code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import math import qiskit def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1): if ( isinstance(_lowerCamelCase , _lowerCamelCase) or isinstance(_lowerCamelCase , _lowerCamelCase) or isinstance(_lowerCamelCase , _lowerCamelCase) ): raise TypeError("inputs must be integers.") if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive.") if ( (math.floor(_lowerCamelCase) != input_a) or (math.floor(_lowerCamelCase) != input_a) or (math.floor(_lowerCamelCase) != carry_in) ): raise ValueError("inputs must be exact integers.") if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2.") # build registers lowercase__ : List[Any] = qiskit.QuantumRegister(4 , "qr") lowercase__ : str = qiskit.ClassicalRegister(2 , "cr") # list the entries lowercase__ : Optional[Any] = [input_a, input_a, carry_in] lowercase__ : Dict = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase) for i in range(0 , 3): if entry[i] == 2: quantum_circuit.h(_lowerCamelCase) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowerCamelCase) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowerCamelCase) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3) # ccx = toffoli gate quantum_circuit.cx(0 , 1) quantum_circuit.ccx(1 , 2 , 3) quantum_circuit.cx(1 , 2) quantum_circuit.cx(0 , 1) quantum_circuit.measure([2, 3] , _lowerCamelCase) # measure the last two qbits lowercase__ : str = qiskit.Aer.get_backend("aer_simulator") lowercase__ : Optional[int] = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1000) return job.result().get_counts(_lowerCamelCase) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
333
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowercase_ ): lowercase__ : Optional[int] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) lowercase__ : str = FlaxAutoModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def __UpperCamelCase ( self : str ) -> Optional[Any]: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowercase_ ): lowercase__ : Optional[int] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) lowercase__ : List[Any] = FlaxAutoModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ : List[str] = AutoTokenizer.from_pretrained(lowercase_ ) lowercase__ : List[Any] = FlaxBertModel.from_pretrained(lowercase_ ) lowercase__ : Any = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowercase_ : List[str] ): return model(**lowercase_ ) eval(**lowercase_ ).block_until_ready() @slow def __UpperCamelCase ( self : List[str] ) -> List[str]: for model_name in ["roberta-base", "roberta-large"]: lowercase__ : int = AutoTokenizer.from_pretrained(lowercase_ ) lowercase__ : int = FlaxRobertaModel.from_pretrained(lowercase_ ) lowercase__ : Dict = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowercase_ : str ): return model(**lowercase_ ) eval(**lowercase_ ).block_until_ready() def __UpperCamelCase ( self : int ) -> Tuple: with self.assertRaisesRegex( lowercase_ , "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ : Tuple = FlaxAutoModel.from_pretrained("bert-base" ) def __UpperCamelCase ( self : Any ) -> Dict: with self.assertRaisesRegex( lowercase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ : Union[str, Any] = FlaxAutoModel.from_pretrained(lowercase_ , revision="aaaaaa" ) def __UpperCamelCase ( self : Dict ) -> Any: with self.assertRaisesRegex( lowercase_ , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): lowercase__ : int = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def __UpperCamelCase ( self : List[str] ) -> str: with self.assertRaisesRegex(lowercase_ , "Use `from_pt=True` to load this model" ): lowercase__ : Dict = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
333
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
1
UpperCamelCase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def lowercase_ ( _lowerCamelCase : float): assert type(_lowerCamelCase) in (int, float) and decimal == int(_lowerCamelCase) lowercase__ : Union[str, Any] = int(_lowerCamelCase) lowercase__ : Optional[Any] = "" lowercase__ : Any = False if decimal < 0: lowercase__ : str = True decimal *= -1 while decimal > 0: lowercase__ , lowercase__ : Optional[int] = divmod(_lowerCamelCase , 16) lowercase__ : Optional[Any] = values[remainder] + hexadecimal lowercase__ : Tuple = "0x" + hexadecimal if negative: lowercase__ : int = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
333
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
1
def lowercase_ ( _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 2**power lowercase__ : List[Any] = str(_lowerCamelCase) lowercase__ : List[Any] = list(_lowerCamelCase) lowercase__ : Optional[int] = 0 for i in list_num: sum_of_num += int(_lowerCamelCase) return sum_of_num if __name__ == "__main__": UpperCamelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) UpperCamelCase = solution(power) print('''Sum of the digits is: ''', result)
333
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
1
from collections.abc import Callable def lowercase_ ( _lowerCamelCase : Callable[[float], float] , _lowerCamelCase : float , _lowerCamelCase : float): lowercase__ : float = a lowercase__ : float = b if function(_lowerCamelCase) == 0: # one of the a or b is a root for the function return a elif function(_lowerCamelCase) == 0: return b elif ( function(_lowerCamelCase) * function(_lowerCamelCase) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval.") else: lowercase__ : float = start + (end - start) / 2.0 while abs(start - mid) > 10**-7: # until precisely equals to 10^-7 if function(_lowerCamelCase) == 0: return mid elif function(_lowerCamelCase) * function(_lowerCamelCase) < 0: lowercase__ : Optional[int] = mid else: lowercase__ : int = mid lowercase__ : List[Any] = start + (end - start) / 2.0 return mid def lowercase_ ( _lowerCamelCase : float): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
1
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class snake_case_ : def __init__( self : str , lowercase_ : List[str] , lowercase_ : Optional[int]=3 , lowercase_ : Optional[int]=32 , lowercase_ : Dict=3 , lowercase_ : int=10 , lowercase_ : int=[8, 16, 32, 64] , lowercase_ : Union[str, Any]=[1, 1, 2, 1] , lowercase_ : Optional[Any]=True , lowercase_ : List[str]=True , lowercase_ : str="relu" , lowercase_ : Optional[Any]=3 , lowercase_ : Any=None , lowercase_ : Union[str, Any]=["stage2", "stage3", "stage4"] , lowercase_ : Optional[int]=[2, 3, 4] , lowercase_ : Optional[Any]=1 , ) -> Optional[Any]: lowercase__ : Any = parent lowercase__ : Dict = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Union[str, Any] = num_channels lowercase__ : str = embeddings_size lowercase__ : Any = hidden_sizes lowercase__ : str = depths lowercase__ : List[Any] = is_training lowercase__ : Optional[int] = use_labels lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = num_labels lowercase__ : Tuple = scope lowercase__ : Union[str, Any] = len(lowercase_ ) lowercase__ : Any = out_features lowercase__ : Union[str, Any] = out_indices lowercase__ : Optional[Any] = num_groups def __UpperCamelCase ( self : Dict ) -> int: lowercase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Any ) -> List[str]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCamelCase ( self : str , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Dict ) -> Union[str, Any]: lowercase__ : Dict = BitModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : str = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str] ) -> int: lowercase__ : List[str] = self.num_labels lowercase__ : Optional[Any] = BitForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Dict = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Optional[int] ) -> str: lowercase__ : List[str] = BitBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Union[str, Any] = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ : Tuple = None lowercase__ : List[str] = BitBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Any = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs lowercase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : str = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __A : Dict = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) __A : Union[str, Any] = False __A : str = False __A : Dict = False __A : List[Any] = False __A : Union[str, Any] = False def __UpperCamelCase ( self : Dict ) -> Tuple: lowercase__ : Tuple = BitModelTester(self ) lowercase__ : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : Tuple ) -> Optional[int]: return @unittest.skip(reason="Bit does not output attentions" ) def __UpperCamelCase ( self : str ) -> List[str]: pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: pass def __UpperCamelCase ( self : Tuple ) -> Tuple: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(lowercase_ ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : List[str] = [*signature.parameters.keys()] lowercase__ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __UpperCamelCase ( self : Any ) -> Any: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[Any]: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(config=lowercase_ ) for name, module in model.named_modules(): if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __UpperCamelCase ( self : Any ) -> List[str]: def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : int ): lowercase__ : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : str = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : int = layer_type lowercase__ : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: pass def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def __UpperCamelCase ( self : str ) -> Any: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[int] = BitModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowercase_ ( ): lowercase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Union[str, Any] ) -> int: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : Tuple ) -> Dict: lowercase__ : Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : Tuple = prepare_img() lowercase__ : int = image_processor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase__ : str = model(**lowercase_ ) # verify the logits lowercase__ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase__ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @require_torch class snake_case_ ( __A ,unittest.TestCase ): __A : List[Any] = (BitBackbone,) if is_torch_available() else () __A : List[str] = BitConfig __A : List[str] = False def __UpperCamelCase ( self : int ) -> Tuple: lowercase__ : Any = BitModelTester(self )
333
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
1
import doctest from collections import deque import numpy as np class snake_case_ : def __init__( self : List[str] ) -> None: lowercase__ : Union[str, Any] = [2, 1, 2, -1] lowercase__ : Dict = [1, 2, 3, 4] def __UpperCamelCase ( self : Optional[int] ) -> list[float]: lowercase__ : List[str] = len(self.first_signal ) lowercase__ : Optional[int] = len(self.second_signal ) lowercase__ : Tuple = max(lowercase_ , lowercase_ ) # create a zero matrix of max_length x max_length lowercase__ : Union[str, Any] = [[0] * max_length for i in range(lowercase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase_ ): lowercase__ : List[Any] = deque(self.second_signal ) rotated_signal.rotate(lowercase_ ) for j, item in enumerate(lowercase_ ): matrix[i][j] += item # multiply the matrix with the first signal lowercase__ : Optional[int] = np.matmul(np.transpose(lowercase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
333
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) set_seed(770) UpperCamelCase = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } UpperCamelCase = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } UpperCamelCase = os.path.dirname(os.path.abspath(__file__)) UpperCamelCase = os.path.join(os.path.expanduser('''~'''), '''.cache''') UpperCamelCase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[str]=False): lowercase__ : Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(_lowerCamelCase , REMOTE_MODEL_PATHS[key]["file_name"]) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Dict): os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) hf_hub_download(repo_id=_lowerCamelCase , filename=_lowerCamelCase , local_dir=_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : List[Any]=False , _lowerCamelCase : Optional[int]="text"): if model_type == "text": lowercase__ : Dict = BarkSemanticModel lowercase__ : Optional[Any] = BarkSemanticConfig lowercase__ : Union[str, Any] = BarkSemanticGenerationConfig elif model_type == "coarse": lowercase__ : Union[str, Any] = BarkCoarseModel lowercase__ : Tuple = BarkCoarseConfig lowercase__ : List[str] = BarkCoarseGenerationConfig elif model_type == "fine": lowercase__ : Optional[int] = BarkFineModel lowercase__ : Union[str, Any] = BarkFineConfig lowercase__ : Optional[Any] = BarkFineGenerationConfig else: raise NotImplementedError() lowercase__ : Union[str, Any] = f'''{model_type}_small''' if use_small else model_type lowercase__ : str = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_lowerCamelCase): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''') _download(model_info["repo_id"] , model_info["file_name"]) lowercase__ : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase) # this is a hack lowercase__ : Dict = checkpoint["model_args"] if "input_vocab_size" not in model_args: lowercase__ : str = model_args["vocab_size"] lowercase__ : Union[str, Any] = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase__ : Union[str, Any] = model_args.pop("n_head") lowercase__ : int = model_args.pop("n_embd") lowercase__ : Optional[int] = model_args.pop("n_layer") lowercase__ : List[Any] = ConfigClass(**checkpoint["model_args"]) lowercase__ : List[str] = ModelClass(config=_lowerCamelCase) lowercase__ : int = GenerationConfigClass() lowercase__ : List[Any] = model_generation_config lowercase__ : Tuple = checkpoint["model"] # fixup checkpoint lowercase__ : Optional[Any] = "_orig_mod." for k, v in list(state_dict.items()): if k.startswith(_lowerCamelCase): # replace part of the key with corresponding layer name in HF implementation lowercase__ : List[str] = k[len(_lowerCamelCase) :] for old_layer_name in new_layer_name_dict: lowercase__ : Any = new_k.replace(_lowerCamelCase , new_layer_name_dict[old_layer_name]) lowercase__ : List[Any] = state_dict.pop(_lowerCamelCase) lowercase__ : int = set(state_dict.keys()) - set(model.state_dict().keys()) lowercase__ : Union[str, Any] = {k for k in extra_keys if not k.endswith(".attn.bias")} lowercase__ : List[Any] = set(model.state_dict().keys()) - set(state_dict.keys()) lowercase__ : List[str] = {k for k in missing_keys if not k.endswith(".attn.bias")} if len(_lowerCamelCase) != 0: raise ValueError(f'''extra keys found: {extra_keys}''') if len(_lowerCamelCase) != 0: raise ValueError(f'''missing keys: {missing_keys}''') model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase) lowercase__ : Optional[int] = model.num_parameters(exclude_embeddings=_lowerCamelCase) lowercase__ : Optional[int] = checkpoint["best_val_loss"].item() logger.info(f'''model loaded: {round(n_params/1E6 , 1)}M params, {round(_lowerCamelCase , 3)} loss''') model.eval() model.to(_lowerCamelCase) del checkpoint, state_dict return model def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False , _lowerCamelCase : Union[str, Any]="text"): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase__ : Union[str, Any] = "cpu" # do conversion on cpu lowercase__ : int = _get_ckpt_path(_lowerCamelCase , use_small=_lowerCamelCase) lowercase__ : List[str] = _load_model(_lowerCamelCase , _lowerCamelCase , model_type=_lowerCamelCase , use_small=_lowerCamelCase) # load bark initial model lowercase__ : Tuple = _bark_load_model(_lowerCamelCase , "cpu" , model_type=_lowerCamelCase , use_small=_lowerCamelCase) if model_type == "text": lowercase__ : str = bark_model["model"] if model.num_parameters(exclude_embeddings=_lowerCamelCase) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters") # check if same output as the bark model lowercase__ : Any = 5 lowercase__ : Any = 10 if model_type in ["text", "coarse"]: lowercase__ : List[str] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int) lowercase__ : Optional[Any] = bark_model(_lowerCamelCase)[0] lowercase__ : Dict = model(_lowerCamelCase) # take last logits lowercase__ : Union[str, Any] = output_new_model_total.logits[:, [-1], :] else: lowercase__ : int = 3 lowercase__ : Tuple = 8 lowercase__ : Dict = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int) lowercase__ : Optional[int] = model(_lowerCamelCase , _lowerCamelCase) lowercase__ : int = bark_model(_lowerCamelCase , _lowerCamelCase) lowercase__ : str = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape") if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal") Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) model.save_pretrained(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : Any , ): lowercase__ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = BarkSemanticConfig.from_pretrained(os.path.join(_lowerCamelCase , "config.json")) lowercase__ : Optional[int] = BarkCoarseConfig.from_pretrained(os.path.join(_lowerCamelCase , "config.json")) lowercase__ : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(_lowerCamelCase , "config.json")) lowercase__ : List[str] = EncodecConfig.from_pretrained("facebook/encodec_24khz") lowercase__ : int = BarkSemanticModel.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = BarkCoarseModel.from_pretrained(_lowerCamelCase) lowercase__ : Union[str, Any] = BarkFineModel.from_pretrained(_lowerCamelCase) lowercase__ : Optional[int] = EncodecModel.from_pretrained("facebook/encodec_24khz") lowercase__ : Optional[Any] = BarkConfig.from_sub_model_configs( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) lowercase__ : Any = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config) lowercase__ : Union[str, Any] = BarkModel(_lowerCamelCase) lowercase__ : Optional[Any] = semantic lowercase__ : Tuple = coarseAcoustic lowercase__ : Any = fineAcoustic lowercase__ : Any = codec lowercase__ : str = bark_generation_config Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) bark.save_pretrained(_lowerCamelCase , repo_id=_lowerCamelCase , push_to_hub=_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') UpperCamelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
333
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
1
from collections.abc import Sequence def lowercase_ ( _lowerCamelCase : Sequence[float] , _lowerCamelCase : bool = False): if not arr: return 0 lowercase__ : Optional[Any] = 0 if allow_empty_subarrays else float("-inf") lowercase__ : Dict = 0.0 for num in arr: lowercase__ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num) lowercase__ : Dict = max(_lowerCamelCase , _lowerCamelCase) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"{max_subarray_sum(nums) = }")
333
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
1
import math from datetime import datetime, timedelta def lowercase_ ( _lowerCamelCase : int): lowercase__ : Dict = year % 19 lowercase__ : int = year % 4 lowercase__ : Dict = year % 7 lowercase__ : int = math.floor(year / 100) lowercase__ : Tuple = math.floor((13 + 8 * leap_day_inhibits) / 25) lowercase__ : str = leap_day_inhibits / 4 lowercase__ : int = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowercase__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowercase__ : Union[str, Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowercase__ : Optional[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_lowerCamelCase , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_lowerCamelCase , 4 , 18) else: return datetime(_lowerCamelCase , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCamelCase = '''will be''' if year > datetime.now().year else '''was''' print(f"Easter in {year} {tense} {gauss_easter(year)}")
333
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
1
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : Any = ["transformers", "torch", "note_seq"] def __init__( self : List[str] , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ) -> str: requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : str , **lowercase_ : int ) -> Tuple: requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["transformers", "torch", "note_seq"] )
333
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
1
from ...configuration_utils import PretrainedConfig class snake_case_ ( __A ): __A : Optional[Any] = "bert-generation" def __init__( self : Optional[int] , lowercase_ : Any=5_03_58 , lowercase_ : List[Any]=10_24 , lowercase_ : Optional[Any]=24 , lowercase_ : Union[str, Any]=16 , lowercase_ : Tuple=40_96 , lowercase_ : List[Any]="gelu" , lowercase_ : str=0.1 , lowercase_ : Dict=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : Optional[int]=0.02 , lowercase_ : Dict=1E-12 , lowercase_ : Optional[Any]=0 , lowercase_ : str=2 , lowercase_ : int=1 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Union[str, Any]=True , **lowercase_ : Dict , ) -> Optional[int]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase__ : Tuple = vocab_size lowercase__ : Dict = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Union[str, Any] = num_attention_heads lowercase__ : int = hidden_act lowercase__ : int = intermediate_size lowercase__ : Any = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Optional[int] = initializer_range lowercase__ : List[Any] = layer_norm_eps lowercase__ : Any = position_embedding_type lowercase__ : Optional[int] = use_cache
333
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class snake_case_ ( __A ,unittest.TestCase ): __A : List[Any] = ShapEPipeline __A : Tuple = ["prompt"] __A : Any = ["prompt"] __A : Union[str, Any] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __A : Union[str, Any] = False @property def __UpperCamelCase ( self : Dict ) -> int: return 32 @property def __UpperCamelCase ( self : Union[str, Any] ) -> int: return 32 @property def __UpperCamelCase ( self : Dict ) -> Optional[int]: return self.time_input_dim * 4 @property def __UpperCamelCase ( self : List[str] ) -> Optional[int]: return 8 @property def __UpperCamelCase ( self : List[Any] ) -> Any: lowercase__ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def __UpperCamelCase ( self : Optional[int] ) -> Tuple: torch.manual_seed(0 ) lowercase__ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowercase__ : List[str] = PriorTransformer(**lowercase_ ) return model @property def __UpperCamelCase ( self : int ) -> str: torch.manual_seed(0 ) lowercase__ : Any = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowercase__ : List[Any] = ShapERenderer(**lowercase_ ) return model def __UpperCamelCase ( self : Any ) -> Tuple: lowercase__ : str = self.dummy_prior lowercase__ : int = self.dummy_text_encoder lowercase__ : Optional[Any] = self.dummy_tokenizer lowercase__ : Any = self.dummy_renderer lowercase__ : List[str] = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=lowercase_ , clip_sample=lowercase_ , clip_sample_range=1.0 , ) lowercase__ : Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[Any]=0 ) -> Tuple: if str(lowercase_ ).startswith("mps" ): lowercase__ : Dict = torch.manual_seed(lowercase_ ) else: lowercase__ : Dict = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Tuple = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def __UpperCamelCase ( self : Dict ) -> Any: lowercase__ : List[str] = "cpu" lowercase__ : List[str] = self.get_dummy_components() lowercase__ : Union[str, Any] = self.pipeline_class(**lowercase_ ) lowercase__ : Optional[int] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Optional[int] = pipe(**self.get_dummy_inputs(lowercase_ ) ) lowercase__ : Union[str, Any] = output.images[0] lowercase__ : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase__ : Optional[Any] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : List[str] ) -> Dict: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : List[str] = torch_device == "cpu" lowercase__ : Optional[int] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase_ , relax_max_difference=lowercase_ , ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**lowercase_ ) lowercase__ : List[str] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Any = 1 lowercase__ : Tuple = 2 lowercase__ : Tuple = self.get_dummy_inputs(lowercase_ ) for key in inputs.keys(): if key in self.batch_params: lowercase__ : Any = batch_size * [inputs[key]] lowercase__ : Any = pipe(**lowercase_ , num_images_per_prompt=lowercase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ) -> List[str]: lowercase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) lowercase__ : Union[str, Any] = ShapEPipeline.from_pretrained("openai/shap-e" ) lowercase__ : Optional[int] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(0 ) lowercase__ : Any = pipe( "a shark" , generator=lowercase_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
333
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
1
import argparse UpperCamelCase = '''docs/source/_static/js/custom.js''' def lowercase_ ( _lowerCamelCase : Tuple): with open(_lowerCamelCase , encoding="utf-8" , newline="\n") as f: lowercase__ : str = f.readlines() lowercase__ : Dict = 0 # First let's put the right version while not lines[index].startswith("const stableVersion ="): index += 1 lowercase__ : Optional[int] = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {"): index += 1 # We go until the end while not lines[index].startswith("}"): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') UpperCamelCase = parser.parse_args() update_custom_js(args.version)
333
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig UpperCamelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[Any] = "albert" def __init__( self : int , lowercase_ : Dict=3_00_00 , lowercase_ : List[Any]=1_28 , lowercase_ : List[str]=40_96 , lowercase_ : Optional[Any]=12 , lowercase_ : Optional[Any]=1 , lowercase_ : List[str]=64 , lowercase_ : Optional[int]=1_63_84 , lowercase_ : Union[str, Any]=1 , lowercase_ : Optional[Any]="gelu_new" , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[int]=0 , lowercase_ : int=5_12 , lowercase_ : int=2 , lowercase_ : Any=0.02 , lowercase_ : List[str]=1E-12 , lowercase_ : List[str]=0.1 , lowercase_ : List[Any]="absolute" , lowercase_ : Any=0 , lowercase_ : Dict=2 , lowercase_ : List[str]=3 , **lowercase_ : Union[str, Any] , ) -> List[str]: super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase__ : Optional[int] = vocab_size lowercase__ : List[Any] = embedding_size lowercase__ : Any = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : int = num_hidden_groups lowercase__ : str = num_attention_heads lowercase__ : str = inner_group_num lowercase__ : List[str] = hidden_act lowercase__ : int = intermediate_size lowercase__ : int = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : List[Any] = max_position_embeddings lowercase__ : str = type_vocab_size lowercase__ : Dict = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Union[str, Any] = classifier_dropout_prob lowercase__ : Union[str, Any] = position_embedding_type class snake_case_ ( __A ): @property def __UpperCamelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
333
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') UpperCamelCase = ( subprocess.check_output(f"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode('''utf-8''').split() ) UpperCamelCase = '''|'''.join(sys.argv[1:]) UpperCamelCase = re.compile(Rf"^({joined_dirs}).*?\.py$") UpperCamelCase = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
333
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Union[str, Any] = "mvp" __A : int = ["past_key_values"] __A : int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , lowercase_ : Optional[int]=5_02_67 , lowercase_ : int=10_24 , lowercase_ : List[Any]=12 , lowercase_ : List[str]=40_96 , lowercase_ : Dict=16 , lowercase_ : Union[str, Any]=12 , lowercase_ : Any=40_96 , lowercase_ : Optional[Any]=16 , lowercase_ : str=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : int="gelu" , lowercase_ : str=10_24 , lowercase_ : Dict=0.1 , lowercase_ : Dict=0.0 , lowercase_ : Dict=0.0 , lowercase_ : str=0.02 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[Any]=True , lowercase_ : int=1 , lowercase_ : List[str]=0 , lowercase_ : Optional[Any]=2 , lowercase_ : int=True , lowercase_ : Dict=2 , lowercase_ : Optional[int]=2 , lowercase_ : str=False , lowercase_ : int=1_00 , lowercase_ : List[Any]=8_00 , **lowercase_ : Dict , ) -> Tuple: lowercase__ : Optional[Any] = vocab_size lowercase__ : List[str] = max_position_embeddings lowercase__ : str = d_model lowercase__ : List[Any] = encoder_ffn_dim lowercase__ : Optional[int] = encoder_layers lowercase__ : Union[str, Any] = encoder_attention_heads lowercase__ : List[str] = decoder_ffn_dim lowercase__ : int = decoder_layers lowercase__ : List[Any] = decoder_attention_heads lowercase__ : Dict = dropout lowercase__ : List[Any] = attention_dropout lowercase__ : int = activation_dropout lowercase__ : Union[str, Any] = activation_function lowercase__ : Tuple = init_std lowercase__ : Tuple = encoder_layerdrop lowercase__ : Optional[int] = decoder_layerdrop lowercase__ : Tuple = classifier_dropout lowercase__ : int = use_cache lowercase__ : Tuple = encoder_layers lowercase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : List[str] = use_prompt lowercase__ : Dict = prompt_length lowercase__ : Union[str, Any] = prompt_mid_dim super().__init__( pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , lowercase_ ): lowercase__ : Tuple = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed." )
333
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase = {'''facebook/blenderbot_small-90M''': 512} def lowercase_ ( _lowerCamelCase : Optional[int]): lowercase__ : Optional[Any] = set() lowercase__ : int = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowercase__ : Dict = char lowercase__ : Optional[Any] = set(_lowerCamelCase) return pairs class snake_case_ ( __A ): __A : List[Any] = VOCAB_FILES_NAMES __A : List[Any] = PRETRAINED_VOCAB_FILES_MAP __A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : str = ["input_ids", "attention_mask"] def __init__( self : List[str] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[Any]="__start__" , lowercase_ : Tuple="__end__" , lowercase_ : Optional[Any]="__unk__" , lowercase_ : Union[str, Any]="__null__" , **lowercase_ : Optional[int] , ) -> List[str]: super().__init__(unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: lowercase__ : Union[str, Any] = json.load(lowercase_ ) lowercase__ : str = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding="utf-8" ) as merges_handle: lowercase__ : List[Any] = merges_handle.read().split("\n" )[1:-1] lowercase__ : Dict = [tuple(merge.split() ) for merge in merges] lowercase__ : Optional[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : str = {} @property def __UpperCamelCase ( self : Optional[int] ) -> int: return len(self.encoder ) def __UpperCamelCase ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : Dict , lowercase_ : str ) -> str: if token in self.cache: return self.cache[token] lowercase__ : Optional[Any] = re.sub("([.,!?()])" , R" \1" , lowercase_ ) lowercase__ : Tuple = re.sub("(')" , R" \1 " , lowercase_ ) lowercase__ : Dict = re.sub(R"\s{2,}" , " " , lowercase_ ) if "\n" in token: lowercase__ : Any = token.replace("\n" , " __newln__" ) lowercase__ : List[Any] = token.split(" " ) lowercase__ : Union[str, Any] = [] for token in tokens: if not len(lowercase_ ): continue lowercase__ : Any = token.lower() lowercase__ : Dict = tuple(lowercase_ ) lowercase__ : Any = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) lowercase__ : int = get_pairs(lowercase_ ) if not pairs: words.append(lowercase_ ) continue while True: lowercase__ : Any = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : str = bigram lowercase__ : Dict = [] lowercase__ : str = 0 while i < len(lowercase_ ): try: lowercase__ : Any = word.index(lowercase_ , lowercase_ ) new_word.extend(word[i:j] ) lowercase__ : Union[str, Any] = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : List[Any] = tuple(lowercase_ ) lowercase__ : Tuple = new_word if len(lowercase_ ) == 1: break else: lowercase__ : Tuple = get_pairs(lowercase_ ) lowercase__ : List[Any] = "@@ ".join(lowercase_ ) lowercase__ : List[Any] = word[:-4] lowercase__ : Tuple = word words.append(lowercase_ ) return " ".join(lowercase_ ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : str ) -> List[str]: lowercase__ : str = [] lowercase__ : Optional[Any] = re.findall(R"\S+\n?" , lowercase_ ) for token in words: split_tokens.extend(list(self.bpe(lowercase_ ).split(" " ) ) ) return split_tokens def __UpperCamelCase ( self : List[str] , lowercase_ : str ) -> int: lowercase__ : str = token.lower() return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple , lowercase_ : int ) -> str: return self.decoder.get(lowercase_ , self.unk_token ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> str: lowercase__ : Dict = " ".join(lowercase_ ).replace("@@ " , "" ).strip() return out_string def __UpperCamelCase ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : str = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) lowercase__ : Optional[int] = 0 with open(lowercase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowercase__ : Any = token_index writer.write(" ".join(lowercase_ ) + "\n" ) index += 1 return vocab_file, merge_file
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
1
def lowercase_ ( _lowerCamelCase : int): lowercase__ : Optional[Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
333
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
1
import math def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float): if ( not isinstance(_lowerCamelCase , (int, float)) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1.") return apparent_power * power_factor def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float): if ( not isinstance(_lowerCamelCase , (int, float)) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1.") return apparent_power * math.sqrt(1 - power_factor**2) if __name__ == "__main__": import doctest doctest.testmod()
333
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : def __init__( self : List[str] , lowercase_ : List[str] , lowercase_ : List[str]=13 , lowercase_ : List[str]=7 , lowercase_ : str=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=True , lowercase_ : Optional[int]=False , lowercase_ : List[str]=False , lowercase_ : Optional[int]=False , lowercase_ : Dict=2 , lowercase_ : Optional[int]=99 , lowercase_ : List[Any]=0 , lowercase_ : str=32 , lowercase_ : Any=5 , lowercase_ : str=4 , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=5_12 , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : str=2 , lowercase_ : Any=4 , lowercase_ : str="last" , lowercase_ : Optional[Any]=True , lowercase_ : Any=None , lowercase_ : Dict=0 , ) -> Optional[int]: lowercase__ : Optional[Any] = parent lowercase__ : str = batch_size lowercase__ : List[str] = seq_length lowercase__ : Optional[Any] = is_training lowercase__ : int = use_input_lengths lowercase__ : List[str] = use_token_type_ids lowercase__ : str = use_labels lowercase__ : int = gelu_activation lowercase__ : List[Any] = sinusoidal_embeddings lowercase__ : Union[str, Any] = causal lowercase__ : Union[str, Any] = asm lowercase__ : Optional[int] = n_langs lowercase__ : Union[str, Any] = vocab_size lowercase__ : List[Any] = n_special lowercase__ : Tuple = hidden_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : Any = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : List[str] = max_position_embeddings lowercase__ : Optional[Any] = type_sequence_label_size lowercase__ : Tuple = initializer_range lowercase__ : Dict = num_labels lowercase__ : Optional[Any] = num_choices lowercase__ : str = summary_type lowercase__ : Optional[Any] = use_proj lowercase__ : Any = scope lowercase__ : int = bos_token_id def __UpperCamelCase ( self : Any ) -> List[str]: lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Union[str, Any] = None if self.use_input_lengths: lowercase__ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ : Optional[Any] = None lowercase__ : Optional[int] = None lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , 2 ).float() lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Union[str, Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCamelCase ( self : Tuple ) -> str: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Dict , ) -> Union[str, Any]: lowercase__ : Dict = XLMModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : List[str] = model(lowercase_ , lengths=lowercase_ , langs=lowercase_ ) lowercase__ : Optional[int] = model(lowercase_ , langs=lowercase_ ) lowercase__ : List[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Optional[int] , ) -> int: lowercase__ : Optional[Any] = XLMWithLMHeadModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Tuple = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : str , lowercase_ : Any , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : int , ) -> str: lowercase__ : Union[str, Any] = XLMForQuestionAnsweringSimple(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Any = model(lowercase_ ) lowercase__ : Union[str, Any] = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) lowercase__ : Union[str, Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : str , ) -> Union[str, Any]: lowercase__ : List[Any] = XLMForQuestionAnswering(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Dict = model(lowercase_ ) lowercase__ : List[Any] = model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , p_mask=lowercase_ , ) lowercase__ : int = model( lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , ) ((lowercase__) , ) : Tuple = result_with_labels.to_tuple() lowercase__ : Tuple = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) ((lowercase__) , ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : int , ) -> Union[str, Any]: lowercase__ : Dict = XLMForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : List[str] = model(lowercase_ ) lowercase__ : List[str] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , ) -> List[Any]: lowercase__ : Union[str, Any] = self.num_labels lowercase__ : Any = XLMForTokenClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Dict , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : Any , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Dict , ) -> str: lowercase__ : Optional[Any] = self.num_choices lowercase__ : int = XLMForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : str = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: lowercase__ : Any = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : List[Any] = config_and_inputs lowercase__ : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : List[Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __A : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __A : Union[str, Any] = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Tuple=False ) -> Union[str, Any]: lowercase__ : Dict = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) lowercase__ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: lowercase__ : Tuple = XLMModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=lowercase_ , emb_dim=37 ) def __UpperCamelCase ( self : List[Any] ) -> Dict: self.config_tester.run_common_tests() def __UpperCamelCase ( self : str ) -> Tuple: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowercase_ ) def __UpperCamelCase ( self : str ) -> Dict: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Dict: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowercase_ ) def __UpperCamelCase ( self : int ) -> Tuple: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowercase_ ) def __UpperCamelCase ( self : Any ) -> Dict: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowercase_ ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=1 ) -> str: self.assertIsInstance(lowercase_ , lowercase_ ) self.assertListEqual( [isinstance(lowercase_ , lowercase_ ) for iter_attentions in attentions] , [True] * len(lowercase_ ) ) self.assertEqual(len(lowercase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowercase_ ): # adds PAD dummy token lowercase__ : Optional[Any] = min_length + idx + 1 lowercase__ : Any = min_length + idx + 1 lowercase__ : str = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowercase_ ) ) def __UpperCamelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Tuple=False , lowercase_ : Union[str, Any]=1 ) -> List[str]: self.assertIsInstance(lowercase_ , lowercase_ ) self.assertListEqual( [isinstance(lowercase_ , lowercase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowercase_ ) , ) self.assertEqual(len(lowercase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowercase_ ): # adds PAD dummy token lowercase__ : str = min_length + idx + 1 lowercase__ : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowercase_ ) , ) pass @slow def __UpperCamelCase ( self : int ) -> List[Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : List[Any] = XLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_torch class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : int = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(lowercase_ ) lowercase__ : Optional[int] = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowercase_ ) # the president lowercase__ : Any = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase__ : Dict = model.generate(lowercase_ , do_sample=lowercase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowercase_ )
333
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase = random.Random() def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any]=1.0 , _lowerCamelCase : Dict=None , _lowerCamelCase : Optional[int]=None): if rng is None: lowercase__ : int = global_rng lowercase__ : List[Any] = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class snake_case_ ( unittest.TestCase ): def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[int]=7 , lowercase_ : Union[str, Any]=4_00 , lowercase_ : Any=20_00 , lowercase_ : Any=1 , lowercase_ : Optional[int]=0.0 , lowercase_ : Union[str, Any]=1_60_00 , lowercase_ : Union[str, Any]=True , lowercase_ : List[Any]=True , ) -> Tuple: lowercase__ : str = parent lowercase__ : Any = batch_size lowercase__ : Union[str, Any] = min_seq_length lowercase__ : List[str] = max_seq_length lowercase__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : str = feature_size lowercase__ : Any = padding_value lowercase__ : Dict = sampling_rate lowercase__ : Union[str, Any] = return_attention_mask lowercase__ : str = do_normalize def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase ( self : str , lowercase_ : str=False , lowercase_ : Tuple=False ) -> Optional[Any]: def _flatten(lowercase_ : List[str] ): return list(itertools.chain(*lowercase_ ) ) if equal_length: lowercase__ : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ : str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : Optional[Any] = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[Any] = WavaVecaFeatureExtractor def __UpperCamelCase ( self : Optional[int] ) -> str: lowercase__ : Dict = WavaVecaFeatureExtractionTester(self ) def __UpperCamelCase ( self : Any , lowercase_ : Optional[Any] ) -> Optional[int]: self.assertTrue(np.all(np.mean(lowercase_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0 ) - 1 ) < 1E-3 ) ) def __UpperCamelCase ( self : int ) -> Dict: # Tests that all call wrap to encode_plus and batch_encode_plus lowercase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : int = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input lowercase__ : List[str] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Dict = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test batched lowercase__ : Union[str, Any] = feat_extract(lowercase_ , return_tensors="np" ).input_values lowercase__ : Dict = feat_extract(lowercase_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : Tuple = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowercase__ : Union[str, Any] = np.asarray(lowercase_ ) lowercase__ : str = feat_extract(lowercase_ , return_tensors="np" ).input_values lowercase__ : Optional[Any] = feat_extract(lowercase_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def __UpperCamelCase ( self : Any ) -> Optional[Any]: lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : Any = ["longest", "max_length", "do_not_pad"] lowercase__ : Tuple = [None, 16_00, None] for max_length, padding in zip(lowercase_ , lowercase_ ): lowercase__ : str = feat_extract(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors="np" ) lowercase__ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def __UpperCamelCase ( self : Tuple ) -> str: lowercase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Optional[Any] = range(8_00 , 14_00 , 2_00 ) lowercase__ : Dict = [floats_list((1, x) )[0] for x in lengths] lowercase__ : Union[str, Any] = ["longest", "max_length", "do_not_pad"] lowercase__ : Optional[int] = [None, 16_00, None] for max_length, padding in zip(lowercase_ , lowercase_ ): lowercase__ : Any = feat_extract(lowercase_ , max_length=lowercase_ , padding=lowercase_ ) lowercase__ : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : List[str] = feat_extract( lowercase_ , truncation=lowercase_ , max_length=10_00 , padding="max_length" , return_tensors="np" ) lowercase__ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : Tuple = feat_extract( lowercase_ , truncation=lowercase_ , max_length=10_00 , padding="longest" , return_tensors="np" ) lowercase__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : str = feat_extract( lowercase_ , truncation=lowercase_ , max_length=20_00 , padding="longest" , return_tensors="np" ) lowercase__ : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def __UpperCamelCase ( self : Any ) -> List[Any]: import torch lowercase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Any = np.random.rand(1_00 ).astype(np.floataa ) lowercase__ : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Any = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ : int = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowercase__ : Optional[Any] = WavaVecaConfig.from_pretrained(lowercase_ ) lowercase__ : Dict = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
333
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
1
import os from distutils.util import strtobool def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Optional[Any]): for e in env_keys: lowercase__ : Any = int(os.environ.get(_lowerCamelCase , -1)) if val >= 0: return val return default def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any]=False): lowercase__ : int = os.environ.get(_lowerCamelCase , str(_lowerCamelCase)) return strtobool(_lowerCamelCase) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : List[str]="no"): lowercase__ : List[str] = os.environ.get(_lowerCamelCase , str(_lowerCamelCase)) return value
333
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : str = None __A : List[Any] = BloomTokenizerFast __A : Optional[Any] = BloomTokenizerFast __A : Optional[int] = True __A : Any = False __A : List[Any] = "tokenizer_file" __A : str = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def __UpperCamelCase ( self : List[str] ) -> Dict: super().setUp() lowercase__ : Any = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Optional[Any] , **lowercase_ : Tuple ) -> List[str]: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : List[Any] = self.get_rust_tokenizer() lowercase__ : Dict = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowercase__ : Optional[Any] = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] lowercase__ : Any = tokenizer.batch_encode_plus(lowercase_ )["input_ids"] self.assertListEqual(lowercase_ , lowercase_ ) lowercase__ : Any = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Tuple=6 ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ : List[Any] = "This is a simple input" lowercase__ : Optional[int] = ["This is a simple input 1", "This is a simple input 2"] lowercase__ : int = ("This is a simple input", "This is a pair") lowercase__ : Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(lowercase_ , max_length=lowercase_ ) tokenizer_r.encode_plus(lowercase_ , max_length=lowercase_ ) tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ ) tokenizer_r.encode(lowercase_ , max_length=lowercase_ ) tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowercase__ : Optional[Any] = None # Hotfixing padding = None self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) def __UpperCamelCase ( self : Optional[int] ) -> Any: lowercase__ : int = self.get_rust_tokenizer() lowercase__ : Union[str, Any] = load_dataset("xnli" , "all_languages" , split="test" , streaming=lowercase_ ) lowercase__ : Tuple = next(iter(lowercase_ ) )["premise"] # pick up one data lowercase__ : List[str] = list(sample_data.values() ) lowercase__ : Union[str, Any] = list(map(tokenizer.encode , lowercase_ ) ) lowercase__ : Union[str, Any] = [tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) for x in output_tokens] self.assertListEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
333
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
1
import math from numpy import inf from scipy.integrate import quad def lowercase_ ( _lowerCamelCase : float): if num <= 0: raise ValueError("math domain error") return quad(_lowerCamelCase , 0 , _lowerCamelCase , args=(_lowerCamelCase))[0] def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float): return math.pow(_lowerCamelCase , z - 1) * math.exp(-x) if __name__ == "__main__": from doctest import testmod testmod()
333
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
1
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while second != 0: lowercase__ : List[Any] = first & second first ^= second lowercase__ : Optional[int] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input('''Enter the first number: ''').strip()) UpperCamelCase = int(input('''Enter the second number: ''').strip()) print(f"{add(first, second) = }")
333
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class snake_case_ ( __A ): __A : Tuple = "trajectory_transformer" __A : Tuple = ["past_key_values"] __A : Union[str, Any] = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , lowercase_ : Any=1_00 , lowercase_ : List[Any]=5 , lowercase_ : Tuple=1 , lowercase_ : Dict=1 , lowercase_ : Any=2_49 , lowercase_ : Tuple=6 , lowercase_ : Optional[int]=17 , lowercase_ : Dict=25 , lowercase_ : List[str]=4 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[int]=1_28 , lowercase_ : str=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.00_06 , lowercase_ : Tuple=5_12 , lowercase_ : Any=0.02 , lowercase_ : Any=1E-12 , lowercase_ : int=1 , lowercase_ : List[Any]=True , lowercase_ : int=1 , lowercase_ : Dict=5_02_56 , lowercase_ : Any=5_02_56 , **lowercase_ : Any , ) -> str: lowercase__ : List[str] = vocab_size lowercase__ : List[str] = action_weight lowercase__ : Optional[Any] = reward_weight lowercase__ : Any = value_weight lowercase__ : Tuple = max_position_embeddings lowercase__ : Any = block_size lowercase__ : str = action_dim lowercase__ : int = observation_dim lowercase__ : Any = transition_dim lowercase__ : Optional[int] = learning_rate lowercase__ : Union[str, Any] = n_layer lowercase__ : Optional[Any] = n_head lowercase__ : List[str] = n_embd lowercase__ : Union[str, Any] = embd_pdrop lowercase__ : List[Any] = attn_pdrop lowercase__ : List[str] = resid_pdrop lowercase__ : Union[str, Any] = initializer_range lowercase__ : Union[str, Any] = layer_norm_eps lowercase__ : Optional[int] = kaiming_initializer_range lowercase__ : Any = use_cache super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {} class snake_case_ ( SCREAMING_SNAKE_CASE_ ): __A : int = "llama" __A : Dict = ["past_key_values"] def __init__( self : Any , lowercase_ : List[str]=3_20_00 , lowercase_ : Union[str, Any]=40_96 , lowercase_ : Optional[Any]=1_10_08 , lowercase_ : Any=32 , lowercase_ : str=32 , lowercase_ : Optional[int]=None , lowercase_ : Dict="silu" , lowercase_ : Dict=20_48 , lowercase_ : List[str]=0.02 , lowercase_ : Union[str, Any]=1E-6 , lowercase_ : Dict=True , lowercase_ : List[str]=0 , lowercase_ : Tuple=1 , lowercase_ : Tuple=2 , lowercase_ : Optional[Any]=1 , lowercase_ : Any=False , lowercase_ : Tuple=None , **lowercase_ : List[Any] , ) -> Optional[int]: lowercase__ : str = vocab_size lowercase__ : List[str] = max_position_embeddings lowercase__ : List[Any] = hidden_size lowercase__ : Union[str, Any] = intermediate_size lowercase__ : Optional[int] = num_hidden_layers lowercase__ : List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowercase__ : Optional[int] = num_attention_heads lowercase__ : Optional[Any] = num_key_value_heads lowercase__ : int = hidden_act lowercase__ : Any = initializer_range lowercase__ : Any = rms_norm_eps lowercase__ : Union[str, Any] = pretraining_tp lowercase__ : Optional[int] = use_cache lowercase__ : Any = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'''got {self.rope_scaling}''' ) lowercase__ : Optional[Any] = self.rope_scaling.get("type" , __a ) lowercase__ : Tuple = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
import qiskit def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): lowercase__ : str = qiskit.Aer.get_backend("aer_simulator") lowercase__ : Any = qiskit.QuantumCircuit(4 , 2) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0) if bita == 1: qc_ha.x(1) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2) qc_ha.cx(1 , 2) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0) # extract XOR value qc_ha.measure(3 , 1) # extract AND value # Execute the circuit on the qasm simulator lowercase__ : List[Any] = qiskit.execute(lowercase__ , lowercase__ , shots=1000) # Return the histogram data of the results of the experiment return job.result().get_counts(lowercase__) if __name__ == "__main__": UpperCamelCase = half_adder(1, 1) print(f"Half Adder Output Qubit Counts: {counts}")
351
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor UpperCamelCase = logging.get_logger(__name__) class snake_case_ ( _UpperCAmelCase ): def __init__( self : Tuple , *lowercase_ : Optional[int] , **lowercase_ : List[str] ) -> str: warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
352
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
0
def lowercase_ ( _lowerCamelCase : list): lowercase__ : Dict = len(__lowerCAmelCase) for i in range(1 , __lowerCAmelCase): lowercase__ : Optional[Any] = collection[i] lowercase__ : Dict = 0 lowercase__ : Any = i - 1 while low <= high: lowercase__ : List[Any] = (low + high) // 2 if val < collection[mid]: lowercase__ : List[Any] = mid - 1 else: lowercase__ : Tuple = mid + 1 for j in range(__lowerCAmelCase , __lowerCAmelCase , -1): lowercase__ : Union[str, Any] = collection[j - 1] lowercase__ : Dict = val return collection if __name__ == "__main__": UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
353
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
0
UpperCamelCase = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) UpperCamelCase = frozenset([]) UpperCamelCase = frozenset(['''image''']) UpperCamelCase = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) UpperCamelCase = frozenset(['''image''']) UpperCamelCase = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) UpperCamelCase = frozenset(['''prompt''', '''image''', '''negative_prompt''']) UpperCamelCase = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) UpperCamelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) UpperCamelCase = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) UpperCamelCase = frozenset(['''image''', '''mask_image''']) UpperCamelCase = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) UpperCamelCase = frozenset(['''example_image''', '''image''', '''mask_image''']) UpperCamelCase = frozenset(['''class_labels''']) UpperCamelCase = frozenset(['''class_labels''']) UpperCamelCase = frozenset(['''batch_size''']) UpperCamelCase = frozenset([]) UpperCamelCase = frozenset(['''batch_size''']) UpperCamelCase = frozenset([]) UpperCamelCase = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) UpperCamelCase = frozenset(['''input_tokens''']) UpperCamelCase = frozenset(['''input_tokens'''])
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
0
import requests from bsa import BeautifulSoup def lowercase_ ( _lowerCamelCase : str = "https://www.worldometers.info/coronavirus"): lowercase__ : List[str] = BeautifulSoup(requests.get(__a).text , "html.parser") lowercase__ : Dict = soup.findAll("h1") lowercase__ : Union[str, Any] = soup.findAll("div" , {"class": "maincounter-number"}) keys += soup.findAll("span" , {"class": "panel-title"}) values += soup.findAll("div" , {"class": "number-table-main"}) return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a)} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f"{key}\n{value}\n")
355
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
0
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : int): # Construct model if gpta_config_file == "": lowercase__ : Any = GPTaConfig() else: lowercase__ : int = GPTaConfig.from_json_file(__snake_case) lowercase__ : List[Any] = GPTaModel(__snake_case) # Load weights from numpy load_tf_weights_in_gpta(__snake_case , __snake_case , __snake_case) # Save pytorch-model lowercase__ : Tuple = pytorch_dump_folder_path + "/" + WEIGHTS_NAME lowercase__ : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path}''') torch.save(model.state_dict() , __snake_case) print(f'''Save configuration file to {pytorch_config_dump_path}''') with open(__snake_case , "w" , encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) UpperCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
def lowercase_ ( _lowerCamelCase : list): lowercase__ : Tuple = 0 while len(__A) > 1: lowercase__ : Optional[Any] = 0 # Consider two files with minimum cost to be merged for _ in range(2): lowercase__ : Optional[Any] = files.index(min(__A)) temp += files[min_index] files.pop(__A) files.append(__A) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
357
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
0
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ : def __init__( self : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[int]=12 , lowercase_ : Optional[Any]=7 , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=True , lowercase_ : Optional[int]=99 , lowercase_ : Dict=32 , lowercase_ : Union[str, Any]=32 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=4 , lowercase_ : List[Any]=37 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : int=5_12 , lowercase_ : Tuple=0.02 , lowercase_ : Any=0 , lowercase_ : str=None , ) -> Optional[Any]: lowercase__ : str = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = seq_length lowercase__ : List[Any] = is_training lowercase__ : Union[str, Any] = use_input_mask lowercase__ : List[str] = use_labels lowercase__ : int = vocab_size lowercase__ : Any = hidden_size lowercase__ : List[Any] = projection_dim lowercase__ : Dict = num_hidden_layers lowercase__ : Dict = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : int = dropout lowercase__ : int = attention_dropout lowercase__ : Dict = max_position_embeddings lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = scope lowercase__ : Union[str, Any] = bos_token_id def __UpperCamelCase ( self : Any ) -> str: lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Union[str, Any] = None if self.use_input_mask: lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase__ : int = input_mask.numpy() lowercase__ : Tuple = input_mask.shape lowercase__ : Any = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCamelCase ): lowercase__ : Optional[int] = 1 lowercase__ : List[str] = 0 lowercase__ : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCamelCase ) def __UpperCamelCase ( self : str ) -> Dict: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[int] ) -> Dict: lowercase__ : List[str] = TFBlipTextModel(config=_UpperCamelCase ) lowercase__ : List[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , training=_UpperCamelCase ) lowercase__ : Any = model(_UpperCamelCase , training=_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCamelCase ( self : List[str] ) -> int: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() lowercase__ : str = config_and_inputs lowercase__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class snake_case_ ( lowercase__ ,unittest.TestCase ): __A : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else () __A : int = False __A : List[Any] = False __A : Dict = False def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : List[str] = BlipTextModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: self.config_tester.run_common_tests() def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> str: pass def __UpperCamelCase ( self : Tuple ) -> Optional[int]: pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def __UpperCamelCase ( self : Any ) -> int: pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def __UpperCamelCase ( self : List[Any] ) -> Dict: pass @slow def __UpperCamelCase ( self : Any ) -> Union[str, Any]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __UpperCamelCase ( self : Dict , lowercase_ : Tuple=True ) -> Dict: super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
358
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
0
import math def lowercase_ ( _lowerCamelCase : List[Any] = 100): lowercase__ : str = sum(i * i for i in range(1 , n + 1)) lowercase__ : Optional[Any] = int(math.pow(sum(range(1 , n + 1)) , 2)) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"{solution() = }")
359
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowercase_ ( _lowerCamelCase : Optional[int]): lowercase__ : int = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): lowercase__ : Tuple = emb.weight.shape lowercase__ : str = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase) lowercase__ : List[Any] = emb.weight.data return lin_layer def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=None): lowercase__ : Dict = {} for old_key in state_dict.keys(): lowercase__ : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowercase__ : Any = key.replace("moe_layer.experts.0" , f'''ffn.experts.expert_{expert_idx}''') else: lowercase__ : Dict = key.replace("moe_layer.experts." , "ffn.experts.expert_") if "gate" in key: lowercase__ : Tuple = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier") if "fc2" and "experts" not in key: lowercase__ : Dict = key.replace(".fc2." , ".ffn.fc2.") if "fc1" and "experts" not in key: lowercase__ : Optional[int] = key.replace(".fc1." , ".ffn.fc1.") if ".encoder_attn." in key: lowercase__ : Optional[int] = key.replace(".encoder_attn." , ".cross_attention.") if "encoder_attn_layer_norm" in key: lowercase__ : Any = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm") if "final_layer_norm" in key: lowercase__ : str = key.replace("final_layer_norm" , "ff_layer_norm") lowercase__ : Dict = state_dict[old_key] return new_dict def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : str = WEIGHTS_NAME): lowercase__ : Any = [] lowercase__ : Union[str, Any] = 0 os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase) for expert in range(__lowerCamelCase): lowercase__ : List[Any] = switch_checkpoint_path + f'''-rank-{expert}.pt''' if os.path.isfile(__lowerCamelCase): lowercase__ : Optional[int] = torch.load(__lowerCamelCase)["model"] remove_ignore_keys_(__lowerCamelCase) lowercase__ : List[str] = rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase) lowercase__ : Any = os.path.join( __lowerCamelCase , weights_name.replace(".bin" , f'''-{len(__lowerCamelCase)+1:05d}-of-???.bin''')) torch.save(__lowerCamelCase , __lowerCamelCase) sharded_state_dicts.append(expert_state.keys()) total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( expert_state[list(__lowerCamelCase)[0]].dtype) # Add the last block lowercase__ : Tuple = os.path.join(__lowerCamelCase , weights_name.replace(".bin" , f'''-{len(__lowerCamelCase)+1:05d}-of-???.bin''')) lowercase__ : List[Any] = torch.load(switch_checkpoint_path + "-shared.pt")["model"] remove_ignore_keys_(__lowerCamelCase) lowercase__ : Any = rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase) lowercase__ : Any = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys()) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowerCamelCase) == 1: lowercase__ : Dict = os.path.join(__lowerCamelCase , __lowerCamelCase) torch.save(__lowerCamelCase , __lowerCamelCase) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowerCamelCase , __lowerCamelCase) # Otherwise, let's build the index lowercase__ : str = {} for idx, shard in enumerate(__lowerCamelCase): lowercase__ : Optional[int] = weights_name.replace(".bin" , f'''-{idx+1:05d}-of-{len(__lowerCamelCase):05d}.bin''') lowercase__ : Tuple = os.path.join(__lowerCamelCase , weights_name.replace(".bin" , f'''-{idx+1:05d}-of-???.bin''')) os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase)) for key in shard: lowercase__ : int = shard_file # Add the metadata lowercase__ : Optional[int] = {"total_size": total_size} lowercase__ : Dict = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "w" , encoding="utf-8") as f: lowercase__ : int = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase) + "\n" f.write(__lowerCamelCase) return metadata, index if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) UpperCamelCase = parser.parse_args() UpperCamelCase , UpperCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCamelCase = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
360
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
0
from __future__ import annotations def lowercase_ ( _lowerCamelCase : list): if not nums: raise ValueError("List is empty") return sum(lowerCAmelCase__) / len(lowerCAmelCase__) if __name__ == "__main__": import doctest doctest.testmod()
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowercase_ ( ): """simple docstring""" lowercase__ : Optional[Any] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } lowercase__ : Tuple = Dataset.from_dict(lowercase__) return dataset class snake_case_ ( __A ): def __UpperCamelCase ( self : Tuple ) -> List[str]: lowercase__ : int = get_dataset() lowercase__ : List[Any] = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: lowercase__ : List[Any] = get_dataset() lowercase__ : str = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowercase_ )
362
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
0
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any , ): lowercase__ : int = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters): raise ValueError("All input parameters must be positive") if any(p > 1 for p in parameters[1:4]): raise ValueError("Relative densities cannot be greater than one") else: lowercase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) lowercase__ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase__ : List[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " ,a_ ,) class snake_case_ ( a_ ): __A : Union[str, Any] = RobertaConfig __A : Any = '''roberta''' def __init__( self : Any , lowercase_ : List[Any] ) -> Tuple: super().__init__(lowercase_ ) lowercase__ : str = RobertaEmbeddings(lowercase_ ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " ,a_ ,) class snake_case_ ( a_ ): __A : Optional[int] = RobertaConfig __A : Union[str, Any] = '''roberta''' def __init__( self : str , lowercase_ : str ) -> Union[str, Any]: super().__init__(lowercase_ ) lowercase__ : Tuple = config.num_labels lowercase__ : str = config.num_hidden_layers lowercase__ : str = DeeRobertaModel(lowercase_ ) lowercase__ : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowercase__ : Any = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : List[str]=None , lowercase_ : List[Any]=None , lowercase_ : Tuple=None , lowercase_ : List[Any]=None , lowercase_ : List[Any]=-1 , lowercase_ : Union[str, Any]=False , ) -> Dict: lowercase__ : List[str] = self.num_layers try: lowercase__ : List[Any] = self.roberta( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , ) lowercase__ : str = outputs[1] lowercase__ : Optional[Any] = self.dropout(lowercase_ ) lowercase__ : str = self.classifier(lowercase_ ) lowercase__ : Tuple = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowercase__ : List[str] = e.message lowercase__ : Optional[int] = e.exit_layer lowercase__ : str = outputs[0] if not self.training: lowercase__ : Union[str, Any] = entropy(lowercase_ ) lowercase__ : str = [] lowercase__ : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowercase__ : List[Any] = MSELoss() lowercase__ : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowercase__ : Union[str, Any] = CrossEntropyLoss() lowercase__ : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowercase__ : List[Any] = [] for highway_exit in outputs[-1]: lowercase__ : Any = highway_exit[0] if not self.training: highway_logits_all.append(lowercase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowercase__ : Optional[Any] = MSELoss() lowercase__ : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowercase__ : int = CrossEntropyLoss() lowercase__ : Union[str, Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowercase_ ) if train_highway: lowercase__ : Optional[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowercase__ : int = (loss,) + outputs if not self.training: lowercase__ : List[str] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowercase__ : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
364
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
0
def lowercase_ ( _lowerCamelCase : int): if not isinstance(__a , __a): lowercase__ : Any = f'''Input value of [number={number}] must be an integer''' raise TypeError(__a) if number < 0: return False lowercase__ : Tuple = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
365
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') UpperCamelCase = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) UpperCamelCase = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) UpperCamelCase = BeautifulSoup(res.text, '''html.parser''') UpperCamelCase = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(f"https://google.com{link.get('href')}")
366
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
0
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((input_a, input_a).count(1) != 0) def lowercase_ ( ): assert or_gate(0 , 0) == 0 assert or_gate(0 , 1) == 1 assert or_gate(1 , 0) == 1 assert or_gate(1 , 1) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
367
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
0
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : Optional[Any]): lowercase__ : Optional[int] = R"\w+[.]\d+" lowercase__ : Dict = re.findall(_UpperCamelCase , _UpperCamelCase) for pat in pats: lowercase__ : int = key.replace(_UpperCamelCase , "_".join(pat.split("."))) return key def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]): lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase__ : List[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase__ : str = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase__ : str = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase__ : Any = pt_tensor.transpose(2 , 3 , 1 , 0) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowercase__ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ : List[str] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ : Dict = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any]=42): # Step 1: Convert pytorch tensor to numpy lowercase__ : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase__ : Optional[Any] = flax_model.init_weights(PRNGKey(_UpperCamelCase)) lowercase__ : Optional[Any] = flatten_dict(_UpperCamelCase) lowercase__ : Optional[int] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ : str = rename_key(_UpperCamelCase) lowercase__ : Union[str, Any] = tuple(renamed_pt_key.split(".")) # Correctly rename weight parameters lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''') # also add unexpected weight so that warning is thrown lowercase__ : Dict = jnp.asarray(_UpperCamelCase) return unflatten_dict(_UpperCamelCase)
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case_ ( a__ ,unittest.TestCase ): __A : int = BioGptTokenizer __A : Tuple = False def __UpperCamelCase ( self : str ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase__ : Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) lowercase__ : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowercase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(_lowerCamelCase ) ) def __UpperCamelCase ( self : List[str] , lowercase_ : Any ) -> Any: lowercase__ : List[str] = '''lower newer''' lowercase__ : Optional[Any] = '''lower newer''' return input_text, output_text def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = BioGptTokenizer(self.vocab_file , self.merges_file ) lowercase__ : Optional[Any] = '''lower''' lowercase__ : Optional[Any] = ['''low''', '''er</w>'''] lowercase__ : Optional[int] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) lowercase__ : Any = tokens + ['''<unk>'''] lowercase__ : Any = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @slow def __UpperCamelCase ( self : int ) -> str: lowercase__ : int = BioGptTokenizer.from_pretrained("microsoft/biogpt" ) lowercase__ : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=_lowerCamelCase ) lowercase__ : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCamelCase ) lowercase__ : List[str] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
369
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } UpperCamelCase = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } UpperCamelCase = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } UpperCamelCase = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCamelCase = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCamelCase = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class snake_case_ ( _UpperCAmelCase ): __A : Any = VOCAB_FILES_NAMES __A : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __A : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class snake_case_ ( _UpperCAmelCase ): __A : int = VOCAB_FILES_NAMES __A : Dict = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __A : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) UpperCamelCase = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class snake_case_ : def __call__( self : int , lowercase_ : int , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Union[bool, str] = False , lowercase_ : Union[bool, str] = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[bool] = None , **lowercase_ : int , ) -> Any: if titles is None and texts is None: return super().__call__( lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) elif titles is None or texts is None: lowercase__ : Tuple = titles if texts is None else texts return super().__call__( lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) lowercase__ : List[Any] = titles if not isinstance(lowercase_ , lowercase_ ) else [titles] lowercase__ : Dict = texts if not isinstance(lowercase_ , lowercase_ ) else [texts] lowercase__ : List[Any] = len(lowercase_ ) lowercase__ : Optional[Any] = questions if not isinstance(lowercase_ , lowercase_ ) else [questions] * n_passages if len(lowercase_ ) != len(lowercase_ ): raise ValueError( F'''There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts.''' ) lowercase__ : Any = super().__call__(lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""] lowercase__ : str = super().__call__(lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""] lowercase__ : List[Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase_ , lowercase_ ) ] } if return_attention_mask is not False: lowercase__ : int = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ : int = attention_mask return self.pad(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : BatchEncoding , lowercase_ : DPRReaderOutput , lowercase_ : int = 16 , lowercase_ : int = 64 , lowercase_ : int = 4 , ) -> Optional[Any]: lowercase__ : Optional[int] = reader_input["""input_ids"""] lowercase__ : Optional[int] = reader_output[:3] lowercase__ : Union[str, Any] = len(lowercase_ ) lowercase__ : List[Any] = sorted(range(lowercase_ ) , reverse=lowercase_ , key=relevance_logits.__getitem__ ) lowercase__ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowercase__ : Optional[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ : Any = sequence_ids.index(self.pad_token_id ) else: lowercase__ : Dict = len(lowercase_ ) lowercase__ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase_ , top_spans=lowercase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase_ , start_index=lowercase_ , end_index=lowercase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowercase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCamelCase ( self : Dict , lowercase_ : List[int] , lowercase_ : List[int] , lowercase_ : int , lowercase_ : int , ) -> Dict: lowercase__ : Tuple = [] for start_index, start_score in enumerate(lowercase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ : str = sorted(lowercase_ , key=lambda lowercase_ : x[1] , reverse=lowercase_ ) lowercase__ : Dict = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) lowercase__ : Optional[int] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class snake_case_ ( _UpperCAmelCase ,_UpperCAmelCase ): __A : Any = VOCAB_FILES_NAMES __A : Optional[int] = READER_PRETRAINED_VOCAB_FILES_MAP __A : Any = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[Any] = READER_PRETRAINED_INIT_CONFIGURATION __A : Any = ["input_ids", "attention_mask"]
371
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
0
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class snake_case_ ( __lowercase ,unittest.TestCase ): __A : Union[str, Any] = BarthezTokenizer __A : Tuple = BarthezTokenizerFast __A : Optional[int] = True __A : List[Any] = True def __UpperCamelCase ( self : Dict ) -> List[str]: super().setUp() lowercase__ : Dict = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_a ) lowercase__ : Union[str, Any] = tokenizer def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Optional[Any] = "<pad>" lowercase__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCamelCase ( self : List[str] ) -> List[str]: lowercase__ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_a ) , 10_11_22 ) def __UpperCamelCase ( self : int ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 ) @require_torch def __UpperCamelCase ( self : Any ) -> int: lowercase__ : Dict = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ : Optional[Any] = [0, 57, 30_18, 7_03_07, 91, 2] lowercase__ : int = self.tokenizer( _a , max_length=len(_a ) , padding=_a , truncation=_a , return_tensors="pt" ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowercase__ : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Tuple ) -> int: if not self.test_rust_tokenizer: return lowercase__ : Dict = self.get_tokenizer() lowercase__ : Tuple = self.get_rust_tokenizer() lowercase__ : Optional[Any] = "I was born in 92000, and this is falsé." lowercase__ : Tuple = tokenizer.tokenize(_a ) lowercase__ : Optional[int] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase__ : Optional[Any] = tokenizer.encode(_a , add_special_tokens=_a ) lowercase__ : Optional[Any] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase__ : Tuple = self.get_rust_tokenizer() lowercase__ : int = tokenizer.encode(_a ) lowercase__ : Any = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) @slow def __UpperCamelCase ( self : Dict ) -> Dict: # fmt: off lowercase__ : Union[str, Any] = {"input_ids": [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowercase__ : Union[str, Any] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=_a , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=_a , )
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int): return [ int(1000 * (box[0] / width)), int(1000 * (box[1] / height)), int(1000 * (box[2] / width)), int(1000 * (box[3] / height)), ] def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] = None): lowercase__ : List[Any] = tesseract_config if tesseract_config is not None else "" # apply OCR lowercase__ : Optional[Any] = to_pil_image(__lowerCamelCase) lowercase__ : Optional[Any] = pil_image.size lowercase__ : Any = pytesseract.image_to_data(__lowerCamelCase , lang=__lowerCamelCase , output_type="dict" , config=__lowerCamelCase) lowercase__ : Optional[int] = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates lowercase__ : Optional[int] = [idx for idx, word in enumerate(__lowerCamelCase) if not word.strip()] lowercase__ : Union[str, Any] = [word for idx, word in enumerate(__lowerCamelCase) if idx not in irrelevant_indices] lowercase__ : Union[str, Any] = [coord for idx, coord in enumerate(__lowerCamelCase) if idx not in irrelevant_indices] lowercase__ : Optional[int] = [coord for idx, coord in enumerate(__lowerCamelCase) if idx not in irrelevant_indices] lowercase__ : Dict = [coord for idx, coord in enumerate(__lowerCamelCase) if idx not in irrelevant_indices] lowercase__ : Tuple = [coord for idx, coord in enumerate(__lowerCamelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase__ : int = [] for x, y, w, h in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase): lowercase__ : Any = [x, y, x + w, y + h] actual_boxes.append(__lowerCamelCase) # finally, normalize the bounding boxes lowercase__ : int = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase)) assert len(__lowerCamelCase) == len(__lowerCamelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class snake_case_ ( lowercase__ ): __A : int = ["""pixel_values"""] def __init__( self : Dict , lowercase_ : List[Any] = True , lowercase_ : Dict = None , lowercase_ : Dict = PILImageResampling.BILINEAR , lowercase_ : Any = True , lowercase_ : Dict = None , lowercase_ : Union[str, Any] = "" , **lowercase_ : List[str] , ) -> Tuple: super().__init__(**lowercase_ ) lowercase__ : Dict = size if size is not None else {"height": 2_24, "width": 2_24} lowercase__ : Any = get_size_dict(lowercase_ ) lowercase__ : List[Any] = do_resize lowercase__ : List[str] = size lowercase__ : int = resample lowercase__ : List[Any] = apply_ocr lowercase__ : Tuple = ocr_lang lowercase__ : Optional[Any] = tesseract_config def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] = PILImageResampling.BILINEAR , lowercase_ : Union[str, Any] = None , **lowercase_ : Tuple , ) -> Any: lowercase__ : Union[str, Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase__ : int = (size["height"], size["width"]) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Union[str, Any] = None , lowercase_ : List[str] = None , lowercase_ : List[str] = None , lowercase_ : Optional[int] = None , lowercase_ : Union[str, Any] = None , lowercase_ : Union[str, Any] = None , lowercase_ : Optional[Any] = None , lowercase_ : Union[str, Any] = ChannelDimension.FIRST , **lowercase_ : Tuple , ) -> int: lowercase__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase__ : Union[str, Any] = size if size is not None else self.size lowercase__ : Union[str, Any] = get_size_dict(lowercase_ ) lowercase__ : int = resample if resample is not None else self.resample lowercase__ : Dict = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase__ : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase__ : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase__ : List[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. lowercase__ : Tuple = [to_numpy_array(lowercase_ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) lowercase__ : Any = [] lowercase__ : List[Any] = [] for image in images: lowercase__ : List[str] = apply_tesseract(lowercase_ , lowercase_ , lowercase_ ) words_batch.append(lowercase_ ) boxes_batch.append(lowercase_ ) if do_resize: lowercase__ : Tuple = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase__ : str = [flip_channel_order(lowercase_ ) for image in images] lowercase__ : int = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase__ : List[Any] = BatchFeature(data={"pixel_values": images} , tensor_type=lowercase_ ) if apply_ocr: lowercase__ : Any = words_batch lowercase__ : Dict = boxes_batch return data
351
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel UpperCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } UpperCamelCase = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : str=False): lowercase__ : Union[str, Any] = create_model( "HTSAT-tiny" , "roberta" , _snake_case , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_snake_case , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : Any = {} lowercase__ : Tuple = r'''.*sequential.(\d+).*''' lowercase__ : Dict = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase__ : str = key.replace(_snake_case , _snake_case) if re.match(_snake_case , _snake_case): # replace sequential layers with list lowercase__ : int = re.match(_snake_case , _snake_case).group(1) lowercase__ : Optional[int] = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(_snake_case)//3}.linear.''') elif re.match(_snake_case , _snake_case): lowercase__ : Union[str, Any] = int(re.match(_snake_case , _snake_case).group(1)) # Because in CLAP they use `nn.Sequential`... lowercase__ : Any = 1 if projecton_layer == 0 else 2 lowercase__ : Dict = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''') if "audio" and "qkv" in key: # split qkv into query key and value lowercase__ : str = value lowercase__ : Optional[Any] = mixed_qkv.size(0) // 3 lowercase__ : Tuple = mixed_qkv[:qkv_dim] lowercase__ : int = mixed_qkv[qkv_dim : qkv_dim * 2] lowercase__ : List[Any] = mixed_qkv[qkv_dim * 2 :] lowercase__ : Optional[int] = query_layer lowercase__ : Optional[Any] = key_layer lowercase__ : Optional[int] = value_layer else: lowercase__ : Optional[Any] = value return model_state_dict def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=False): lowercase__ : Optional[int] = init_clap(_snake_case , enable_fusion=_snake_case) clap_model.eval() lowercase__ : str = clap_model.state_dict() lowercase__ : int = rename_state_dict(_snake_case) lowercase__ : Dict = ClapConfig() lowercase__ : Tuple = enable_fusion lowercase__ : str = ClapModel(_snake_case) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case) model.save_pretrained(_snake_case) transformers_config.save_pretrained(_snake_case) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') UpperCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
352
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """Hello world! cécé herlolip""" def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : List[str]): lowercase__ : Any = FairseqRobertaModel.from_pretrained(_A) roberta.eval() # disable dropout lowercase__ : Tuple = roberta.model.encoder.sentence_encoder lowercase__ : List[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowercase__ : List[Any] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print("Our RoBERTa config:" , _A) lowercase__ : List[str] = XLMRobertaXLForSequenceClassification(_A) if classification_head else XLMRobertaXLForMaskedLM(_A) model.eval() # Now let's copy all the weights. # Embeddings lowercase__ : Optional[int] = roberta_sent_encoder.embed_tokens.weight lowercase__ : Optional[Any] = roberta_sent_encoder.embed_positions.weight lowercase__ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c RoBERTa doesn't use them. lowercase__ : Dict = roberta_sent_encoder.layer_norm.weight lowercase__ : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers): # Encoder: start of layer lowercase__ : BertLayer = model.roberta.encoder.layer[i] lowercase__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowercase__ : RobertaAttention = layer.attention lowercase__ : int = roberta_layer.self_attn_layer_norm.weight lowercase__ : str = roberta_layer.self_attn_layer_norm.bias # self attention lowercase__ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ) lowercase__ : Optional[Any] = roberta_layer.self_attn.q_proj.weight lowercase__ : Union[str, Any] = roberta_layer.self_attn.q_proj.bias lowercase__ : Optional[Any] = roberta_layer.self_attn.k_proj.weight lowercase__ : Dict = roberta_layer.self_attn.k_proj.bias lowercase__ : List[Any] = roberta_layer.self_attn.v_proj.weight lowercase__ : Optional[int] = roberta_layer.self_attn.v_proj.bias # self-attention output lowercase__ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowercase__ : Tuple = roberta_layer.self_attn.out_proj.weight lowercase__ : Dict = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowercase__ : Dict = roberta_layer.final_layer_norm.weight lowercase__ : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate lowercase__ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowercase__ : List[Any] = roberta_layer.fca.weight lowercase__ : int = roberta_layer.fca.bias # output lowercase__ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowercase__ : Tuple = roberta_layer.fca.weight lowercase__ : Tuple = roberta_layer.fca.bias # end of layer if classification_head: lowercase__ : str = roberta.model.classification_heads['mnli'].dense.weight lowercase__ : Optional[int] = roberta.model.classification_heads['mnli'].dense.bias lowercase__ : Optional[Any] = roberta.model.classification_heads['mnli'].out_proj.weight lowercase__ : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowercase__ : List[Any] = roberta.model.encoder.lm_head.dense.weight lowercase__ : Dict = roberta.model.encoder.lm_head.dense.bias lowercase__ : Any = roberta.model.encoder.lm_head.layer_norm.weight lowercase__ : Dict = roberta.model.encoder.lm_head.layer_norm.bias lowercase__ : int = roberta.model.encoder.lm_head.weight lowercase__ : List[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase__ : torch.Tensor = roberta.encode(_A).unsqueeze(0) # batch of size 1 lowercase__ : int = model(_A)[0] if classification_head: lowercase__ : List[Any] = roberta.model.classification_heads['mnli'](roberta.extract_features(_A)) else: lowercase__ : Dict = roberta.model(_A)[0] print(our_output.shape , their_output.shape) lowercase__ : List[str] = torch.max(torch.abs(our_output - their_output)).item() print(f'''max_absolute_diff = {max_absolute_diff}''') # ~ 1e-7 lowercase__ : List[Any] = torch.allclose(_A , _A , atol=1E-3) print("Do both models output the same tensors?" , "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") pathlib.Path(_A).mkdir(parents=_A , exist_ok=_A) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_A) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) UpperCamelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
353
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
0
def lowercase_ ( _lowerCamelCase : dict): lowercase__ : Optional[int] = set() # edges = list of graph's edges lowercase__ : Optional[int] = get_edges(_lowerCamelCase) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowercase__ , lowercase__ : int = edges.pop() chosen_vertices.add(_lowerCamelCase) chosen_vertices.add(_lowerCamelCase) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowerCamelCase) return chosen_vertices def lowercase_ ( _lowerCamelCase : dict): lowercase__ : str = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node)) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
0
def lowercase_ ( _lowerCamelCase : str): if not all(char in "01" for char in bin_string): raise ValueError("Non-binary value was passed to the function") if not bin_string: raise ValueError("Empty string was passed to the function") lowercase__ : Any = """""" while len(snake_case_) % 3 != 0: lowercase__ : List[str] = """0""" + bin_string lowercase__ : Tuple = [ bin_string[index : index + 3] for index in range(len(snake_case_)) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowercase__ : int = 0 for index, val in enumerate(snake_case_): oct_val += int(2 ** (2 - index) * int(snake_case_)) oct_string += str(snake_case_) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
355
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class snake_case_ : def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[Any]=14 , lowercase_ : str=7 , lowercase_ : str=True , lowercase_ : int=True , lowercase_ : List[Any]=False , lowercase_ : Any=True , lowercase_ : Any=99 , lowercase_ : Any=32 , lowercase_ : Any=4 , lowercase_ : int=4 , lowercase_ : str=4 , lowercase_ : Tuple=37 , lowercase_ : Dict="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[Any]=5_12 , lowercase_ : List[str]=0.02 , ) -> Tuple: lowercase__ : List[Any] = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : Dict = seq_length lowercase__ : Optional[Any] = is_training lowercase__ : Optional[int] = use_input_mask lowercase__ : Optional[Any] = use_token_type_ids lowercase__ : Optional[Any] = use_labels lowercase__ : Any = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : Any = rotary_dim lowercase__ : str = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : Optional[Any] = max_position_embeddings lowercase__ : Union[str, Any] = initializer_range lowercase__ : int = None lowercase__ : Union[str, Any] = vocab_size - 1 lowercase__ : str = vocab_size - 1 lowercase__ : Optional[int] = vocab_size - 1 def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Optional[int] = None if self.use_input_mask: lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : Optional[int] = self.prepare_config_and_inputs() lowercase__ : List[str] = config_and_inputs lowercase__ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def __UpperCamelCase ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Tuple ) -> Tuple: lowercase__ : str = 20 lowercase__ : Dict = model_class_name(lowercase_ ) lowercase__ : Optional[int] = model.init_cache(input_ids.shape[0] , lowercase_ ) lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowercase__ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowercase__ : Dict = model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) lowercase__ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) lowercase__ : List[str] = model( input_ids[:, -1:] , attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowercase_ , ) lowercase__ : Any = model(lowercase_ ) lowercase__ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Any ) -> str: lowercase__ : int = 20 lowercase__ : List[Any] = model_class_name(lowercase_ ) lowercase__ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowercase__ : Optional[int] = model.init_cache(input_ids.shape[0] , lowercase_ ) lowercase__ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowercase__ : Tuple = model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) lowercase__ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) lowercase__ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowercase_ , position_ids=lowercase_ , ) lowercase__ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ ) lowercase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class snake_case_ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __A : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __A : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __UpperCamelCase ( self : Any ) -> Any: lowercase__ : List[str] = FlaxGPTJModelTester(self ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: for model_class_name in self.all_model_classes: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Tuple ) -> Any: for model_class_name in self.all_model_classes: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) @tooslow def __UpperCamelCase ( self : int ) -> str: lowercase__ : Optional[int] = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) lowercase__ : Tuple = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=lowercase_ , truncation=lowercase_ ) lowercase__ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) lowercase__ : List[str] = False lowercase__ : Optional[Any] = model.config.eos_token_id lowercase__ : List[Any] = jax.jit(model.generate ) lowercase__ : Any = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences lowercase__ : str = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowercase__ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowercase_ , lowercase_ ) @is_pt_flax_cross_test def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowercase__ : int = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Dict = getattr(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = pt_inputs["""input_ids"""].shape lowercase__ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowercase_ ): lowercase__ : Optional[Any] = 0 lowercase__ : Any = 1 lowercase__ : Tuple = 0 lowercase__ : List[Any] = 1 lowercase__ : Tuple = pt_model_class(lowercase_ ).eval() lowercase__ : List[str] = model_class(lowercase_ , dtype=jnp.floataa ) lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase__ : List[str] = fx_state with torch.no_grad(): lowercase__ : List[str] = pt_model(**lowercase_ ).to_tuple() lowercase__ : int = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase__ : Optional[int] = model_class.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase__ : Union[str, Any] = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual( len(lowercase_ ) , len(lowercase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowercase__ : str = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase__ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase__ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase__ : Any = getattr(lowercase_ , lowercase_ ) lowercase__ : str = pt_model_class(lowercase_ ).eval() lowercase__ : Any = model_class(lowercase_ , dtype=jnp.floataa ) lowercase__ : Union[str, Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) lowercase__ : List[Any] = pt_inputs["""input_ids"""].shape lowercase__ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowercase_ ): lowercase__ : Any = 0 lowercase__ : Optional[int] = 1 lowercase__ : Tuple = 0 lowercase__ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase__ : List[str] = pt_model(**lowercase_ ).to_tuple() lowercase__ : Tuple = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase__ : Optional[Any] = pt_model_class.from_pretrained(lowercase_ , from_flax=lowercase_ ) with torch.no_grad(): lowercase__ : Dict = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual( len(lowercase_ ) , len(lowercase_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(lowercase_ , lowercase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __UpperCamelCase ( self : str ) -> Optional[Any]: for model_class_name in self.all_model_classes: lowercase__ : Optional[Any] = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) lowercase__ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase_ )
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class snake_case_ ( __lowerCamelCase ): __A : Union[str, Any] = 'yolos' def __init__( self : Dict , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : int=12 , lowercase_ : int=30_72 , lowercase_ : List[str]="gelu" , lowercase_ : Union[str, Any]=0.0 , lowercase_ : int=0.0 , lowercase_ : Optional[int]=0.02 , lowercase_ : Dict=1E-12 , lowercase_ : List[Any]=[5_12, 8_64] , lowercase_ : Optional[int]=16 , lowercase_ : Any=3 , lowercase_ : Union[str, Any]=True , lowercase_ : List[str]=1_00 , lowercase_ : List[str]=True , lowercase_ : Any=False , lowercase_ : Optional[Any]=1 , lowercase_ : Any=5 , lowercase_ : Any=2 , lowercase_ : Tuple=5 , lowercase_ : str=2 , lowercase_ : Any=0.1 , **lowercase_ : Any , ) -> Optional[Any]: super().__init__(**UpperCamelCase_ ) lowercase__ : Dict = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : str = intermediate_size lowercase__ : List[Any] = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : List[Any] = initializer_range lowercase__ : Any = layer_norm_eps lowercase__ : Optional[int] = image_size lowercase__ : Optional[Any] = patch_size lowercase__ : Any = num_channels lowercase__ : Any = qkv_bias lowercase__ : Union[str, Any] = num_detection_tokens lowercase__ : Optional[Any] = use_mid_position_embeddings lowercase__ : int = auxiliary_loss # Hungarian matcher lowercase__ : str = class_cost lowercase__ : str = bbox_cost lowercase__ : List[Any] = giou_cost # Loss coefficients lowercase__ : int = bbox_loss_coefficient lowercase__ : Any = giou_loss_coefficient lowercase__ : Union[str, Any] = eos_coefficient class snake_case_ ( __lowerCamelCase ): __A : Tuple = version.parse("1.11" ) @property def __UpperCamelCase ( self : Any ) -> int: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __UpperCamelCase ( self : Dict ) -> int: return 1E-4 @property def __UpperCamelCase ( self : Dict ) -> List[Any]: return 12
357
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : int ) -> Any: if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=__lowerCAmelCase , ) assert hasattr(self , "env" ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] ) -> int: lowercase__ : List[Any] = F'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings lowercase__ : Dict = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCAmelCase , instance_count=__lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCAmelCase , py_version="py36" , ) def __UpperCamelCase ( self : List[str] , lowercase_ : List[str] ) -> Any: TrainingJobAnalytics(__lowerCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def __UpperCamelCase ( self : int , lowercase_ : Optional[Any] ) -> Union[str, Any]: # create estimator lowercase__ : Tuple = self.create_estimator(__lowerCAmelCase ) # run training estimator.fit() # result dataframe lowercase__ : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase__ : Any = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowercase__ : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase__ : Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCAmelCase )
358
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: lowercase__ : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowercase__ : List[Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Tuple = tokenizer("Hello there" , return_tensors="np" ).input_ids lowercase__ : List[str] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowercase__ : str = shift_tokens_right(a_ , model.config.pad_token_id , model.config.decoder_start_token_id ) lowercase__ : Dict = model(a_ , decoder_input_ids=a_ ).logits lowercase__ : Union[str, Any] = optax.softmax_cross_entropy(a_ , onehot(a_ , logits.shape[-1] ) ).mean() lowercase__ : Optional[Any] = -(labels.shape[-1] * loss.item()) lowercase__ : Dict = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
359
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[Any] = RobertaTokenizer __A : Dict = RobertaTokenizerFast __A : List[str] = True __A : List[str] = {'cls_token': '<s>'} def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : List[str] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : Any = {"unk_token": "<unk>"} lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCAmelCase ) ) def __UpperCamelCase ( self : Optional[Any] , **lowercase_ : List[str] ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def __UpperCamelCase ( self : str , **lowercase_ : Optional[int] ) -> Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def __UpperCamelCase ( self : List[str] , lowercase_ : Any ) -> List[str]: lowercase__ : List[Any] = "lower newer" lowercase__ : Optional[Any] = "lower newer" return input_text, output_text def __UpperCamelCase ( self : Dict ) -> Dict: lowercase__ : Tuple = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : List[Any] = "lower newer" lowercase__ : Any = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase__ : Any = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Any = tokens + [tokenizer.unk_token] lowercase__ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def __UpperCamelCase ( self : Any ) -> List[str]: lowercase__ : Tuple = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=__lowerCAmelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=__lowerCAmelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : Optional[int] = self.tokenizer_class.from_pretrained("roberta-base" ) lowercase__ : List[Any] = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCAmelCase ) lowercase__ : int = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCAmelCase ) lowercase__ : Optional[int] = tokenizer.encode( "sequence builders" , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowercase__ : List[str] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) lowercase__ : str = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Union[str, Any] = self.get_tokenizer() lowercase__ : List[str] = "Encode this sequence." lowercase__ : int = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowercase__ : Optional[int] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowercase__ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowercase__ : str = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) lowercase__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing spaces after special tokens lowercase__ : Optional[Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space lowercase__ : Dict = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) lowercase__ : str = "Encode <mask> sequence" lowercase__ : Dict = "Encode <mask>sequence" lowercase__ : Optional[int] = tokenizer.encode(__lowerCAmelCase ) lowercase__ : Tuple = encoded.index(__lowerCAmelCase ) lowercase__ : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : List[Any] = tokenizer.encode(__lowerCAmelCase ) lowercase__ : str = encoded.index(__lowerCAmelCase ) lowercase__ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: pass def __UpperCamelCase ( self : str ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : Dict = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__ : str = "A, <mask> AllenNLP sentence." lowercase__ : str = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) lowercase__ : List[Any] = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowercase__ : Any = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , __lowerCAmelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , __lowerCAmelCase ) self.assertEqual(post_processor_state["trim_offsets"] , __lowerCAmelCase ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowercase__ : List[str] = F'''{text_of_1_token} {text_of_1_token}''' lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowercase__ : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowercase__ : str = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowercase__ : Optional[int] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowercase__ : Dict = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowercase__ : Tuple = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase__ : int = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowercase__ : int = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowercase__ : Tuple = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , ) lowercase__ : str = self.rust_tokenizer_class.from_pretrained( __lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase ) lowercase__ : Tuple = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
360
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
0
class snake_case_ : def __init__( self : int ) -> Any: lowercase__ : Optional[Any] = {} def __UpperCamelCase ( self : Tuple ) -> None: print(self.vertex ) for i in self.vertex: print(_snake_case , " -> " , " -> ".join([str(_snake_case ) for j in self.vertex[i]] ) ) def __UpperCamelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Dict ) -> None: if from_vertex in self.vertex: self.vertex[from_vertex].append(_snake_case ) else: # else make a new vertex lowercase__ : Optional[Any] = [to_vertex] def __UpperCamelCase ( self : Dict ) -> None: lowercase__ : List[str] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_snake_case , _snake_case ) def __UpperCamelCase ( self : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any] ) -> None: lowercase__ : Optional[Any] = True print(_snake_case , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_snake_case , _snake_case ) if __name__ == "__main__": UpperCamelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
0
def lowercase_ ( _lowerCamelCase : int = 100_0000): lowercase__ : Any = limit + 1 lowercase__ : Tuple = [0] * limit for first_term in range(1 , UpperCamelCase__): for n in range(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__): lowercase__ : Tuple = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase__ : Optional[Any] = sum(1 for x in frequency[1:limit] if x == 10) return count if __name__ == "__main__": print(f"{solution() = }")
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase = pd.read_csv('''sample_data.csv''', header=None) UpperCamelCase = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase = df.iloc[:, 1:2] UpperCamelCase = actual_data.values.reshape(len_data, 1) UpperCamelCase = MinMaxScaler().fit_transform(actual_data) UpperCamelCase = 10 UpperCamelCase = 5 UpperCamelCase = 20 UpperCamelCase = len_data - periods * look_back UpperCamelCase = actual_data[:division] UpperCamelCase = actual_data[division - look_back :] UpperCamelCase = [], [] UpperCamelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase = np.array(train_x) UpperCamelCase = np.array(test_x) UpperCamelCase = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') UpperCamelCase = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase = model.predict(x_test)
364
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } UpperCamelCase = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } UpperCamelCase = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } UpperCamelCase = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } UpperCamelCase = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } UpperCamelCase = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } UpperCamelCase = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } UpperCamelCase = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase = [] UpperCamelCase = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] UpperCamelCase = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] UpperCamelCase = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] UpperCamelCase = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]): for attribute in key.split("."): lowercase__ : Optional[int] = getattr(_UpperCAmelCase , _UpperCAmelCase) if weight_type is not None: lowercase__ : Any = getattr(_UpperCAmelCase , _UpperCAmelCase).shape else: lowercase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''') if weight_type == "weight": lowercase__ : Optional[int] = value elif weight_type == "weight_g": lowercase__ : int = value elif weight_type == "weight_v": lowercase__ : List[Any] = value elif weight_type == "bias": lowercase__ : Dict = value elif weight_type == "running_mean": lowercase__ : List[Any] = value elif weight_type == "running_var": lowercase__ : str = value elif weight_type == "num_batches_tracked": lowercase__ : int = value else: lowercase__ : str = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''') def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any]): for key in ignore_keys: if key.endswith(".*"): if name.startswith(key[:-1]): return True elif ".*." in key: lowercase__ : Optional[int] = key.split(".*.") if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any]): lowercase__ : List[Any] = [] if task == "s2t": lowercase__ : List[str] = hf_model.speechta.encoder.prenet.feature_encoder lowercase__ : int = MAPPING_S2T lowercase__ : Dict = IGNORE_KEYS_S2T elif task == "t2s": lowercase__ : Optional[int] = None lowercase__ : str = MAPPING_T2S lowercase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": lowercase__ : int = hf_model.speechta.encoder.prenet.feature_encoder lowercase__ : Tuple = MAPPING_S2S lowercase__ : List[str] = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''') for name, value in fairseq_dict.items(): if should_ignore(_UpperCAmelCase , _UpperCAmelCase): logger.info(f'''{name} was ignored''') continue lowercase__ : List[str] = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase__ : str = key.split(".*.") if prefix in name and suffix in name: lowercase__ : Any = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase__ : Optional[Any] = True if "*" in mapped_key: lowercase__ : Union[str, Any] = name.split(_UpperCAmelCase)[0].split(".")[-2] lowercase__ : Optional[Any] = mapped_key.replace("*" , _UpperCAmelCase) if "weight_g" in name: lowercase__ : List[str] = "weight_g" elif "weight_v" in name: lowercase__ : int = "weight_v" elif "bias" in name: lowercase__ : Optional[Any] = "bias" elif "weight" in name: lowercase__ : Tuple = "weight" elif "running_mean" in name: lowercase__ : Union[str, Any] = "running_mean" elif "running_var" in name: lowercase__ : str = "running_var" elif "num_batches_tracked" in name: lowercase__ : int = "num_batches_tracked" else: lowercase__ : int = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) continue if not is_used: unused_weights.append(_UpperCAmelCase) logger.warning(f'''Unused weights: {unused_weights}''') def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[Any]): lowercase__ : Tuple = full_name.split("conv_layers.")[-1] lowercase__ : Any = name.split(".") lowercase__ : Tuple = int(items[0]) lowercase__ : List[Any] = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''') lowercase__ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''') lowercase__ : Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''') lowercase__ : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''') lowercase__ : Optional[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(_UpperCAmelCase) @torch.no_grad() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Any=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Union[str, Any]=None , ): if config_path is not None: lowercase__ : List[str] = SpeechTaConfig.from_pretrained(_UpperCAmelCase) else: lowercase__ : List[str] = SpeechTaConfig() if task == "s2t": lowercase__ : Tuple = config.max_text_positions lowercase__ : int = SpeechTaForSpeechToText(_UpperCAmelCase) elif task == "t2s": lowercase__ : Tuple = 1876 lowercase__ : List[Any] = 600 lowercase__ : Any = config.max_speech_positions lowercase__ : Union[str, Any] = SpeechTaForTextToSpeech(_UpperCAmelCase) elif task == "s2s": lowercase__ : Tuple = 1876 lowercase__ : int = config.max_speech_positions lowercase__ : List[Any] = SpeechTaForSpeechToSpeech(_UpperCAmelCase) else: raise ValueError(f'''Unknown task name: {task}''') if vocab_path: lowercase__ : Dict = SpeechTaTokenizer(_UpperCAmelCase , model_max_length=config.max_text_positions) # Mask token behaves like a normal word, i.e. include the space before it lowercase__ : List[Any] = AddedToken("<mask>" , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) lowercase__ : List[Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token}) tokenizer.add_tokens(["<ctc_blank>"]) lowercase__ : List[Any] = SpeechTaFeatureExtractor() lowercase__ : Union[str, Any] = SpeechTaProcessor(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase) processor.save_pretrained(_UpperCAmelCase) lowercase__ : Union[str, Any] = torch.load(_UpperCAmelCase) recursively_load_weights(fairseq_checkpoint["model"] , _UpperCAmelCase , _UpperCAmelCase) model.save_pretrained(_UpperCAmelCase) if repo_id: print("Pushing to the hub...") processor.push_to_hub(_UpperCAmelCase) model.push_to_hub(_UpperCAmelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
365
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ ( lowerCamelCase_ ): def __init__( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : str=13 , lowercase_ : str=7 , lowercase_ : Dict=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : Optional[Any]=True , lowercase_ : Any=False , lowercase_ : List[Any]=False , lowercase_ : List[Any]=False , lowercase_ : Optional[int]=2 , lowercase_ : Union[str, Any]=99 , lowercase_ : str=0 , lowercase_ : Any=32 , lowercase_ : List[Any]=5 , lowercase_ : Optional[int]=4 , lowercase_ : Dict=0.1 , lowercase_ : str=0.1 , lowercase_ : List[str]=5_12 , lowercase_ : int=12 , lowercase_ : List[Any]=2 , lowercase_ : Tuple=0.02 , lowercase_ : Any=3 , lowercase_ : Dict=4 , lowercase_ : List[Any]="last" , lowercase_ : Union[str, Any]=None , lowercase_ : Union[str, Any]=None , ) -> int: lowercase__ : Union[str, Any] = parent lowercase__ : int = batch_size lowercase__ : Union[str, Any] = seq_length lowercase__ : Optional[int] = is_training lowercase__ : Optional[int] = use_input_lengths lowercase__ : Optional[Any] = use_token_type_ids lowercase__ : Dict = use_labels lowercase__ : str = gelu_activation lowercase__ : List[str] = sinusoidal_embeddings lowercase__ : List[str] = causal lowercase__ : Optional[Any] = asm lowercase__ : Tuple = n_langs lowercase__ : int = vocab_size lowercase__ : Tuple = n_special lowercase__ : int = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : int = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : List[Any] = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : Any = num_labels lowercase__ : Any = num_choices lowercase__ : List[str] = summary_type lowercase__ : int = use_proj lowercase__ : str = scope def __UpperCamelCase ( self : List[str] ) -> Tuple: lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : str = None if self.use_input_lengths: lowercase__ : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ : List[str] = None if self.use_token_type_ids: lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase__ : int = None lowercase__ : Optional[int] = None lowercase__ : Any = None if self.use_labels: lowercase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float() lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Optional[int] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCamelCase ( self : str ) -> Tuple: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Tuple , ) -> int: lowercase__ : Optional[Any] = FlaubertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : str = model(lowerCAmelCase__ , lengths=lowerCAmelCase__ , langs=lowerCAmelCase__ ) lowercase__ : Dict = model(lowerCAmelCase__ , langs=lowerCAmelCase__ ) lowercase__ : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : str , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : str , ) -> Tuple: lowercase__ : Optional[Any] = FlaubertWithLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[str] , ) -> int: lowercase__ : Any = FlaubertForQuestionAnsweringSimple(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Tuple = model(lowerCAmelCase__ ) lowercase__ : Union[str, Any] = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : str , lowercase_ : int , lowercase_ : Any , ) -> Optional[int]: lowercase__ : Optional[int] = FlaubertForQuestionAnswering(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Tuple = model(lowerCAmelCase__ ) lowercase__ : Any = model( lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , p_mask=lowerCAmelCase__ , ) lowercase__ : Optional[Any] = model( lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , ) ((lowercase__ ) , ) : Optional[int] = result_with_labels.to_tuple() lowercase__ : Optional[int] = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) ((lowercase__ ) , ) : Optional[int] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str , ) -> str: lowercase__ : List[Any] = FlaubertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Optional[Any] = model(lowerCAmelCase__ ) lowercase__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str , ) -> int: lowercase__ : str = self.num_labels lowercase__ : Optional[Any] = FlaubertForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Any , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : str , lowercase_ : str , lowercase_ : str , lowercase_ : List[str] , lowercase_ : int , ) -> Optional[Any]: lowercase__ : Union[str, Any] = self.num_choices lowercase__ : str = FlaubertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ : int = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Tuple ) -> List[str]: lowercase__ : Dict = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : str = config_and_inputs lowercase__ : Optional[Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case_ ( lowerCamelCase_ ,lowerCamelCase_ ,unittest.TestCase ): __A : Tuple = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __A : Any = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Any ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCamelCase ( self : Any , lowercase_ : int , lowercase_ : int , lowercase_ : Union[str, Any]=False ) -> Tuple: lowercase__ : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) lowercase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __UpperCamelCase ( self : Any ) -> List[str]: lowercase__ : Optional[Any] = FlaubertModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , emb_dim=37 ) def __UpperCamelCase ( self : Optional[int] ) -> Any: self.config_tester.run_common_tests() def __UpperCamelCase ( self : List[str] ) -> int: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase__ ) def __UpperCamelCase ( self : str ) -> str: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase__ ) def __UpperCamelCase ( self : List[Any] ) -> str: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase__ ) def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase__ ) def __UpperCamelCase ( self : Optional[int] ) -> int: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase__ ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase__ ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase__ ) @slow def __UpperCamelCase ( self : str ) -> List[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = FlaubertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def __UpperCamelCase ( self : Tuple ) -> Tuple: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ : Any = True lowercase__ : Optional[int] = model_class(config=lowerCAmelCase__ ) lowercase__ : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__ : List[Any] = torch.jit.trace( lowerCAmelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "traced_model.pt" ) ) lowercase__ : Tuple = torch.jit.load(os.path.join(lowerCAmelCase__ , "traced_model.pt" ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict["input_ids"].to(lowerCAmelCase__ ) , inputs_dict["attention_mask"].to(lowerCAmelCase__ ) ) @require_torch class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: lowercase__ : Optional[int] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) lowercase__ : int = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): lowercase__ : Tuple = model(lowerCAmelCase__ )[0] lowercase__ : List[str] = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase__ : List[Any] = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
366
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class snake_case_ ( unittest.TestCase ): def __init__( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int]=7 , lowercase_ : List[Any]=3 , lowercase_ : List[Any]=18 , lowercase_ : int=30 , lowercase_ : List[Any]=4_00 , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=True , lowercase_ : str=False , lowercase_ : Optional[Any]=True , lowercase_ : List[Any]=True , lowercase_ : List[str]=[0.5, 0.5, 0.5] , lowercase_ : Tuple=[0.5, 0.5, 0.5] , ) -> Dict: lowercase__ : Tuple = parent lowercase__ : Dict = batch_size lowercase__ : List[Any] = num_channels lowercase__ : Optional[int] = image_size lowercase__ : List[str] = min_resolution lowercase__ : List[str] = max_resolution lowercase__ : str = do_resize lowercase__ : Dict = size if size is not None else {"height": 18, "width": 20} lowercase__ : List[Any] = do_thumbnail lowercase__ : List[Any] = do_align_axis lowercase__ : int = do_pad lowercase__ : List[Any] = do_normalize lowercase__ : Dict = image_mean lowercase__ : int = image_std def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class snake_case_ ( UpperCamelCase__ ,unittest.TestCase ): __A : Union[str, Any] = DonutImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Any ) -> Dict: lowercase__ : int = DonutImageProcessingTester(self ) @property def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Dict ) -> Dict: lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_thumbnail" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_align_long_axis" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_pad" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: lowercase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) lowercase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: pass @is_flaky() def __UpperCamelCase ( self : Tuple ) -> Tuple: # Initialize image_processing lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input lowercase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowercase__ : List[str] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def __UpperCamelCase ( self : int ) -> List[Any]: # Initialize image_processing lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input lowercase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowercase__ : Tuple = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def __UpperCamelCase ( self : Dict ) -> int: # Initialize image_processing lowercase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowercase__ : Any = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
367
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class snake_case_ ( A_ ): __A : List[str] = 42 __A : Any = None def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=0.999 , _lowerCamelCase : Optional[Any]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase : Dict): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase : int): return math.exp(t * -12.0) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''') lowercase__ : List[Any] = [] for i in range(__lowerCamelCase): lowercase__ : int = i / num_diffusion_timesteps lowercase__ : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCamelCase) / alpha_bar_fn(__lowerCamelCase) , __lowerCamelCase)) return torch.tensor(__lowerCamelCase , dtype=torch.floataa) class snake_case_ ( A_ ,A_ ): @register_to_config def __init__( self : List[Any] , lowercase_ : int = 10_00 , lowercase_ : str = "fixed_small_log" , lowercase_ : bool = True , lowercase_ : Optional[float] = 1.0 , lowercase_ : str = "epsilon" , lowercase_ : str = "squaredcos_cap_v2" , ) -> int: if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'" ) lowercase__ : int = betas_for_alpha_bar(_lowerCamelCase ) lowercase__ : Union[str, Any] = 1.0 - self.betas lowercase__ : str = torch.cumprod(self.alphas , dim=0 ) lowercase__ : List[Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowercase__ : Union[str, Any] = 1.0 # setable values lowercase__ : int = None lowercase__ : Optional[int] = torch.from_numpy(np.arange(0 , _lowerCamelCase )[::-1].copy() ) lowercase__ : Union[str, Any] = variance_type def __UpperCamelCase ( self : List[Any] , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None ) -> Tuple: return sample def __UpperCamelCase ( self : Tuple , lowercase_ : int , lowercase_ : Union[str, torch.device] = None ) -> Any: lowercase__ : int = num_inference_steps lowercase__ : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowercase__ : Any = (np.arange(0 , _lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowercase__ : str = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[int]=None ) -> Any: if prev_timestep is None: lowercase__ : Optional[Any] = t - 1 lowercase__ : Union[str, Any] = self.alphas_cumprod[t] lowercase__ : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : Optional[int] = 1 - alpha_prod_t lowercase__ : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : List[Any] = self.betas[t] else: lowercase__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ : Optional[int] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowercase__ : Tuple = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowercase__ : List[Any] = torch.log(torch.clamp(_lowerCamelCase , min=1E-20 ) ) lowercase__ : Optional[int] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowercase__ : str = variance.log() lowercase__ : Tuple = beta.log() lowercase__ : str = (predicted_variance + 1) / 2 lowercase__ : Any = frac * max_log + (1 - frac) * min_log return variance def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None , lowercase_ : Any=None , lowercase_ : bool = True , ) -> List[str]: lowercase__ : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowercase__ , lowercase__ : Dict = torch.split(_lowerCamelCase , sample.shape[1] , dim=1 ) else: lowercase__ : List[Any] = None # 1. compute alphas, betas if prev_timestep is None: lowercase__ : Union[str, Any] = t - 1 lowercase__ : Union[str, Any] = self.alphas_cumprod[t] lowercase__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : Any = 1 - alpha_prod_t lowercase__ : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : int = self.betas[t] lowercase__ : int = self.alphas[t] else: lowercase__ : Any = 1 - alpha_prod_t / alpha_prod_t_prev lowercase__ : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ : Optional[Any] = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ : List[Any] = torch.clamp( _lowerCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowercase__ : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : Optional[Any] = 0 if t > 0: lowercase__ : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_lowerCamelCase , device=model_output.device ) lowercase__ : List[str] = self._get_variance( _lowerCamelCase , predicted_variance=_lowerCamelCase , prev_timestep=_lowerCamelCase , ) if self.variance_type == "fixed_small_log": lowercase__ : Union[str, Any] = variance elif self.variance_type == "learned_range": lowercase__ : Optional[Any] = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) lowercase__ : Any = variance * variance_noise lowercase__ : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_lowerCamelCase , pred_original_sample=_lowerCamelCase ) def __UpperCamelCase ( self : List[str] , lowercase_ : torch.FloatTensor , lowercase_ : torch.FloatTensor , lowercase_ : torch.IntTensor , ) -> Dict: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowercase__ : Optional[int] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowercase__ : Dict = timesteps.to(original_samples.device ) lowercase__ : str = alphas_cumprod[timesteps] ** 0.5 lowercase__ : int = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : List[str] = sqrt_alpha_prod.unsqueeze(-1 ) lowercase__ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : List[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowercase__ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : def __init__( self : Any , lowercase_ : int , lowercase_ : int=13 , lowercase_ : Optional[int]=30 , lowercase_ : str=2 , lowercase_ : Optional[Any]=3 , lowercase_ : str=True , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=32 , lowercase_ : Optional[Any]=2 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[Any]=37 , lowercase_ : Optional[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[str]=10 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Dict=None , ) -> Tuple: lowercase__ : int = parent lowercase__ : Any = batch_size lowercase__ : Tuple = image_size lowercase__ : str = patch_size lowercase__ : Tuple = num_channels lowercase__ : List[Any] = is_training lowercase__ : Any = use_labels lowercase__ : int = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : Dict = hidden_act lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : List[str] = type_sequence_label_size lowercase__ : Any = initializer_range lowercase__ : Tuple = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : Dict = (image_size // patch_size) ** 2 lowercase__ : Optional[Any] = num_patches + 1 def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : List[str] = None if self.use_labels: lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Tuple ) -> Dict: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Tuple , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ) -> int: lowercase__ : Optional[int] = TFViTModel(config=_a ) lowercase__ : Union[str, Any] = model(_a , training=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowercase__ : Optional[Any] = self.image_size // 2 lowercase__ : Dict = pixel_values[:, :, :image_size, :image_size] lowercase__ : Tuple = model(_a , interpolate_pos_encoding=_a , training=_a ) lowercase__ : str = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Any ) -> Any: lowercase__ : str = self.type_sequence_label_size lowercase__ : int = TFViTForImageClassification(_a ) lowercase__ : Optional[Any] = model(_a , labels=_a , training=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowercase__ : Optional[Any] = self.image_size // 2 lowercase__ : Dict = pixel_values[:, :, :image_size, :image_size] lowercase__ : List[Any] = model(_a , interpolate_pos_encoding=_a , training=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ : Tuple = 1 lowercase__ : Tuple = TFViTForImageClassification(_a ) lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: lowercase__ : Tuple = self.prepare_config_and_inputs() lowercase__ : Any = config_and_inputs lowercase__ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : Any = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __A : Any = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) __A : List[str] = False __A : List[Any] = False __A : Optional[int] = False def __UpperCamelCase ( self : Optional[int] ) -> int: lowercase__ : str = TFViTModelTester(self ) lowercase__ : Optional[int] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __UpperCamelCase ( self : int ) -> str: pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def __UpperCamelCase ( self : Any ) -> Optional[Any]: pass def __UpperCamelCase ( self : Optional[Any] ) -> int: lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , tf.keras.layers.Layer ) ) def __UpperCamelCase ( self : List[Any] ) -> Any: lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_a ) lowercase__ : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[Any] = [*signature.parameters.keys()] lowercase__ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> int: lowercase__ : Optional[Any] = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_a ) def lowercase_ ( ): lowercase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : List[Any] ) -> Tuple: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __UpperCamelCase ( self : List[str] ) -> Dict: lowercase__ : Any = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) lowercase__ : List[Any] = self.default_image_processor lowercase__ : Union[str, Any] = prepare_img() lowercase__ : Any = image_processor(images=_a , return_tensors="tf" ) # forward pass lowercase__ : Optional[int] = model(**_a ) # verify the logits lowercase__ : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _a ) lowercase__ : List[str] = tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _a , atol=1E-4 )
369
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
0
"""simple docstring""" def lowercase_ ( _lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): lowercase__ : Tuple = set() # Replace all the whitespace in our sentence lowercase__ : Optional[int] = input_str.replace(" " , "") for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower()) return len(_lowerCamelCase) == 26 def lowercase_ ( _lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): lowercase__ : Any = [False] * 26 for char in input_str: if char.islower(): lowercase__ : Union[str, Any] = True elif char.isupper(): lowercase__ : Optional[int] = True return all(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ): return len({char for char in input_str.lower() if char.isalpha()}) == 26 def lowercase_ ( ): from timeit import timeit lowercase__ : Optional[Any] = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=_lowerCamelCase)) print(timeit("is_pangram_faster()" , setup=_lowerCamelCase)) print(timeit("is_pangram_fastest()" , setup=_lowerCamelCase)) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
370
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
0
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCamelCase = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class snake_case_ ( _a ): def __init__( self : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str=None , lowercase_ : Optional[int]=1 ) -> Optional[Any]: lowercase__ : int = tokenizer lowercase__ : Dict = dataset lowercase__ : Optional[int] = len(snake_case_ ) if n_tasks is None else n_tasks lowercase__ : List[str] = n_copies def __iter__( self : Union[str, Any] ) -> Tuple: lowercase__ : Optional[int] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) lowercase__ : Optional[int] = self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class snake_case_ ( _a ): def __init__( self : List[str] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[str] ) -> Optional[int]: lowercase__ : Dict = start_length lowercase__ : Optional[Any] = eof_strings lowercase__ : List[str] = tokenizer def __call__( self : List[str] , lowercase_ : Tuple , lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ) -> Tuple: lowercase__ : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowercase__ : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(snake_case_ ) def lowercase_ ( _lowerCamelCase : Union[str, Any]): lowercase__ : List[Any] = re.split("(%s)" % "|".join(_lowerCAmelCase) , _lowerCAmelCase) # last string should be "" return "".join(string_list[:-2]) def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Tuple=20 , **_lowerCamelCase : Union[str, Any]): lowercase__ : Optional[Any] = defaultdict(_lowerCAmelCase) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCAmelCase)): with torch.no_grad(): lowercase__ : Optional[int] = batch["""ids"""].shape[-1] lowercase__ : List[Any] = accelerator.unwrap_model(_lowerCAmelCase).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase) # each task is generated batch_size times lowercase__ : Optional[int] = batch["""task_id"""].repeat(_lowerCAmelCase) lowercase__ : List[Any] = accelerator.pad_across_processes( _lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id) lowercase__ : Optional[Any] = accelerator.gather((generated_tokens, generated_tasks)) lowercase__ : Optional[Any] = generated_tokens.cpu().numpy() lowercase__ : Optional[int] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase): gen_token_dict[task].append(_lowerCAmelCase) lowercase__ : Optional[Any] = [[] for _ in range(_lowerCAmelCase)] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowercase__ : int = tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase) code_gens[task].append(remove_last_block(_lowerCAmelCase)) return code_gens def lowercase_ ( ): # Setup configuration lowercase__ : List[str] = HfArgumentParser(_lowerCAmelCase) lowercase__ : Optional[int] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowercase__ : Union[str, Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowercase__ : Union[str, Any] = """false""" if args.num_workers is None: lowercase__ : int = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowercase__ : int = Accelerator() set_seed(args.seed , device_specific=_lowerCAmelCase) # Load model and tokenizer lowercase__ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) lowercase__ : Dict = tokenizer.eos_token lowercase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt) # Generation settings lowercase__ : Any = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase)]), } # Load evaluation dataset and metric lowercase__ : Optional[int] = load_dataset("openai_humaneval") lowercase__ : List[Any] = load_metric("code_eval") lowercase__ : Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["test"]) lowercase__ : Dict = args.n_samples // args.batch_size lowercase__ : int = TokenizedDataset(_lowerCAmelCase , human_eval["test"] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase) # do not confuse args.batch_size, which is actually the num_return_sequences lowercase__ : Optional[Any] = DataLoader(_lowerCAmelCase , batch_size=1) # Run a quick test to see if code evaluation is enabled try: lowercase__ : List[Any] = code_eval_metric.compute(references=[""] , predictions=[[""]]) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation.") raise exception lowercase__ : Dict = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase) lowercase__ : str = complete_code( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , ) if accelerator.is_main_process: lowercase__ : str = [] for task in tqdm(range(_lowerCAmelCase)): lowercase__ : Any = human_eval["""test"""][task]["""test"""] lowercase__ : int = f'''check({human_eval["test"][task]["entry_point"]})''' references.append("\n" + test_func + "\n" + entry_point) # Evaluate completions with "code_eval" metric lowercase__ : Optional[Any] = code_eval_metric.compute( references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers) print(f'''Results: {pass_at_k}''') # Save results to json file with open(args.output_file , "w") as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
371
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
0
"""simple docstring""" def lowercase_ ( _lowerCamelCase : Optional[int]): if not all(x.isalpha() for x in string): raise ValueError("String must only contain alphabetic characters.") lowercase__ : str = sorted(string.lower()) return len(__lowerCAmelCase) == len(set(__lowerCAmelCase)) if __name__ == "__main__": UpperCamelCase = input('''Enter a string ''').strip() UpperCamelCase = is_isogram(input_str) print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } UpperCamelCase = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } UpperCamelCase = """▁""" class snake_case_ ( __UpperCamelCase ): __A : List[Any] = VOCAB_FILES_NAMES __A : str = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[Any] = AlbertTokenizer def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=None , lowercase_ : List[Any]=None , lowercase_ : Tuple=True , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : Dict="[CLS]" , lowercase_ : List[Any]="[SEP]" , lowercase_ : str="<unk>" , lowercase_ : Any="[SEP]" , lowercase_ : List[str]="<pad>" , lowercase_ : Union[str, Any]="[CLS]" , lowercase_ : int="[MASK]" , **lowercase_ : Tuple , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase__ : Optional[int] = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) lowercase__ : Dict = do_lower_case lowercase__ : Any = remove_space lowercase__ : str = keep_accents lowercase__ : Any = vocab_file lowercase__ : str = False if not self.vocab_file else True def __UpperCamelCase ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : Tuple = [self.sep_token_id] lowercase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : Tuple = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
351
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : List[Any]): # Initialise PyTorch model lowercase__ : Optional[int] = BertConfig.from_json_file(_lowerCamelCase) print(f'''Building PyTorch model from configuration: {config}''') lowercase__ : List[str] = BertForPreTraining(_lowerCamelCase) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , _lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
352
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case_ : @staticmethod def __UpperCamelCase ( *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Optional[int]: pass @is_pipeline_test @require_vision @require_timm @require_torch class snake_case_ ( unittest.TestCase ): __A : str = MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : List[Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : Any ) -> Any: lowercase__ : List[str] = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] ) -> List[Any]: lowercase__ : Optional[int] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { "score": ANY(lowercase_ ), "label": ANY(lowercase_ ), "box": {"xmin": ANY(lowercase_ ), "ymin": ANY(lowercase_ ), "xmax": ANY(lowercase_ ), "ymax": ANY(lowercase_ )}, } , ) import datasets lowercase__ : Optional[int] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowercase__ : List[str] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] lowercase__ : List[str] = object_detector(lowercase_ , threshold=0.0 ) self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { "score": ANY(lowercase_ ), "label": ANY(lowercase_ ), "box": {"xmin": ANY(lowercase_ ), "ymin": ANY(lowercase_ ), "xmax": ANY(lowercase_ ), "ymax": ANY(lowercase_ )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: pass @require_torch def __UpperCamelCase ( self : int ) -> Dict: lowercase__ : str = "hf-internal-testing/tiny-detr-mobilenetsv3" lowercase__ : int = AutoModelForObjectDetection.from_pretrained(lowercase_ ) lowercase__ : Optional[int] = AutoFeatureExtractor.from_pretrained(lowercase_ ) lowercase__ : Dict = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) lowercase__ : Optional[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ] , ) lowercase__ : Union[str, Any] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : Any ) -> Optional[int]: lowercase__ : Any = "facebook/detr-resnet-50" lowercase__ : List[str] = AutoModelForObjectDetection.from_pretrained(lowercase_ ) lowercase__ : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ ) lowercase__ : Optional[Any] = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) lowercase__ : Dict = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) lowercase__ : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : str ) -> Tuple: lowercase__ : Tuple = "facebook/detr-resnet-50" lowercase__ : int = pipeline("object-detection" , model=lowercase_ ) lowercase__ : List[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) lowercase__ : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : List[Any] = 0.99_85 lowercase__ : Union[str, Any] = "facebook/detr-resnet-50" lowercase__ : Optional[int] = pipeline("object-detection" , model=lowercase_ ) lowercase__ : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : int ) -> Dict: lowercase__ : Any = "Narsil/layoutlmv3-finetuned-funsd" lowercase__ : Optional[Any] = 0.99_93 lowercase__ : str = pipeline("object-detection" , model=lowercase_ , threshold=lowercase_ ) lowercase__ : Optional[int] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, ] , )
353
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowercase_ ( _lowerCamelCase : Union[str, Any]=32 , _lowerCamelCase : str=10 , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=1026 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : List[str]="data/tokenized_stories_train_wikitext103.jbl" , _lowerCamelCase : Tuple="igf_context_pairs.jbl" , ): set_seed(3) # generate train_data and objective_set lowercase__ , lowercase__ : Dict = generate_datasets( _lowerCAmelCase , _lowerCAmelCase , number=_lowerCAmelCase , min_len=1026 , trim=_lowerCAmelCase) # keeps model same across runs set_seed(4) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase__ : str = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load pretrained model lowercase__ : Optional[int] = load_gpta("gpt2").to(_lowerCAmelCase) print("computing perplexity on objective set") lowercase__ : Dict = compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase).item() print("perplexity on objective set:" , _lowerCAmelCase) # collect igf pairs and save to file demo.jbl collect_objective_set(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]=15 , _lowerCamelCase : str=128 , _lowerCamelCase : List[str]=100 , _lowerCamelCase : Dict="igf_model.pt" , ): set_seed(42) # Load pre-trained model lowercase__ : str = GPTaLMHeadModel.from_pretrained("gpt2") # Initialize secondary learner to use embedding weights of model lowercase__ : Any = SecondaryLearner(_lowerCAmelCase) # Train secondary learner lowercase__ : List[str] = train_secondary_learner( _lowerCAmelCase , _lowerCAmelCase , max_epochs=_lowerCAmelCase , batch_size=_lowerCAmelCase , eval_freq=100 , igf_model_path=_lowerCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Any=32 , _lowerCamelCase : int=1000 , _lowerCamelCase : Tuple=16 , _lowerCamelCase : Any=1.0 , _lowerCamelCase : List[str]=recopy_gpta , _lowerCamelCase : str=None , _lowerCamelCase : int=10 , _lowerCamelCase : int="gpt2_finetuned.pt" , ): lowercase__ : List[str] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") lowercase__ : Tuple = RandomSampler(_lowerCAmelCase) lowercase__ : str = DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase) lowercase__ : int = max_steps // (len(_lowerCAmelCase)) + 1 lowercase__ : str = 0 lowercase__ : Tuple = torch.zeros((1, context_len) , dtype=torch.long , device=_lowerCAmelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = recopy_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) model.train() if secondary_learner is not None: secondary_learner.to(_lowerCAmelCase) secondary_learner.eval() lowercase__ : Optional[Any] = [] lowercase__ : Union[str, Any] = 0 lowercase__ : Optional[int] = [] lowercase__ : Optional[int] = [] # Compute the performance of the transformer model at the beginning lowercase__ : Dict = compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) test_perps.append(_lowerCAmelCase) print("Test perplexity, step" , _lowerCAmelCase , ":" , _lowerCAmelCase) for epoch in range(int(_lowerCAmelCase)): for step, example in enumerate(_lowerCAmelCase): torch.cuda.empty_cache() lowercase__ : int = random.randint(0 , example.size(2) - context_len - 1) lowercase__ : Tuple = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase__ : Optional[int] = model(_lowerCAmelCase , labels=_lowerCAmelCase) lowercase__ : Dict = True if secondary_learner is not None: lowercase__ : Any = secondary_learner.forward( torch.tensor(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase).unsqueeze(0))[0].item() observed_qs.append(float(_lowerCAmelCase)) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase__ : Any = -1 if predicted_q < threshold: lowercase__ : Dict = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu())) lowercase__ : Union[str, Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase__ : List[str] = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase__ : Optional[Any] = compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase) test_perps.append(_lowerCAmelCase) print("Test perplexity, step" , _lowerCAmelCase , ":" , _lowerCAmelCase) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _lowerCAmelCase) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowercase_ ( ): lowercase__ : Any = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task") # Required parameters parser.add_argument( "--data_dir" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=_lowerCAmelCase , default=_lowerCAmelCase , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="A seed for reproducible training.") parser.add_argument( "--context_len" , default=32 , type=_lowerCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=100 , type=_lowerCAmelCase , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=100 , type=_lowerCAmelCase , help="secondary model evaluation is triggered at eval_freq") parser.add_argument("--max_steps" , default=1000 , type=_lowerCAmelCase , help="To calculate training epochs") parser.add_argument( "--secondary_learner_batch_size" , default=128 , type=_lowerCAmelCase , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=_lowerCAmelCase , help="batch size of training data of language model(gpt2) ") parser.add_argument( "--eval_interval" , default=10 , type=_lowerCAmelCase , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=100 , type=_lowerCAmelCase , help="The number of examples split to be used as objective_set/test_data") parser.add_argument( "--min_len" , default=1026 , type=_lowerCAmelCase , help="The minimum length of the article to be used as objective set") parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=_lowerCAmelCase , help="number of epochs to train secondary learner") parser.add_argument("--trim" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="truncate the example if it exceeds context length") parser.add_argument( "--threshold" , default=1.0 , type=_lowerCAmelCase , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_lowerCAmelCase , help="finetuned_model_name") parser.add_argument( "--recopy_model" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_lowerCAmelCase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner lowercase__ : Dict = joblib.load("data/IGF_values.jbl") # Train secondary learner lowercase__ : Tuple = training_secondary_learner( _lowerCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model lowercase__ : Optional[Any] = GPTaLMHeadModel.from_pretrained("gpt2") set_seed(42) # Generate train and test data to train and evaluate gpt2 model lowercase__ , lowercase__ : Union[str, Any] = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=_lowerCAmelCase) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_lowerCAmelCase , secondary_learner=_lowerCAmelCase , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
355
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket") @patch("builtins.open") def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : str): # ===== initialization ===== lowercase__ : Union[str, Any] = Mock() lowercase__ : int = conn, Mock() lowercase__ : Optional[Any] = iter([1, None]) lowercase__ : Dict = lambda _lowerCamelCase: next(_lowerCamelCase) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_lowerCamelCase) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
import numpy as np def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]): lowercase__ : int = int(np.ceil((x_end - xa) / h)) lowercase__ : List[str] = np.zeros((n + 1,)) lowercase__ : List[str] = ya lowercase__ : Any = xa for k in range(_lowerCamelCase): lowercase__ : Optional[int] = f(_lowerCamelCase , y[k]) lowercase__ : Any = f(x + 0.5 * h , y[k] + 0.5 * h * ka) lowercase__ : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka) lowercase__ : int = f(x + h , y[k] + h * ka) lowercase__ : Union[str, Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
357
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class snake_case_ ( lowerCamelCase__ ,lowerCamelCase__ ,unittest.TestCase ): __A : str = IFInpaintingSuperResolutionPipeline __A : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) __A : Dict = PipelineTesterMixin.required_optional_params - {'latents'} def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: return self._get_superresolution_dummy_components() def __UpperCamelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Dict=0 ) -> Tuple: if str(lowercase__ ).startswith("mps" ): lowercase__ : List[Any] = torch.manual_seed(lowercase__ ) else: lowercase__ : Tuple = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) lowercase__ : str = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) lowercase__ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) lowercase__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) lowercase__ : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __UpperCamelCase ( self : Tuple ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCamelCase ( self : str ) -> Optional[int]: self._test_save_load_local() def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
358
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
0
from __future__ import annotations from typing import Any class snake_case_ : def __init__( self : Union[str, Any] , lowercase_ : int = 6 ) -> None: lowercase__ : Node | None = None lowercase__ : Node | None = None self.create_linked_list(lowercase_ ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : int ) -> None: lowercase__ : str = Node() lowercase__ : Optional[int] = current_node lowercase__ : List[Any] = current_node lowercase__ : Any = current_node for _ in range(1 , lowercase_ ): lowercase__ : List[Any] = Node() lowercase__ : Optional[Any] = current_node lowercase__ : Dict = previous_node lowercase__ : str = current_node lowercase__ : Optional[Any] = self.front lowercase__ : Optional[int] = previous_node def __UpperCamelCase ( self : str ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __UpperCamelCase ( self : Any ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __UpperCamelCase ( self : str , lowercase_ : Any ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase__ : Union[str, Any] = self.rear.next if self.rear: lowercase__ : Any = data def __UpperCamelCase ( self : Optional[Any] ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase__ : int = self.front.data lowercase__ : Optional[Any] = None return data lowercase__ : Optional[int] = self.front lowercase__ : int = old_front.next lowercase__ : Union[str, Any] = old_front.data lowercase__ : List[str] = None return data def __UpperCamelCase ( self : Dict ) -> None: if self.is_empty(): raise Exception("Empty Queue" ) def __UpperCamelCase ( self : str ) -> None: if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class snake_case_ : def __init__( self : List[str] ) -> None: lowercase__ : Any | None = None lowercase__ : Node | None = None lowercase__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
359
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
def lowercase_ ( _lowerCamelCase : int): if not isinstance(a__ , a__): raise TypeError("only integers accepted as input") else: lowercase__ : str = str(abs(a__)) lowercase__ : Union[str, Any] = [list(a__) for char in range(len(a__))] for index in range(len(a__)): num_transpositions[index].pop(a__) return max( int("".join(list(a__))) for transposition in num_transpositions) if __name__ == "__main__": __import__('''doctest''').testmod()
360
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
0
class snake_case_ : def __init__( self : List[str] ) -> Union[str, Any]: lowercase__ : Optional[Any] = 0 lowercase__ : str = 0 lowercase__ : Union[str, Any] = {} def __UpperCamelCase ( self : Any , lowercase_ : List[Any] ) -> int: if vertex not in self.adjacency: lowercase__ : List[str] = {} self.num_vertices += 1 def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[str] ) -> Any: self.add_vertex(UpperCAmelCase__ ) self.add_vertex(UpperCAmelCase__ ) if head == tail: return lowercase__ : Any = weight lowercase__ : Optional[int] = weight def __UpperCamelCase ( self : Tuple ) -> int: lowercase__ : List[str] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : Dict = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCAmelCase__ ) ): lowercase__ : Optional[int] = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(UpperCAmelCase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : List[Any] = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge lowercase__ : List[Any] = weight lowercase__ : str = weight def __str__( self : Dict ) -> Optional[int]: lowercase__ : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Any = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : str ) -> Tuple: lowercase__ : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Any=None , lowercase_ : Optional[Any]=None ) -> List[str]: lowercase__ : Optional[Any] = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : Tuple = [] for vertex in vertices: g.add_vertex(UpperCAmelCase__ ) for edge in edges: g.add_edge(*UpperCAmelCase__ ) return g class snake_case_ : def __init__( self : Optional[Any] ) -> List[str]: lowercase__ : Any = {} lowercase__ : Optional[int] = {} def __len__( self : Dict ) -> Dict: return len(self.parent ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] ) -> Optional[int]: if item in self.parent: return self.find(UpperCAmelCase__ ) lowercase__ : Optional[int] = item lowercase__ : Tuple = 0 return item def __UpperCamelCase ( self : Tuple , lowercase_ : int ) -> int: if item not in self.parent: return self.make_set(UpperCAmelCase__ ) if item != self.parent[item]: lowercase__ : List[Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Any ) -> Optional[int]: lowercase__ : List[str] = self.find(UpperCAmelCase__ ) lowercase__ : int = self.find(UpperCAmelCase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Optional[int] = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : Union[str, Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Optional[Any] ) -> str: lowercase__ : Tuple = graph.num_vertices lowercase__ : Tuple = Graph.UnionFind() lowercase__ : List[str] = [] while num_components > 1: lowercase__ : Optional[int] = {} for vertex in graph.get_vertices(): lowercase__ : Union[str, Any] = -1 lowercase__ : Union[str, Any] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[Any] = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = edge lowercase__ : Tuple = union_find.find(UpperCAmelCase__ ) lowercase__ : Any = union_find.find(UpperCAmelCase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Union[str, Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : Tuple = cheap_edge[vertex] if union_find.find(UpperCAmelCase__ ) != union_find.find(UpperCAmelCase__ ): union_find.union(UpperCAmelCase__ , UpperCAmelCase__ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : List[Any] = num_components - 1 lowercase__ : int = Graph.build(edges=UpperCAmelCase__ ) return mst
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters UpperCamelCase = (720, 1280) # Height, Width UpperCamelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. UpperCamelCase = 1 / 100 UpperCamelCase = "" UpperCamelCase = "" UpperCamelCase = "" UpperCamelCase = 250 def lowercase_ ( ): """simple docstring""" lowercase__ : Optional[int] = get_dataset(__lowerCAmelCase , __lowerCAmelCase) for index in range(__lowerCAmelCase): lowercase__ : int = random.sample(range(len(__lowerCAmelCase)) , 4) lowercase__ : Any = update_image_and_anno( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , filter_scale=__lowerCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase__ : str = random_chars(32) lowercase__ : Optional[int] = path.split(os.sep)[-1].rsplit("." , 1)[0] lowercase__ : int = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85]) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''') lowercase__ : List[str] = [] for anno in new_annos: lowercase__ : Any = anno[3] - anno[1] lowercase__ : List[str] = anno[4] - anno[2] lowercase__ : Dict = anno[1] + width / 2 lowercase__ : Any = anno[2] + height / 2 lowercase__ : Dict = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__lowerCAmelCase) with open(f'''{file_root}.txt''' , "w") as outfile: outfile.write("\n".join(line for line in annos_list)) def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str]): """simple docstring""" lowercase__ : List[Any] = [] lowercase__ : List[Any] = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , "*.txt")): lowercase__ : Any = label_file.split(os.sep)[-1].rsplit("." , 1)[0] with open(__lowerCAmelCase) as in_file: lowercase__ : Dict = in_file.readlines() lowercase__ : Tuple = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''') lowercase__ : Any = [] for obj_list in obj_lists: lowercase__ : Optional[int] = obj_list.rstrip("\n").split(" ") lowercase__ : Dict = float(obj[1]) - float(obj[3]) / 2 lowercase__ : List[str] = float(obj[2]) - float(obj[4]) / 2 lowercase__ : str = float(obj[1]) + float(obj[3]) / 2 lowercase__ : List[Any] = float(obj[2]) + float(obj[4]) / 2 boxes.append([int(obj[0]), xmin, ymin, xmax, ymax]) if not boxes: continue img_paths.append(__lowerCAmelCase) labels.append(__lowerCAmelCase) return img_paths, labels def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple = 0.0 , ): """simple docstring""" lowercase__ : str = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta) lowercase__ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase__ : Dict = int(scale_x * output_size[1]) lowercase__ : Optional[Any] = int(scale_y * output_size[0]) lowercase__ : str = [] lowercase__ : List[str] = [] for i, index in enumerate(__lowerCAmelCase): lowercase__ : List[Any] = all_img_list[index] path_list.append(__lowerCAmelCase) lowercase__ : Optional[Any] = all_annos[index] lowercase__ : str = cva.imread(__lowerCAmelCase) if i == 0: # top-left lowercase__ : Union[str, Any] = cva.resize(__lowerCAmelCase , (divid_point_x, divid_point_y)) lowercase__ : Optional[Any] = img for bbox in img_annos: lowercase__ : Dict = bbox[1] * scale_x lowercase__ : List[str] = bbox[2] * scale_y lowercase__ : Union[str, Any] = bbox[3] * scale_x lowercase__ : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) elif i == 1: # top-right lowercase__ : Tuple = cva.resize(__lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y)) lowercase__ : Optional[int] = img for bbox in img_annos: lowercase__ : int = scale_x + bbox[1] * (1 - scale_x) lowercase__ : Union[str, Any] = bbox[2] * scale_y lowercase__ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) lowercase__ : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) elif i == 2: # bottom-left lowercase__ : List[str] = cva.resize(__lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y)) lowercase__ : List[Any] = img for bbox in img_annos: lowercase__ : Dict = bbox[1] * scale_x lowercase__ : Any = scale_y + bbox[2] * (1 - scale_y) lowercase__ : Any = bbox[3] * scale_x lowercase__ : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) else: # bottom-right lowercase__ : Optional[Any] = cva.resize( __lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y)) lowercase__ : Any = img for bbox in img_annos: lowercase__ : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) lowercase__ : Any = scale_y + bbox[2] * (1 - scale_y) lowercase__ : Union[str, Any] = scale_x + bbox[3] * (1 - scale_x) lowercase__ : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax]) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase__ : Optional[int] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase_ ( _lowerCamelCase : int): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" lowercase__ : List[str] = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase) for _ in range(__lowerCAmelCase)) if __name__ == "__main__": main() print('''DONE ✅''')
362
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class snake_case_ ( _A ): __A : List[str] = "speech_to_text_2" __A : List[str] = ["past_key_values"] __A : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , lowercase_ : List[str]=1_00_00 , lowercase_ : Dict=6 , lowercase_ : Dict=20_48 , lowercase_ : str=4 , lowercase_ : int=0.0 , lowercase_ : Tuple=True , lowercase_ : List[Any]="relu" , lowercase_ : Union[str, Any]=2_56 , lowercase_ : int=0.1 , lowercase_ : List[str]=0.0 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Tuple=0.02 , lowercase_ : int=2 , lowercase_ : List[Any]=True , lowercase_ : Any=1 , lowercase_ : List[str]=0 , lowercase_ : Optional[Any]=2 , lowercase_ : int=10_24 , **lowercase_ : str , ) -> List[str]: lowercase__ : Union[str, Any] = vocab_size lowercase__ : List[Any] = d_model lowercase__ : Union[str, Any] = decoder_ffn_dim lowercase__ : Any = decoder_layers lowercase__ : Tuple = decoder_attention_heads lowercase__ : List[Any] = dropout lowercase__ : Dict = attention_dropout lowercase__ : List[str] = activation_dropout lowercase__ : Optional[Any] = activation_function lowercase__ : Tuple = init_std lowercase__ : Optional[Any] = decoder_layerdrop lowercase__ : List[str] = use_cache lowercase__ : List[str] = decoder_layers lowercase__ : int = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : Any = max_target_positions super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
0
def lowercase_ ( _lowerCamelCase : Any) -> str: if number > 0: raise ValueError("input must be a negative integer") lowercase__ : Optional[int] = len(bin(__snake_case)[3:]) lowercase__ : int = bin(abs(__snake_case) - (1 << binary_number_length))[3:] lowercase__ : Tuple = ( ( "1" + "0" * (binary_number_length - len(__snake_case)) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
364
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
0
import os from pathlib import Path def lowercase_ ( ): from torch.utils.cpp_extension import load lowercase__ : Optional[Any] = Path(_a).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" lowercase__ : Tuple = [ root / filename for filename in [ """vision.cpp""", os.path.join("cpu" , "ms_deform_attn_cpu.cpp"), os.path.join("cuda" , "ms_deform_attn_cuda.cu"), ] ] load( "MultiScaleDeformableAttention" , _a , with_cuda=_a , extra_include_paths=[str(_a)] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
365
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowercase_ ( _lowerCamelCase : Optional[int]): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase__ : str = model_type_to_module_name(SCREAMING_SNAKE_CASE_) lowercase__ : Any = importlib.import_module(f'''.{module_name}''' , "transformers.models") try: return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE_ , "__name__" , SCREAMING_SNAKE_CASE_) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase__ : Optional[int] = importlib.import_module("transformers") if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return None def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = False , _lowerCamelCase : int = False , _lowerCamelCase : str = None , _lowerCamelCase : List[Any] = None , _lowerCamelCase : Any = None , _lowerCamelCase : int = False , **_lowerCamelCase : Union[str, Any] , ): lowercase__ : Dict = get_file_from_repo( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead.") return {} with open(SCREAMING_SNAKE_CASE_ , encoding="utf-8") as reader: return json.load(SCREAMING_SNAKE_CASE_) class snake_case_ : def __init__( self : int ) -> List[str]: raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def __UpperCamelCase ( cls : Tuple , lowercase_ : Optional[int] , **lowercase_ : Union[str, Any] ) -> Union[str, Any]: lowercase__ : List[Any] = kwargs.pop("config" , _lowercase ) lowercase__ : Dict = kwargs.pop("trust_remote_code" , _lowercase ) lowercase__ : int = True lowercase__ , lowercase__ : Optional[Any] = ImageProcessingMixin.get_image_processor_dict(_lowercase , **_lowercase ) lowercase__ : Optional[int] = config_dict.get("image_processor_type" , _lowercase ) lowercase__ : str = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): lowercase__ : Dict = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowercase__ : Optional[Any] = config_dict.pop("feature_extractor_type" , _lowercase ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) lowercase__ : int = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): lowercase__ : List[str] = config_dict["auto_map"]["AutoFeatureExtractor"] lowercase__ : Union[str, Any] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowercase , _lowercase ): lowercase__ : str = AutoConfig.from_pretrained(_lowercase , **_lowercase ) # It could be in `config.image_processor_type`` lowercase__ : List[Any] = getattr(_lowercase , "image_processor_type" , _lowercase ) if hasattr(_lowercase , "auto_map" ) and "AutoImageProcessor" in config.auto_map: lowercase__ : Optional[int] = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: lowercase__ : Optional[Any] = image_processor_class_from_name(_lowercase ) lowercase__ : Any = image_processor_auto_map is not None lowercase__ : List[str] = image_processor_class is not None or type(_lowercase ) in IMAGE_PROCESSOR_MAPPING lowercase__ : Optional[Any] = resolve_trust_remote_code( _lowercase , _lowercase , _lowercase , _lowercase ) if has_remote_code and trust_remote_code: lowercase__ : Optional[Any] = get_class_from_dynamic_module( _lowercase , _lowercase , **_lowercase ) lowercase__ : Tuple = kwargs.pop("code_revision" , _lowercase ) if os.path.isdir(_lowercase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowercase , **_lowercase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowercase , **_lowercase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowercase ) in IMAGE_PROCESSOR_MAPPING: lowercase__ : Tuple = IMAGE_PROCESSOR_MAPPING[type(_lowercase )] return image_processor_class.from_dict(_lowercase , **_lowercase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : Tuple ) -> Union[str, Any]: IMAGE_PROCESSOR_MAPPING.register(_lowercase , _lowercase )
366
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''camembert-base''': 512, } UpperCamelCase = '''▁''' class snake_case_ ( lowerCamelCase_ ): __A : str = VOCAB_FILES_NAMES __A : Tuple = PRETRAINED_VOCAB_FILES_MAP __A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[int] = ["""input_ids""", """attention_mask"""] __A : Tuple = CamembertTokenizer def __init__( self : Any , lowercase_ : str=None , lowercase_ : List[str]=None , lowercase_ : int="<s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : Any="<s>" , lowercase_ : List[str]="<unk>" , lowercase_ : Dict="<pad>" , lowercase_ : str="<mask>" , lowercase_ : Any=["<s>NOTUSED", "</s>NOTUSED"] , **lowercase_ : Optional[int] , ) -> Optional[int]: lowercase__ : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ : Tuple = vocab_file lowercase__ : Tuple = False if not self.vocab_file else True def __UpperCamelCase ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> Any: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : Optional[Any] = [self.cls_token_id] lowercase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> Optional[int]: lowercase__ : Union[str, Any] = [self.sep_token_id] lowercase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Union[str, Any]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
367
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCamelCase = logging.get_logger(__name__) class snake_case_ ( _a ): def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : int , lowercase_ : float , **lowercase_ : str ) -> Optional[int]: lowercase__ : List[str] = feature_size lowercase__ : str = sampling_rate lowercase__ : Dict = padding_value lowercase__ : List[str] = kwargs.pop("padding_side" , "right" ) lowercase__ : List[Any] = kwargs.pop("return_attention_mask" , __lowerCamelCase ) super().__init__(**__lowerCamelCase ) def __UpperCamelCase ( self : int , lowercase_ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , lowercase_ : Union[bool, str, PaddingStrategy] = True , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[str, TensorType]] = None , ) -> Union[str, Any]: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowercase__ : Optional[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) lowercase__ : Optional[int] = processed_features[self.model_input_names[0]] lowercase__ : int = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__lowerCamelCase ) == 0: if return_attention_mask: lowercase__ : Any = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowercase__ : List[str] = required_input[0] if isinstance(__lowerCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowercase__ : Optional[Any] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__lowerCamelCase ): lowercase__ : str = required_input[index][0] if return_tensors is None: if is_tf_tensor(__lowerCamelCase ): lowercase__ : int = """tf""" elif is_torch_tensor(__lowerCamelCase ): lowercase__ : Optional[Any] = """pt""" elif isinstance(__lowerCamelCase , (int, float, list, tuple, np.ndarray) ): lowercase__ : List[str] = """np""" else: raise ValueError( F'''type of {first_element} unknown: {type(__lowerCamelCase )}. ''' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowercase__ : str = to_numpy(__lowerCamelCase ) else: lowercase__ : int = [to_numpy(__lowerCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy lowercase__ : Dict = self._get_padding_strategies(padding=__lowerCamelCase , max_length=__lowerCamelCase ) lowercase__ : str = processed_features[self.model_input_names[0]] lowercase__ : int = len(__lowerCamelCase ) if not all(len(__lowerCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) lowercase__ : Optional[Any] = [] for i in range(__lowerCamelCase ): lowercase__ : Union[str, Any] = {k: v[i] for k, v in processed_features.items()} # truncation lowercase__ : List[str] = self._truncate( __lowerCamelCase , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , truncation=__lowerCamelCase , ) truncated_inputs.append(__lowerCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowercase__ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowercase__ : Union[str, Any] = PaddingStrategy.MAX_LENGTH lowercase__ : Dict = {} for i in range(__lowerCamelCase ): # padding lowercase__ : Optional[int] = self._pad( truncated_inputs[i] , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: lowercase__ : List[str] = [] if value.dtype is np.dtype(np.floataa ): lowercase__ : List[str] = value.astype(np.floataa ) batch_outputs[key].append(__lowerCamelCase ) return BatchFeature(__lowerCamelCase , tensor_type=__lowerCamelCase ) def __UpperCamelCase ( self : str , lowercase_ : Union[Dict[str, np.ndarray], BatchFeature] , lowercase_ : Optional[int] = None , lowercase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , ) -> int: lowercase__ : Optional[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowercase__ : List[Any] = len(__lowerCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase__ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase__ : Union[str, Any] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__lowerCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowercase__ : Union[str, Any] = np.ones(len(__lowerCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: lowercase__ : Tuple = max_length - len(__lowerCamelCase ) if self.padding_side == "right": if return_attention_mask: lowercase__ : Tuple = np.pad( processed_features["attention_mask"] , (0, difference) ) lowercase__ : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowercase__ : Tuple = np.pad( __lowerCamelCase , __lowerCamelCase , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowercase__ : Optional[Any] = np.pad( processed_features["attention_mask"] , (difference, 0) ) lowercase__ : Tuple = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowercase__ : Tuple = np.pad( __lowerCamelCase , __lowerCamelCase , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def __UpperCamelCase ( self : Any , lowercase_ : Union[Dict[str, np.ndarray], BatchFeature] , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , ) -> Tuple: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) lowercase__ : Optional[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowercase__ : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowercase__ : Any = len(__lowerCamelCase ) > max_length if needs_to_be_truncated: lowercase__ : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowercase__ : List[Any] = processed_features["""attention_mask"""][:max_length] return processed_features def __UpperCamelCase ( self : str , lowercase_ : Tuple=False , lowercase_ : Optional[int]=None ) -> str: # Get padding strategy if padding is not False: if padding is True: lowercase__ : List[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Optional[int] = PaddingStrategy(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase__ : Any = padding else: lowercase__ : Dict = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case_ : @staticmethod def __UpperCamelCase ( *lowercase_ : Optional[Any] , **lowercase_ : Dict ) -> Union[str, Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class snake_case_ ( unittest.TestCase ): __A : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCamelCase ( self : Any , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[str] ) -> Any: lowercase__ : List[Any] = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCamelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ) -> Tuple: lowercase__ : str = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { "score": ANY(lowercase_ ), "label": ANY(lowercase_ ), "box": {"xmin": ANY(lowercase_ ), "ymin": ANY(lowercase_ ), "xmax": ANY(lowercase_ ), "ymax": ANY(lowercase_ )}, } , ) import datasets lowercase__ : List[str] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowercase__ : int = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] lowercase__ : List[Any] = object_detector(lowercase_ , threshold=0.0 ) self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { "score": ANY(lowercase_ ), "label": ANY(lowercase_ ), "box": {"xmin": ANY(lowercase_ ), "ymin": ANY(lowercase_ ), "xmax": ANY(lowercase_ ), "ymax": ANY(lowercase_ )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: pass @require_torch def __UpperCamelCase ( self : List[str] ) -> Any: lowercase__ : Tuple = "hf-internal-testing/tiny-detr-mobilenetsv3" lowercase__ : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(lowercase_ ) lowercase__ : List[Any] = AutoFeatureExtractor.from_pretrained(lowercase_ ) lowercase__ : Dict = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) lowercase__ : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ] , ) lowercase__ : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: lowercase__ : List[Any] = "facebook/detr-resnet-50" lowercase__ : int = AutoModelForObjectDetection.from_pretrained(lowercase_ ) lowercase__ : str = AutoFeatureExtractor.from_pretrained(lowercase_ ) lowercase__ : List[str] = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) lowercase__ : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) lowercase__ : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : Dict ) -> Dict: lowercase__ : List[Any] = "facebook/detr-resnet-50" lowercase__ : Tuple = pipeline("object-detection" , model=lowercase_ ) lowercase__ : Dict = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) lowercase__ : List[Any] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: lowercase__ : Union[str, Any] = 0.99_85 lowercase__ : int = "facebook/detr-resnet-50" lowercase__ : Tuple = pipeline("object-detection" , model=lowercase_ ) lowercase__ : Optional[int] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCamelCase ( self : List[Any] ) -> Tuple: lowercase__ : List[str] = "Narsil/layoutlmv3-finetuned-funsd" lowercase__ : List[Any] = 0.99_93 lowercase__ : Optional[Any] = pipeline("object-detection" , model=lowercase_ , threshold=lowercase_ ) lowercase__ : Optional[Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, ] , )
369
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
0
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[int] = torch.exp(_lowerCamelCase) lowercase__ : Dict = torch.sum(_lowerCamelCase , dim=1) # sum of exp(x_i) lowercase__ : List[Any] = torch.sum(x * exp_x , dim=1) # sum of x_i * exp(x_i) return torch.log(_lowerCamelCase) - B / A class snake_case_ ( nn.Module ): def __init__( self : List[str] , lowercase_ : str ) -> Dict: super().__init__() lowercase__ : Tuple = config.output_attentions lowercase__ : List[Any] = config.output_hidden_states lowercase__ : str = nn.ModuleList([BertLayer(lowercase_ ) for _ in range(config.num_hidden_layers )] ) lowercase__ : Any = nn.ModuleList([BertHighway(lowercase_ ) for _ in range(config.num_hidden_layers )] ) lowercase__ : int = [-1 for _ in range(config.num_hidden_layers )] def __UpperCamelCase ( self : str , lowercase_ : int ) -> Union[str, Any]: if (type(lowercase_ ) is float) or (type(lowercase_ ) is int): for i in range(len(self.early_exit_entropy ) ): lowercase__ : int = x else: lowercase__ : Union[str, Any] = x def __UpperCamelCase ( self : Optional[int] , lowercase_ : Union[str, Any] ) -> Dict: lowercase__ : int = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCamelCase ( self : int , lowercase_ : Any , lowercase_ : Any=None , lowercase_ : Union[str, Any]=None , lowercase_ : str=None , lowercase_ : str=None , ) -> int: lowercase__ : str = () lowercase__ : List[str] = () lowercase__ : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowercase__ : List[Any] = all_hidden_states + (hidden_states,) lowercase__ : str = layer_module( lowercase_ , lowercase_ , head_mask[i] , lowercase_ , lowercase_ ) lowercase__ : str = layer_outputs[0] if self.output_attentions: lowercase__ : Dict = all_attentions + (layer_outputs[1],) lowercase__ : int = (hidden_states,) if self.output_hidden_states: lowercase__ : Dict = current_outputs + (all_hidden_states,) if self.output_attentions: lowercase__ : Union[str, Any] = current_outputs + (all_attentions,) lowercase__ : Optional[int] = self.highway[i](lowercase_ ) # logits, pooled_output if not self.training: lowercase__ : Dict = highway_exit[0] lowercase__ : str = entropy(lowercase_ ) lowercase__ : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowercase__ : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowercase__ : Any = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowercase_ , i + 1 ) else: lowercase__ : Optional[Any] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowercase__ : str = all_hidden_states + (hidden_states,) lowercase__ : Union[str, Any] = (hidden_states,) if self.output_hidden_states: lowercase__ : Any = outputs + (all_hidden_states,) if self.output_attentions: lowercase__ : Tuple = outputs + (all_attentions,) lowercase__ : Any = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " ,a__ ,) class snake_case_ ( a__ ): def __init__( self : int , lowercase_ : Dict ) -> Optional[Any]: super().__init__(lowercase_ ) lowercase__ : Optional[int] = config lowercase__ : Dict = BertEmbeddings(lowercase_ ) lowercase__ : Any = DeeBertEncoder(lowercase_ ) lowercase__ : List[Any] = BertPooler(lowercase_ ) self.init_weights() def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: self.encoder.init_highway_pooler(self.pooler ) def __UpperCamelCase ( self : List[str] ) -> List[str]: return self.embeddings.word_embeddings def __UpperCamelCase ( self : Dict , lowercase_ : Tuple ) -> Optional[Any]: lowercase__ : Union[str, Any] = value def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Any ) -> Any: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowercase_ ) @add_start_docstrings_to_model_forward(lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Any=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : List[str]=None , lowercase_ : List[str]=None , lowercase_ : List[str]=None , lowercase_ : Any=None , lowercase_ : Union[str, Any]=None , ) -> str: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: lowercase__ : Optional[int] = input_ids.size() elif inputs_embeds is not None: lowercase__ : str = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) lowercase__ : Tuple = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase__ : Optional[Any] = torch.ones(lowercase_ , device=lowercase_ ) if encoder_attention_mask is None: lowercase__ : Optional[int] = torch.ones(lowercase_ , device=lowercase_ ) if token_type_ids is None: lowercase__ : Dict = torch.zeros(lowercase_ , dtype=torch.long , device=lowercase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase__ : torch.Tensor = self.get_extended_attention_mask(lowercase_ , lowercase_ , lowercase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowercase__ : Optional[int] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowercase__ : Optional[Any] = encoder_attention_mask[:, None, None, :] lowercase__ : List[Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowercase__ : Dict = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase__ : int = self.get_head_mask(lowercase_ , self.config.num_hidden_layers ) lowercase__ : str = self.embeddings( input_ids=lowercase_ , position_ids=lowercase_ , token_type_ids=lowercase_ , inputs_embeds=lowercase_ ) lowercase__ : Optional[Any] = self.encoder( lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) lowercase__ : str = encoder_outputs[0] lowercase__ : Tuple = self.pooler(lowercase_ ) lowercase__ : Tuple = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class snake_case_ ( a__ ): def __init__( self : Optional[Any] , lowercase_ : str , lowercase_ : List[str] ) -> int: lowercase__ : str = message lowercase__ : Dict = exit_layer # start from 1! class snake_case_ ( nn.Module ): def __init__( self : str , lowercase_ : int ) -> Dict: super().__init__() lowercase__ : Union[str, Any] = BertPooler(lowercase_ ) lowercase__ : Tuple = nn.Dropout(config.hidden_dropout_prob ) lowercase__ : str = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Optional[int] ) -> Tuple: # Pooler lowercase__ : Optional[Any] = encoder_outputs[0] lowercase__ : int = self.pooler(lowercase_ ) # "return" pooler_output # BertModel lowercase__ : Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowercase__ : Union[str, Any] = bmodel_output[1] lowercase__ : int = self.dropout(lowercase_ ) lowercase__ : Dict = self.classifier(lowercase_ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " ,a__ ,) class snake_case_ ( a__ ): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] ) -> Optional[Any]: super().__init__(lowercase_ ) lowercase__ : str = config.num_labels lowercase__ : List[Any] = config.num_hidden_layers lowercase__ : Union[str, Any] = DeeBertModel(lowercase_ ) lowercase__ : List[Any] = nn.Dropout(config.hidden_dropout_prob ) lowercase__ : str = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowercase_ ) def __UpperCamelCase ( self : List[str] , lowercase_ : int=None , lowercase_ : Union[str, Any]=None , lowercase_ : Any=None , lowercase_ : Optional[Any]=None , lowercase_ : List[str]=None , lowercase_ : Any=None , lowercase_ : Optional[int]=None , lowercase_ : int=-1 , lowercase_ : Optional[int]=False , ) -> int: lowercase__ : int = self.num_layers try: lowercase__ : Optional[Any] = self.bert( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowercase__ : Any = outputs[1] lowercase__ : Tuple = self.dropout(lowercase_ ) lowercase__ : Any = self.classifier(lowercase_ ) lowercase__ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowercase__ : List[Any] = e.message lowercase__ : Optional[int] = e.exit_layer lowercase__ : Tuple = outputs[0] if not self.training: lowercase__ : Optional[int] = entropy(lowercase_ ) lowercase__ : Any = [] lowercase__ : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowercase__ : Union[str, Any] = MSELoss() lowercase__ : Union[str, Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowercase__ : Any = CrossEntropyLoss() lowercase__ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowercase__ : int = [] for highway_exit in outputs[-1]: lowercase__ : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(lowercase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowercase__ : int = MSELoss() lowercase__ : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowercase__ : Dict = CrossEntropyLoss() lowercase__ : List[str] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowercase_ ) if train_highway: lowercase__ : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowercase__ : Any = (loss,) + outputs if not self.training: lowercase__ : Any = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowercase__ : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
370
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase , UpperCamelCase , UpperCamelCase = False, False, False @dataclass class snake_case_ : __A : Dict = None __A : Dict = True __A : Union[str, Any] = True __A : Optional[Any] = None # Automatically constructed __A : Dict = "dict" __A : Optional[int] = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __A : Tuple = field(default="Audio" ,init=__A ,repr=__A ) def __call__( self : str ) -> str: return self.pa_type def __UpperCamelCase ( self : Any , lowercase_ : Union[str, Any] ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install \'soundfile\'." ) from err if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": None, "path": value} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase__ : int = BytesIO() sf.write(_SCREAMING_SNAKE_CASE , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a \'sampling_rate\' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase__ : Dict = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: lowercase__ : Any = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_27_67 lowercase__ : Union[str, Any] = BytesIO(bytes() ) sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __UpperCamelCase ( self : List[str] , lowercase_ : List[str] , lowercase_ : str = None ) -> dict: if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) lowercase__ : Optional[int] = (value['''path'''], BytesIO(value["bytes"] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install \'librosa\' and \'soundfile\'." ) from err lowercase__ : Union[str, Any] = xsplitext(_SCREAMING_SNAKE_CASE )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: lowercase__ : Optional[Any] = token_per_repo_id or {} lowercase__ : int = path.split("::" )[-1] try: lowercase__ : Tuple = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )['''repo_id'''] lowercase__ : int = token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase__ : int = None with xopen(_SCREAMING_SNAKE_CASE , "rb" , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: lowercase__ : Any = sf.read(_SCREAMING_SNAKE_CASE ) else: lowercase__ : Optional[int] = sf.read(_SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = array.T if self.mono: lowercase__ : int = librosa.to_mono(_SCREAMING_SNAKE_CASE ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase__ : List[Any] = librosa.resample(_SCREAMING_SNAKE_CASE , orig_sr=_SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate ) lowercase__ : List[str] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __UpperCamelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def __UpperCamelCase ( self : List[str] , lowercase_ : List[Any] ) -> pa.StructArray: if pa.types.is_string(storage.type ): lowercase__ : Optional[Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) lowercase__ : str = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase__ : int = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) lowercase__ : Optional[Any] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): lowercase__ : List[str] = pa.array([Audio().encode_example(_SCREAMING_SNAKE_CASE ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: lowercase__ : List[str] = storage.field("bytes" ) else: lowercase__ : Optional[int] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: lowercase__ : List[str] = storage.field("path" ) else: lowercase__ : Optional[int] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) lowercase__ : int = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Optional[Any] ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowercase_ : Any ): with xopen(_SCREAMING_SNAKE_CASE , "rb" ) as f: lowercase__ : str = f.read() return bytes_ lowercase__ : Dict = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase__ : Union[str, Any] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) lowercase__ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type )
371
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
0
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCamelCase = "hf-internal-testing/tiny-random-bert" UpperCamelCase = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') UpperCamelCase = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Union[str, Any] = cached_file(lowercase_ , lowercase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowercase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowercase_ , lowercase_ ) ) ) with open(os.path.join(lowercase_ , "refs" , "main" ) ) as f: lowercase__ : str = f.read() self.assertEqual(lowercase_ , os.path.join(lowercase_ , "snapshots" , lowercase_ , lowercase_ ) ) self.assertTrue(os.path.isfile(lowercase_ ) ) # File is cached at the same place the second time. lowercase__ : str = cached_file(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) # Using a specific revision to test the full commit hash. lowercase__ : Optional[Any] = cached_file(lowercase_ , lowercase_ , revision="9b8c223" ) self.assertEqual(lowercase_ , os.path.join(lowercase_ , "snapshots" , lowercase_ , lowercase_ ) ) def __UpperCamelCase ( self : str ) -> List[str]: with self.assertRaisesRegex(lowercase_ , "is not a valid model identifier" ): lowercase__ : Optional[int] = cached_file("tiny-random-bert" , lowercase_ ) with self.assertRaisesRegex(lowercase_ , "is not a valid git identifier" ): lowercase__ : int = cached_file(lowercase_ , lowercase_ , revision="aaaa" ) with self.assertRaisesRegex(lowercase_ , "does not appear to have a file named" ): lowercase__ : Union[str, Any] = cached_file(lowercase_ , "conf" ) def __UpperCamelCase ( self : Tuple ) -> Tuple: with self.assertRaisesRegex(lowercase_ , "does not appear to have a file named" ): lowercase__ : Dict = cached_file(lowercase_ , "conf" ) with open(os.path.join(lowercase_ , "refs" , "main" ) ) as f: lowercase__ : int = f.read() self.assertTrue(os.path.isfile(os.path.join(lowercase_ , ".no_exist" , lowercase_ , "conf" ) ) ) lowercase__ : int = cached_file(lowercase_ , "conf" , _raise_exceptions_for_missing_entries=lowercase_ ) self.assertIsNone(lowercase_ ) lowercase__ : Dict = cached_file(lowercase_ , "conf" , local_files_only=lowercase_ , _raise_exceptions_for_missing_entries=lowercase_ ) self.assertIsNone(lowercase_ ) lowercase__ : Union[str, Any] = mock.Mock() lowercase__ : str = 5_00 lowercase__ : Tuple = {} lowercase__ : List[Any] = HTTPError lowercase__ : Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowercase_ ) as mock_head: lowercase__ : int = cached_file(lowercase_ , "conf" , _raise_exceptions_for_connection_errors=lowercase_ ) self.assertIsNone(lowercase_ ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Dict ) -> int: self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowercase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowercase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowercase_ ) ) def __UpperCamelCase ( self : str ) -> Dict: self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowercase_ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , lowercase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowercase_ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , lowercase_ , revision="ahaha" ) lowercase__ : Any = get_file_from_repo("bert-base-cased" , lowercase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__ : int = json.loads(open(lowercase_ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_68 ) def __UpperCamelCase ( self : Any ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = Path(lowercase_ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(lowercase_ , "a.txt" ) , str(lowercase_ ) ) self.assertIsNone(get_file_from_repo(lowercase_ , "b.txt" ) )
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = '''pytorch_model.bin''' @dataclasses.dataclass class snake_case_ : __A : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) __A : Optional[str] = dataclasses.field( default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} ,) @dataclasses.dataclass class snake_case_ : __A : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) __A : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) __A : Optional[str] = dataclasses.field( default=__SCREAMING_SNAKE_CASE ,metadata={"help": "A csv or a json file containing the validation data."} ) __A : Optional[str] = dataclasses.field( default=__SCREAMING_SNAKE_CASE ,metadata={"help": "The name of the task to train on."} ,) __A : Optional[List[str]] = dataclasses.field( default=__SCREAMING_SNAKE_CASE ,metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class snake_case_ : __A : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) __A : Optional[str] = dataclasses.field( default="accuracy" ,metadata={"help": "The evaluation metric used for the task."} ) __A : Optional[str] = dataclasses.field( default="no" ,metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } ,) __A : Optional[int] = dataclasses.field( default=10 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) __A : Optional[float] = dataclasses.field( default=0.0 ,metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } ,) __A : Optional[bool] = dataclasses.field( default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} ,) __A : Optional[bool] = dataclasses.field( default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} ,) __A : Optional[bool] = dataclasses.field( default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} ,) __A : Optional[float] = dataclasses.field( default=0.0 ,metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} ,) __A : Optional[int] = dataclasses.field( default=100 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) __A : Optional[int] = dataclasses.field( default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Random seed for initialization."} ,) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any]): lowercase__ : List[str] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1) if args.do_filter_by_confidence: lowercase__ : Optional[Any] = dataset.filter(lambda _lowerCamelCase: example["probability"] > args.confidence_threshold) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowercase__ : Tuple = int(eval_result * len(_SCREAMING_SNAKE_CASE)) print(_SCREAMING_SNAKE_CASE) lowercase__ : Optional[Any] = dataset.sort("probability" , reverse=_SCREAMING_SNAKE_CASE) lowercase__ : Dict = dataset.select(range(_SCREAMING_SNAKE_CASE)) lowercase__ : Optional[int] = dataset.remove_columns(["label", "probability"]) lowercase__ : str = dataset.rename_column("prediction" , "label") lowercase__ : Tuple = dataset.map(lambda _lowerCamelCase: {"label": idalabel[example["label"]]}) lowercase__ : List[Any] = dataset.shuffle(seed=args.seed) lowercase__ : int = os.path.join(_SCREAMING_SNAKE_CASE , f'''train_pseudo.{args.data_file_extension}''') if args.data_file_extension == "csv": dataset.to_csv(_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE) else: dataset.to_json(_SCREAMING_SNAKE_CASE) def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , **_lowerCamelCase : Union[str, Any]): lowercase__ : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowercase__ : Optional[Any] = STModelArguments(model_name_or_path=_SCREAMING_SNAKE_CASE) lowercase__ : Optional[int] = STDataArguments(train_file=_SCREAMING_SNAKE_CASE , infer_file=_SCREAMING_SNAKE_CASE) lowercase__ : Union[str, Any] = STTrainingArguments(output_dir=_SCREAMING_SNAKE_CASE) lowercase__ : str = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_SCREAMING_SNAKE_CASE).items(): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for key, value in kwargs.items(): if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # Sanity checks lowercase__ : str = {} lowercase__ : List[str] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowercase__ : Tuple = args.train_file lowercase__ : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowercase__ : List[str] = args.eval_file for key in data_files: lowercase__ : List[str] = data_files[key].split(".")[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: lowercase__ : List[Any] = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) logger.info("Creating the initial data directory for self-training...") lowercase__ : Optional[int] = f'''{args.output_dir}/self-train_iter-{{}}'''.format lowercase__ : Any = data_dir_format(0) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE) accelerator.wait_for_everyone() lowercase__ : int = None lowercase__ : Any = None lowercase__ : List[str] = 0 lowercase__ : Optional[Any] = False # Show the progress bar lowercase__ : Optional[int] = tqdm(range(args.max_selftrain_iterations) , disable=not accelerator.is_local_main_process) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations)): lowercase__ : List[Any] = data_dir_format(_SCREAMING_SNAKE_CASE) assert os.path.exists(_SCREAMING_SNAKE_CASE) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowercase__ : str = os.path.join(_SCREAMING_SNAKE_CASE , "stage-1") lowercase__ : Optional[Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): arguments_dict.update({key: value}) lowercase__ : str = os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint" , _SCREAMING_SNAKE_CASE) if os.path.exists(_SCREAMING_SNAKE_CASE): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , _SCREAMING_SNAKE_CASE) finetune(**_SCREAMING_SNAKE_CASE) accelerator.wait_for_everyone() assert os.path.exists(_SCREAMING_SNAKE_CASE) logger.info("Self-training job completed: iteration: %d, stage: 1." , _SCREAMING_SNAKE_CASE) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowercase__ : Any = os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint") lowercase__ : List[str] = os.path.join(_SCREAMING_SNAKE_CASE , "stage-2") # Update arguments_dict lowercase__ : Optional[int] = model_path lowercase__ : List[str] = data_files["train"] lowercase__ : str = current_output_dir lowercase__ : Tuple = os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint" , _SCREAMING_SNAKE_CASE) if os.path.exists(_SCREAMING_SNAKE_CASE): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , _SCREAMING_SNAKE_CASE) finetune(**_SCREAMING_SNAKE_CASE) accelerator.wait_for_everyone() assert os.path.exists(_SCREAMING_SNAKE_CASE) logger.info("Self-training job completed: iteration: %d, stage: 2." , _SCREAMING_SNAKE_CASE) lowercase__ : int = iteration lowercase__ : int = data_dir_format(iteration + 1) lowercase__ : Dict = AutoConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint")) lowercase__ : str = config.idalabel lowercase__ : Dict = os.path.join(_SCREAMING_SNAKE_CASE , "eval_results_best-checkpoint.json") lowercase__ : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , "test_results_best-checkpoint.json") assert os.path.exists(_SCREAMING_SNAKE_CASE) with open(_SCREAMING_SNAKE_CASE , "r") as f: lowercase__ : str = float(json.load(_SCREAMING_SNAKE_CASE)[args.eval_metric]) lowercase__ : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , "infer_output_best-checkpoint.csv") assert os.path.exists(_SCREAMING_SNAKE_CASE) # Loading the dataset from local csv or json files. lowercase__ : int = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]})["data"] lowercase__ : Tuple = load_dataset("csv" , data_files={"data": infer_output_file})["data"] if accelerator.is_main_process: os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE) shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f'''eval_results_iter-{iteration}.json''')) if os.path.exists(_SCREAMING_SNAKE_CASE): shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f'''test_results_iter-{iteration}.json''')) create_pseudo_labeled_data(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) accelerator.wait_for_everyone() lowercase__ : Dict = os.path.join(_SCREAMING_SNAKE_CASE , f'''train_pseudo.{args.data_file_extension}''') if args.evaluation_strategy != IntervalStrategy.NO.value: lowercase__ : int = eval_result if best_iteration is None: lowercase__ : Any = new_iteration lowercase__ : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowercase__ : Optional[int] = new_iteration lowercase__ : str = new_eval_result lowercase__ : str = 0 else: if new_eval_result == best_eval_result: lowercase__ : Union[str, Any] = new_iteration lowercase__ : List[Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowercase__ : Any = True progress_bar.update(1) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , _SCREAMING_SNAKE_CASE) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _SCREAMING_SNAKE_CASE) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_SCREAMING_SNAKE_CASE , f'''eval_results_iter-{iteration}.json''') , os.path.join(_SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json") , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _SCREAMING_SNAKE_CASE) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_SCREAMING_SNAKE_CASE , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''') , os.path.join(_SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json") , )
351
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
352
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
0