union[str, Any] = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowercase__ : Union[str, Any] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
lowercase__ : Dict = dict(sorted(r.items() , key=lambda _lowerCamelCase: item[1]["count"] , reverse=_lowerCamelCase))
return r
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : List[Any] = test.split("::")[0]
if test.startswith("tests/models/"):
lowercase__ : Optional[Any] = test.split("/")[2]
else:
lowercase__ : List[Any] = None
return test
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Any=None):
lowercase__ : Dict = [(x[0], x[1], get_model(x[2])) for x in logs]
lowercase__ : Dict = [x for x in logs if x[2] is not None]
lowercase__ : Optional[int] = {x[2] for x in logs}
lowercase__ : Dict = {}
for test in tests:
lowercase__ : int = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test])
lowercase__ : str = counter.most_common()
lowercase__ : Dict = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowercase__ : Any = sum(error_counts.values())
if n_errors > 0:
lowercase__ : str = {"count": n_errors, "errors": error_counts}
lowercase__ : Dict = dict(sorted(r.items() , key=lambda _lowerCamelCase: item[1]["count"] , reverse=_lowerCamelCase))
return r
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
lowercase__ : str = "| no. | error | status |"
lowercase__ : List[str] = "|-:|:-|:-|"
lowercase__ : Union[str, Any] = [header, sep]
for error in reduced_by_error:
lowercase__ : Optional[int] = reduced_by_error[error]["count"]
lowercase__ : Union[str, Any] = f'''| {count} | {error[:100]} | |'''
lines.append(_lowerCamelCase)
return "\n".join(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = "| model | no. of errors | major error | count |"
lowercase__ : int = "|-:|-:|-:|-:|"
lowercase__ : str = [header, sep]
for model in reduced_by_model:
lowercase__ : List[str] = reduced_by_model[model]["count"]
lowercase__ , lowercase__ : Dict = list(reduced_by_model[model]["errors"].items())[0]
lowercase__ : str = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(_lowerCamelCase)
return "\n".join(_lowerCamelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
UpperCamelCase = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
UpperCamelCase = get_job_links(args.workflow_run_id, token=args.token)
UpperCamelCase = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
UpperCamelCase = k.find(''' / ''')
UpperCamelCase = k[index + len(''' / ''') :]
UpperCamelCase = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
UpperCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
UpperCamelCase = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
UpperCamelCase = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
UpperCamelCase = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
UpperCamelCase = reduce_by_error(errors)
UpperCamelCase = reduce_by_model(errors)
UpperCamelCase = make_github_table(reduced_by_error)
UpperCamelCase = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
| 333 |
class snake_case_ :
def __init__( self : int ) -> Optional[int]:
lowercase__ : Optional[int] = 0
lowercase__ : List[str] = 0
lowercase__ : Any = {}
def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]:
if vertex not in self.adjacency:
lowercase__ : List[Any] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]:
self.add_vertex(lowercase_ )
self.add_vertex(lowercase_ )
if head == tail:
return
lowercase__ : int = weight
lowercase__ : Any = weight
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[Any] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
edges.remove((tail, head, weight) )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(lowercase_ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : int = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge
lowercase__ : Union[str, Any] = weight
lowercase__ : Dict = weight
def __str__( self : str ) -> Any:
lowercase__ : str = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Optional[Any] = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Any = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[str] ) -> Dict:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]:
lowercase__ : Any = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : List[Any] = []
for vertex in vertices:
g.add_vertex(lowercase_ )
for edge in edges:
g.add_edge(*lowercase_ )
return g
class snake_case_ :
def __init__( self : int ) -> List[str]:
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
def __len__( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.parent )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple:
if item in self.parent:
return self.find(lowercase_ )
lowercase__ : Union[str, Any] = item
lowercase__ : int = 0
return item
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any:
if item not in self.parent:
return self.make_set(lowercase_ )
if item != self.parent[item]:
lowercase__ : Union[str, Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]:
lowercase__ : Dict = self.find(lowercase_ )
lowercase__ : Optional[int] = self.find(lowercase_ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Dict = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : int = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]:
lowercase__ : List[Any] = graph.num_vertices
lowercase__ : Optional[Any] = Graph.UnionFind()
lowercase__ : int = []
while num_components > 1:
lowercase__ : List[Any] = {}
for vertex in graph.get_vertices():
lowercase__ : Any = -1
lowercase__ : List[str] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : str = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[str] = edge
lowercase__ : List[str] = union_find.find(lowercase_ )
lowercase__ : Union[str, Any] = union_find.find(lowercase_ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Dict = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex]
if union_find.find(lowercase_ ) != union_find.find(lowercase_ ):
union_find.union(lowercase_ , lowercase_ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : Optional[Any] = num_components - 1
lowercase__ : List[Any] = Graph.build(edges=lowercase_ )
return mst
| 333 | 1 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False):
lowercase__ : int = []
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight'''))
rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias'''))
rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight'''))
rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias'''))
rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight'''))
rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias'''))
rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight'''))
rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias'''))
rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight'''))
rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias'''))
# projection layer + position embeddings
rename_keys.extend(
[
("cls_token", "deit.embeddings.cls_token"),
("dist_token", "deit.embeddings.distillation_token"),
("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"),
("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"),
("pos_embed", "deit.embeddings.position_embeddings"),
])
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
])
# if just the base model, we should remove "deit" from all keys that start with "deit"
lowercase__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("deit") else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("norm.weight", "deit.layernorm.weight"),
("norm.bias", "deit.layernorm.bias"),
("head.weight", "cls_classifier.weight"),
("head.bias", "cls_classifier.bias"),
("head_dist.weight", "distillation_classifier.weight"),
("head_dist.bias", "distillation_classifier.bias"),
])
return rename_keys
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]=False):
for i in range(config.num_hidden_layers):
if base_model:
lowercase__ : Optional[int] = ""
else:
lowercase__ : Union[str, Any] = "deit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Dict = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''')
lowercase__ : str = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : List[str] = in_proj_weight[
: config.hidden_size, :
]
lowercase__ : Any = in_proj_bias[: config.hidden_size]
lowercase__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Union[str, Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : Optional[int] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : Dict = in_proj_bias[-config.hidden_size :]
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any]):
lowercase__ : Any = dct.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
def lowercase_ ( ):
lowercase__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple):
lowercase__ : Optional[Any] = DeiTConfig()
# all deit models have fine-tuned heads
lowercase__ : List[str] = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
lowercase__ : Optional[int] = 1000
lowercase__ : Dict = "huggingface/label-files"
lowercase__ : Dict = "imagenet-1k-id2label.json"
lowercase__ : Any = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset") , "r"))
lowercase__ : List[Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : List[str] = idalabel
lowercase__ : Any = {v: k for k, v in idalabel.items()}
lowercase__ : List[str] = int(deit_name[-6:-4])
lowercase__ : Dict = int(deit_name[-3:])
# size of the architecture
if deit_name[9:].startswith("tiny"):
lowercase__ : Union[str, Any] = 192
lowercase__ : Dict = 768
lowercase__ : Any = 12
lowercase__ : List[str] = 3
elif deit_name[9:].startswith("small"):
lowercase__ : Tuple = 384
lowercase__ : List[Any] = 1536
lowercase__ : List[Any] = 12
lowercase__ : str = 6
if deit_name[9:].startswith("base"):
pass
elif deit_name[4:].startswith("large"):
lowercase__ : Tuple = 1024
lowercase__ : str = 4096
lowercase__ : List[Any] = 24
lowercase__ : Optional[Any] = 16
# load original model from timm
lowercase__ : Any = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase)
timm_model.eval()
# load state_dict of original model, remove and rename some keys
lowercase__ : Optional[int] = timm_model.state_dict()
lowercase__ : List[str] = create_rename_keys(_lowerCamelCase , _lowerCamelCase)
for src, dest in rename_keys:
rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Union[str, Any] = DeiTForImageClassificationWithTeacher(_lowerCamelCase).eval()
model.load_state_dict(_lowerCamelCase)
# Check outputs on an image, prepared by DeiTImageProcessor
lowercase__ : str = int(
(256 / 224) * config.image_size) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
lowercase__ : Union[str, Any] = DeiTImageProcessor(size=_lowerCamelCase , crop_size=config.image_size)
lowercase__ : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="pt")
lowercase__ : Optional[Any] = encoding["pixel_values"]
lowercase__ : int = model(_lowerCamelCase)
lowercase__ : List[str] = timm_model(_lowerCamelCase)
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--deit_name''',
default='''vit_deit_base_distilled_patch16_224''',
type=str,
help='''Name of the DeiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
UpperCamelCase = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 333 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Union[str, Any] ) -> str:
lowercase__ : Dict = tempfile.mkdtemp()
# fmt: off
lowercase__ : str = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowercase__ : List[str] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
lowercase__ : Dict = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
lowercase__ : Union[str, Any] = {"unk_token": "<unk>"}
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowercase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowercase_ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowercase_ ) )
lowercase__ : Tuple = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
"image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , lowercase_ )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : int , **lowercase_ : List[str] ) -> List[Any]:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase_ )
def __UpperCamelCase ( self : List[Any] , **lowercase_ : Any ) -> int:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ )
def __UpperCamelCase ( self : Optional[int] , **lowercase_ : Tuple ) -> List[Any]:
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ )
def __UpperCamelCase ( self : int ) -> Optional[Any]:
shutil.rmtree(self.tmpdirname )
def __UpperCamelCase ( self : Dict ) -> Optional[Any]:
lowercase__ : Any = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
lowercase__ : Optional[Any] = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __UpperCamelCase ( self : Optional[int] ) -> Any:
lowercase__ : str = self.get_tokenizer()
lowercase__ : List[Any] = self.get_rust_tokenizer()
lowercase__ : str = self.get_image_processor()
lowercase__ : Union[str, Any] = CLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
processor_slow.save_pretrained(self.tmpdirname )
lowercase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ )
lowercase__ : List[Any] = CLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
processor_fast.save_pretrained(self.tmpdirname )
lowercase__ : Dict = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , lowercase_ )
self.assertIsInstance(processor_fast.tokenizer , lowercase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , lowercase_ )
self.assertIsInstance(processor_fast.image_processor , lowercase_ )
def __UpperCamelCase ( self : Dict ) -> Dict:
lowercase__ : int = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
lowercase__ : List[str] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowercase__ : Tuple = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 )
lowercase__ : str = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowercase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : str = self.get_image_processor()
lowercase__ : int = self.get_tokenizer()
lowercase__ : Union[str, Any] = CLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase__ : int = self.prepare_image_inputs()
lowercase__ : Dict = image_processor(lowercase_ , return_tensors="np" )
lowercase__ : Optional[Any] = processor(images=lowercase_ , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __UpperCamelCase ( self : Any ) -> Union[str, Any]:
lowercase__ : Any = self.get_image_processor()
lowercase__ : Any = self.get_tokenizer()
lowercase__ : Tuple = CLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase__ : int = "lower newer"
lowercase__ : Tuple = processor(text=lowercase_ )
lowercase__ : Optional[Any] = tokenizer(lowercase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
lowercase__ : List[Any] = self.get_image_processor()
lowercase__ : Optional[Any] = self.get_tokenizer()
lowercase__ : Tuple = CLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase__ : Any = "lower newer"
lowercase__ : int = self.prepare_image_inputs()
lowercase__ : str = processor(text=lowercase_ , images=lowercase_ )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(lowercase_ ):
processor()
def __UpperCamelCase ( self : str ) -> str:
lowercase__ : Optional[int] = self.get_image_processor()
lowercase__ : int = self.get_tokenizer()
lowercase__ : Optional[int] = CLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase__ : List[str] = processor.batch_decode(lowercase_ )
lowercase__ : Dict = tokenizer.batch_decode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> str:
lowercase__ : Union[str, Any] = self.get_image_processor()
lowercase__ : Optional[int] = self.get_tokenizer()
lowercase__ : Union[str, Any] = CLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase__ : Optional[Any] = "lower newer"
lowercase__ : str = self.prepare_image_inputs()
lowercase__ : List[str] = processor(text=lowercase_ , images=lowercase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 333 |
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 1
lowercase__ : int = 0
for divide_by_number in range(_lowerCamelCase , digit + 1):
lowercase__ : list[int] = []
lowercase__ : Dict = numerator
for _ in range(1 , digit + 1):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase):
lowercase__ : Union[str, Any] = len(_lowerCamelCase)
lowercase__ : Optional[int] = divide_by_number
else:
has_been_divided.append(_lowerCamelCase)
lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class snake_case_ ( __A ,__A ):
__A : str = "nat"
__A : Optional[int] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Dict , lowercase_ : int=4 , lowercase_ : Tuple=3 , lowercase_ : Dict=64 , lowercase_ : str=[3, 4, 6, 5] , lowercase_ : List[str]=[2, 4, 8, 16] , lowercase_ : int=7 , lowercase_ : int=3.0 , lowercase_ : Optional[int]=True , lowercase_ : int=0.0 , lowercase_ : int=0.0 , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[str]="gelu" , lowercase_ : int=0.02 , lowercase_ : Optional[Any]=1E-5 , lowercase_ : Optional[Any]=0.0 , lowercase_ : List[Any]=None , lowercase_ : Dict=None , **lowercase_ : Any , ) -> Tuple:
super().__init__(**lowercase_ )
lowercase__ : Dict = patch_size
lowercase__ : Tuple = num_channels
lowercase__ : List[Any] = embed_dim
lowercase__ : Dict = depths
lowercase__ : int = len(lowercase_ )
lowercase__ : Optional[Any] = num_heads
lowercase__ : Dict = kernel_size
lowercase__ : Optional[Any] = mlp_ratio
lowercase__ : Union[str, Any] = qkv_bias
lowercase__ : Optional[int] = hidden_dropout_prob
lowercase__ : int = attention_probs_dropout_prob
lowercase__ : Optional[int] = drop_path_rate
lowercase__ : str = hidden_act
lowercase__ : str = layer_norm_eps
lowercase__ : Any = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowercase__ : int = int(embed_dim * 2 ** (len(lowercase_ ) - 1) )
lowercase__ : int = layer_scale_init_value
lowercase__ : int = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )]
lowercase__ , lowercase__ : Tuple = get_aligned_output_features_output_indices(
out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
| 333 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 1 |
from __future__ import annotations
class snake_case_ :
def __init__( self : Optional[Any] , lowercase_ : list[list[int]] ) -> Dict:
lowercase__ : Optional[Any] = TypeError(
"Matrices must be formed from a list of zero or more lists containing at "
"least one and the same number of values, each of which must be of type "
"int or float." )
if len(lowercase_ ) != 0:
lowercase__ : Union[str, Any] = len(rows[0] )
if cols == 0:
raise error
for row in rows:
if len(lowercase_ ) != cols:
raise error
for value in row:
if not isinstance(lowercase_ , (int, float) ):
raise error
lowercase__ : List[Any] = rows
else:
lowercase__ : Union[str, Any] = []
def __UpperCamelCase ( self : Optional[int] ) -> list[list[int]]:
return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )]
@property
def __UpperCamelCase ( self : int ) -> int:
return len(self.rows )
@property
def __UpperCamelCase ( self : Tuple ) -> int:
return len(self.rows[0] )
@property
def __UpperCamelCase ( self : Dict ) -> tuple[int, int]:
return (self.num_rows, self.num_columns)
@property
def __UpperCamelCase ( self : Tuple ) -> bool:
return self.order[0] == self.order[1]
def __UpperCamelCase ( self : Any ) -> Matrix:
lowercase__ : int = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows )]
for row_num in range(self.num_rows )
]
return Matrix(lowercase_ )
def __UpperCamelCase ( self : Optional[int] ) -> int:
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0] )
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]) )
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns ) )
def __UpperCamelCase ( self : Union[str, Any] ) -> bool:
return bool(self.determinant() )
def __UpperCamelCase ( self : int , lowercase_ : int , lowercase_ : int ) -> int:
lowercase__ : List[str] = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns )
if other_column != column
]
for other_row in range(self.num_rows )
if other_row != row
]
return Matrix(lowercase_ ).determinant()
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : int ) -> int:
if (row + column) % 2 == 0:
return self.get_minor(lowercase_ , lowercase_ )
return -1 * self.get_minor(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Optional[Any] ) -> Matrix:
return Matrix(
[
[self.get_minor(lowercase_ , lowercase_ ) for column in range(self.num_columns )]
for row in range(self.num_rows )
] )
def __UpperCamelCase ( self : Dict ) -> Matrix:
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns )
]
for row in range(self.minors().num_rows )
] )
def __UpperCamelCase ( self : int ) -> Matrix:
lowercase__ : Union[str, Any] = [
[self.cofactors().rows[column][row] for column in range(self.num_columns )]
for row in range(self.num_rows )
]
return Matrix(lowercase_ )
def __UpperCamelCase ( self : Tuple ) -> Matrix:
lowercase__ : List[str] = self.determinant()
if not determinant:
raise TypeError("Only matrices with a non-zero determinant have an inverse" )
return self.adjugate() * (1 / determinant)
def __repr__( self : List[Any] ) -> str:
return str(self.rows )
def __str__( self : List[str] ) -> str:
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0] ) ) + "]]"
return (
"["
+ "\n ".join(
[
"[" + ". ".join([str(lowercase_ ) for value in row] ) + ".]"
for row in self.rows
] )
+ "]"
)
def __UpperCamelCase ( self : int , lowercase_ : list[int] , lowercase_ : int | None = None ) -> None:
lowercase__ : Union[str, Any] = TypeError("Row must be a list containing all ints and/or floats" )
if not isinstance(lowercase_ , lowercase_ ):
raise type_error
for value in row:
if not isinstance(lowercase_ , (int, float) ):
raise type_error
if len(lowercase_ ) != self.num_columns:
raise ValueError(
"Row must be equal in length to the other rows in the matrix" )
if position is None:
self.rows.append(lowercase_ )
else:
lowercase__ : Union[str, Any] = self.rows[0:position] + [row] + self.rows[position:]
def __UpperCamelCase ( self : Optional[int] , lowercase_ : list[int] , lowercase_ : int | None = None ) -> None:
lowercase__ : Dict = TypeError(
"Column must be a list containing all ints and/or floats" )
if not isinstance(lowercase_ , lowercase_ ):
raise type_error
for value in column:
if not isinstance(lowercase_ , (int, float) ):
raise type_error
if len(lowercase_ ) != self.num_rows:
raise ValueError(
"Column must be equal in length to the other columns in the matrix" )
if position is None:
lowercase__ : str = [self.rows[i] + [column[i]] for i in range(self.num_rows )]
else:
lowercase__ : str = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows )
]
def __eq__( self : int , lowercase_ : object ) -> bool:
if not isinstance(lowercase_ , lowercase_ ):
return NotImplemented
return self.rows == other.rows
def __ne__( self : Union[str, Any] , lowercase_ : object ) -> bool:
return not self == other
def __neg__( self : Union[str, Any] ) -> Matrix:
return self * -1
def __add__( self : Optional[Any] , lowercase_ : Matrix ) -> Matrix:
if self.order != other.order:
raise ValueError("Addition requires matrices of the same order" )
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __sub__( self : str , lowercase_ : Matrix ) -> Matrix:
if self.order != other.order:
raise ValueError("Subtraction requires matrices of the same order" )
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __mul__( self : Any , lowercase_ : Matrix | int | float ) -> Matrix:
if isinstance(lowercase_ , (int, float) ):
return Matrix(
[[int(element * other ) for element in row] for row in self.rows] )
elif isinstance(lowercase_ , lowercase_ ):
if self.num_columns != other.num_rows:
raise ValueError(
"The number of columns in the first matrix must "
"be equal to the number of rows in the second" )
return Matrix(
[
[Matrix.dot_product(lowercase_ , lowercase_ ) for column in other.columns()]
for row in self.rows
] )
else:
raise TypeError(
"A Matrix can only be multiplied by an int, float, or another matrix" )
def __pow__( self : Optional[Any] , lowercase_ : int ) -> Matrix:
if not isinstance(lowercase_ , lowercase_ ):
raise TypeError("A Matrix can only be raised to the power of an int" )
if not self.is_square:
raise ValueError("Only square matrices can be raised to a power" )
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
"Only invertable matrices can be raised to a negative power" )
lowercase__ : Optional[Any] = self
for _ in range(other - 1 ):
result *= self
return result
@classmethod
def __UpperCamelCase ( cls : int , lowercase_ : list[int] , lowercase_ : list[int] ) -> int:
return sum(row[i] * column[i] for i in range(len(lowercase_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False):
try:
lowercase__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''')
return _value
UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skip("Test was skipped")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None):
if test_case is None:
return partial(_lowerCamelCase , version=_lowerCamelCase)
return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase)
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase)
class snake_case_ ( unittest.TestCase ):
__A : int = True
@classmethod
def __UpperCamelCase ( cls : str ) -> str:
lowercase__ : str = tempfile.mkdtemp()
@classmethod
def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCamelCase ( self : str ) -> Optional[int]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowercase_ )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str:
lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Optional[int] = tensor[None].clone().to(state.device)
lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu()
lowercase__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowerCamelCase):
return False
return True
class snake_case_ :
def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : int = returncode
lowercase__ : Dict = stdout
lowercase__ : List[Any] = stderr
async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str):
while True:
lowercase__ : int = await stream.readline()
if line:
callback(_lowerCamelCase)
else:
break
async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False):
if echo:
print("\nRunning: " , " ".join(_lowerCamelCase))
lowercase__ : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Tuple = []
lowercase__ : List[Any] = []
def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""):
lowercase__ : Optional[int] = line.decode("utf-8").rstrip()
sink.append(_lowerCamelCase)
if not quiet:
print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))),
] , timeout=_lowerCamelCase , )
return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True):
lowercase__ : Optional[Any] = asyncio.get_event_loop()
lowercase__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase))
lowercase__ : str = " ".join(_lowerCamelCase)
if result.returncode > 0:
lowercase__ : Dict = "\n".join(result.stderr)
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False):
try:
lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowerCamelCase , "decode"):
lowercase__ : Optional[Any] = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 333 | 1 |
import numpy as np
from PIL import Image
def lowercase_ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : int , _lowerCamelCase : int):
lowercase__ : str = np.array(_lowerCamelCase)
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix")
lowercase__ : Union[str, Any] = 0
lowercase__ : Dict = 0
lowercase__ : str = 0
lowercase__ : Union[str, Any] = 0
# compute the shape of the output matrix
lowercase__ : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
lowercase__ : List[Any] = np.zeros((maxpool_shape, maxpool_shape))
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
lowercase__ : str = np.max(arr[i : i + size, j : j + size])
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowercase__ : List[str] = 0
lowercase__ : Any = 0
return updated_arr
def lowercase_ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : int , _lowerCamelCase : int):
lowercase__ : int = np.array(_lowerCamelCase)
if arr.shape[0] != arr.shape[1]:
raise ValueError("The input array is not a square matrix")
lowercase__ : str = 0
lowercase__ : Any = 0
lowercase__ : Dict = 0
lowercase__ : List[Any] = 0
# compute the shape of the output matrix
lowercase__ : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
lowercase__ : Optional[Any] = np.zeros((avgpool_shape, avgpool_shape))
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
lowercase__ : str = int(np.average(arr[i : i + size, j : j + size]))
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowercase__ : List[Any] = 0
lowercase__ : Optional[int] = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='''avgpooling''', verbose=True)
# Loading the image
UpperCamelCase = Image.open('''path_to_image''')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 333 |
from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[Any] = ["flax"]
def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[int] = ["flax"]
def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[str] = ["flax"]
def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
| 333 | 1 |
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class snake_case_ :
def __init__( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any]=13 , lowercase_ : Optional[Any]=7 , lowercase_ : Optional[Any]=6 , lowercase_ : Optional[int]=17 , lowercase_ : str=23 , lowercase_ : Any=11 , lowercase_ : str=True , ) -> Optional[Any]:
lowercase__ : Optional[Any] = parent
lowercase__ : Tuple = batch_size
lowercase__ : str = seq_length
lowercase__ : List[Any] = act_dim
lowercase__ : List[str] = state_dim
lowercase__ : Union[str, Any] = hidden_size
lowercase__ : str = max_length
lowercase__ : Optional[Any] = is_training
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
lowercase__ : str = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
lowercase__ : List[str] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
lowercase__ : Tuple = floats_tensor((self.batch_size, self.seq_length, 1) )
lowercase__ : str = floats_tensor((self.batch_size, self.seq_length, 1) )
lowercase__ : Any = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 )
lowercase__ : Optional[Any] = random_attention_mask((self.batch_size, self.seq_length) )
lowercase__ : List[str] = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def __UpperCamelCase ( self : Dict , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , ) -> Optional[int]:
lowercase__ : Optional[int] = DecisionTransformerModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Any = model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def __UpperCamelCase ( self : str ) -> List[Any]:
lowercase__ : Union[str, Any] = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) : Dict = config_and_inputs
lowercase__ : Optional[Any] = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = (DecisionTransformerModel,) if is_torch_available() else ()
__A : Any = ()
__A : List[Any] = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
__A : List[Any] = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
__A : List[str] = False
__A : Union[str, Any] = False
__A : Dict = False
__A : Optional[int] = False
__A : Any = False
__A : Tuple = False
__A : Optional[int] = False
__A : int = False
__A : str = False
def __UpperCamelCase ( self : List[str] ) -> Tuple:
lowercase__ : Any = DecisionTransformerModelTester(self )
lowercase__ : int = ConfigTester(self , config_class=lowercase_ , hidden_size=37 )
def __UpperCamelCase ( self : int ) -> Optional[int]:
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : List[str] ) -> List[Any]:
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
@slow
def __UpperCamelCase ( self : int ) -> Optional[Any]:
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : str = DecisionTransformerModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
def __UpperCamelCase ( self : int ) -> List[str]:
lowercase__ , lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Union[str, Any] = model_class(lowercase_ )
lowercase__ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : Any = [*signature.parameters.keys()]
lowercase__ : Any = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(lowercase_ )] , lowercase_ )
@require_torch
class snake_case_ ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : Optional[int] = 2 # number of steps of autoregressive prediction we will perform
lowercase__ : int = 10 # defined by the RL environment, may be normalized
lowercase__ : List[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" )
lowercase__ : Optional[int] = model.to(lowercase_ )
lowercase__ : Any = model.config
torch.manual_seed(0 )
lowercase__ : Optional[Any] = torch.randn(1 , 1 , config.state_dim ).to(device=lowercase_ , dtype=torch.floataa ) # env.reset()
lowercase__ : Tuple = torch.tensor(
[[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowercase_ )
lowercase__ : List[Any] = torch.tensor(lowercase_ , device=lowercase_ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
lowercase__ : Tuple = state
lowercase__ : Optional[int] = torch.zeros(1 , 0 , config.act_dim , device=lowercase_ , dtype=torch.floataa )
lowercase__ : Union[str, Any] = torch.zeros(1 , 0 , device=lowercase_ , dtype=torch.floataa )
lowercase__ : Optional[Any] = torch.tensor(0 , device=lowercase_ , dtype=torch.long ).reshape(1 , 1 )
for step in range(lowercase_ ):
lowercase__ : str = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowercase_ )] , dim=1 )
lowercase__ : int = torch.cat([rewards, torch.zeros(1 , 1 , device=lowercase_ )] , dim=1 )
lowercase__ : int = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
lowercase__ , lowercase__ , lowercase__ : str = model(
states=lowercase_ , actions=lowercase_ , rewards=lowercase_ , returns_to_go=lowercase_ , timesteps=lowercase_ , attention_mask=lowercase_ , return_dict=lowercase_ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) )
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[Any] = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=lowercase_ , dtype=torch.floataa ),
1.0,
False,
{},
)
lowercase__ : Tuple = action_pred[0, -1]
lowercase__ : List[Any] = torch.cat([states, state] , dim=1 )
lowercase__ : Any = returns_to_go[0, -1] - reward
lowercase__ : str = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
lowercase__ : Optional[int] = torch.cat(
[timesteps, torch.ones((1, 1) , device=lowercase_ , dtype=torch.long ) * (step + 1)] , dim=1 )
| 333 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class snake_case_ ( __A ):
__A : List[str] = "vit_mae"
def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]:
super().__init__(**lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Any = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Any = num_channels
lowercase__ : str = qkv_bias
lowercase__ : Optional[Any] = decoder_num_attention_heads
lowercase__ : Any = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : Union[str, Any] = decoder_intermediate_size
lowercase__ : int = mask_ratio
lowercase__ : Tuple = norm_pix_loss
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
lowercase__ : List[Any] = []
lowercase__ : Any = set({"(", "[", "{"})
lowercase__ : Any = set({")", "]", "}"})
lowercase__ : Any = {"{": "}", "[": "]", "(": ")"}
for i in range(len(_lowerCamelCase)):
if s[i] in open_brackets:
stack.append(s[i])
elif s[i] in closed_brackets and (
len(_lowerCamelCase) == 0 or (len(_lowerCamelCase) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(_lowerCamelCase) == 0
def lowercase_ ( ):
lowercase__ : int = input("Enter sequence of brackets: ")
if is_balanced(_lowerCamelCase):
print(_lowerCamelCase , "is balanced")
else:
print(_lowerCamelCase , "is not balanced")
if __name__ == "__main__":
main()
| 333 |
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while a != 0:
lowercase__ , lowercase__ : Dict = b % a, a
return b
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if gcd(_lowerCamelCase , _lowerCamelCase) != 1:
lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m
while va != 0:
lowercase__ : Tuple = ua // va
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 333 | 1 |
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : List[str]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000):
lowercase__ : Optional[int] = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Tuple = sigmoid_function(_lowerCamelCase)
lowercase__ : Dict = np.dot(x.T , h - y) / y.size
lowercase__ : int = theta - alpha * gradient # updating the weights
lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : List[Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 333 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 1 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 |
import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 | 1 |
import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.