code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import math
import qiskit
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1):
if (
isinstance(_lowerCamelCase , _lowerCamelCase)
or isinstance(_lowerCamelCase , _lowerCamelCase)
or isinstance(_lowerCamelCase , _lowerCamelCase)
):
raise TypeError("inputs must be integers.")
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError("inputs must be positive.")
if (
(math.floor(_lowerCamelCase) != input_a)
or (math.floor(_lowerCamelCase) != input_a)
or (math.floor(_lowerCamelCase) != carry_in)
):
raise ValueError("inputs must be exact integers.")
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError("inputs must be less or equal to 2.")
# build registers
lowercase__ : List[Any] = qiskit.QuantumRegister(4 , "qr")
lowercase__ : str = qiskit.ClassicalRegister(2 , "cr")
# list the entries
lowercase__ : Optional[Any] = [input_a, input_a, carry_in]
lowercase__ : Dict = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase)
for i in range(0 , 3):
if entry[i] == 2:
quantum_circuit.h(_lowerCamelCase) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(_lowerCamelCase) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(_lowerCamelCase) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3) # ccx = toffoli gate
quantum_circuit.cx(0 , 1)
quantum_circuit.ccx(1 , 2 , 3)
quantum_circuit.cx(1 , 2)
quantum_circuit.cx(0 , 1)
quantum_circuit.measure([2, 3] , _lowerCamelCase) # measure the last two qbits
lowercase__ : str = qiskit.Aer.get_backend("aer_simulator")
lowercase__ : Optional[int] = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1000)
return job.result().get_counts(_lowerCamelCase)
if __name__ == "__main__":
print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
| 333 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 | 1 |
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class snake_case_ ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]:
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(lowercase_ ):
lowercase__ : Optional[int] = AutoConfig.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
lowercase__ : str = FlaxAutoModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
@slow
def __UpperCamelCase ( self : str ) -> Optional[Any]:
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(lowercase_ ):
lowercase__ : Optional[int] = AutoConfig.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
lowercase__ : List[Any] = FlaxAutoModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
self.assertIsInstance(lowercase_ , lowercase_ )
@slow
def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
for model_name in ["bert-base-cased", "bert-large-uncased"]:
lowercase__ : List[str] = AutoTokenizer.from_pretrained(lowercase_ )
lowercase__ : List[Any] = FlaxBertModel.from_pretrained(lowercase_ )
lowercase__ : Any = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**lowercase_ : List[str] ):
return model(**lowercase_ )
eval(**lowercase_ ).block_until_ready()
@slow
def __UpperCamelCase ( self : List[str] ) -> List[str]:
for model_name in ["roberta-base", "roberta-large"]:
lowercase__ : int = AutoTokenizer.from_pretrained(lowercase_ )
lowercase__ : int = FlaxRobertaModel.from_pretrained(lowercase_ )
lowercase__ : Dict = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**lowercase_ : str ):
return model(**lowercase_ )
eval(**lowercase_ ).block_until_ready()
def __UpperCamelCase ( self : int ) -> Tuple:
with self.assertRaisesRegex(
lowercase_ , "bert-base is not a local folder and is not a valid model identifier" ):
lowercase__ : Tuple = FlaxAutoModel.from_pretrained("bert-base" )
def __UpperCamelCase ( self : Any ) -> Dict:
with self.assertRaisesRegex(
lowercase_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
lowercase__ : Union[str, Any] = FlaxAutoModel.from_pretrained(lowercase_ , revision="aaaaaa" )
def __UpperCamelCase ( self : Dict ) -> Any:
with self.assertRaisesRegex(
lowercase_ , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ):
lowercase__ : int = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def __UpperCamelCase ( self : List[str] ) -> str:
with self.assertRaisesRegex(lowercase_ , "Use `from_pt=True` to load this model" ):
lowercase__ : Dict = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
| 333 | def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 1
lowercase__ : int = 0
for divide_by_number in range(_lowerCamelCase , digit + 1):
lowercase__ : list[int] = []
lowercase__ : Dict = numerator
for _ in range(1 , digit + 1):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase):
lowercase__ : Union[str, Any] = len(_lowerCamelCase)
lowercase__ : Optional[int] = divide_by_number
else:
has_been_divided.append(_lowerCamelCase)
lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 1 |
UpperCamelCase = {
0: '''0''',
1: '''1''',
2: '''2''',
3: '''3''',
4: '''4''',
5: '''5''',
6: '''6''',
7: '''7''',
8: '''8''',
9: '''9''',
10: '''a''',
11: '''b''',
12: '''c''',
13: '''d''',
14: '''e''',
15: '''f''',
}
def lowercase_ ( _lowerCamelCase : float):
assert type(_lowerCamelCase) in (int, float) and decimal == int(_lowerCamelCase)
lowercase__ : Union[str, Any] = int(_lowerCamelCase)
lowercase__ : Optional[Any] = ""
lowercase__ : Any = False
if decimal < 0:
lowercase__ : str = True
decimal *= -1
while decimal > 0:
lowercase__ , lowercase__ : Optional[int] = divmod(_lowerCamelCase , 16)
lowercase__ : Optional[Any] = values[remainder] + hexadecimal
lowercase__ : Tuple = "0x" + hexadecimal
if negative:
lowercase__ : int = "-" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 1 |
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 333 | import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False):
try:
lowercase__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''')
return _value
UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skip("Test was skipped")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None):
if test_case is None:
return partial(_lowerCamelCase , version=_lowerCamelCase)
return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase)
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase)
class snake_case_ ( unittest.TestCase ):
__A : int = True
@classmethod
def __UpperCamelCase ( cls : str ) -> str:
lowercase__ : str = tempfile.mkdtemp()
@classmethod
def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCamelCase ( self : str ) -> Optional[int]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowercase_ )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str:
lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Optional[int] = tensor[None].clone().to(state.device)
lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu()
lowercase__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowerCamelCase):
return False
return True
class snake_case_ :
def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : int = returncode
lowercase__ : Dict = stdout
lowercase__ : List[Any] = stderr
async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str):
while True:
lowercase__ : int = await stream.readline()
if line:
callback(_lowerCamelCase)
else:
break
async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False):
if echo:
print("\nRunning: " , " ".join(_lowerCamelCase))
lowercase__ : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Tuple = []
lowercase__ : List[Any] = []
def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""):
lowercase__ : Optional[int] = line.decode("utf-8").rstrip()
sink.append(_lowerCamelCase)
if not quiet:
print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))),
] , timeout=_lowerCamelCase , )
return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True):
lowercase__ : Optional[Any] = asyncio.get_event_loop()
lowercase__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase))
lowercase__ : str = " ".join(_lowerCamelCase)
if result.returncode > 0:
lowercase__ : Dict = "\n".join(result.stderr)
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False):
try:
lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowerCamelCase , "decode"):
lowercase__ : Optional[Any] = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 2**power
lowercase__ : List[Any] = str(_lowerCamelCase)
lowercase__ : List[Any] = list(_lowerCamelCase)
lowercase__ : Optional[int] = 0
for i in list_num:
sum_of_num += int(_lowerCamelCase)
return sum_of_num
if __name__ == "__main__":
UpperCamelCase = int(input('''Enter the power of 2: ''').strip())
print('''2 ^ ''', power, ''' = ''', 2**power)
UpperCamelCase = solution(power)
print('''Sum of the digits is: ''', result)
| 333 | from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[Any] = ["flax"]
def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[int] = ["flax"]
def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[str] = ["flax"]
def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
| 333 | 1 |
from collections.abc import Callable
def lowercase_ ( _lowerCamelCase : Callable[[float], float] , _lowerCamelCase : float , _lowerCamelCase : float):
lowercase__ : float = a
lowercase__ : float = b
if function(_lowerCamelCase) == 0: # one of the a or b is a root for the function
return a
elif function(_lowerCamelCase) == 0:
return b
elif (
function(_lowerCamelCase) * function(_lowerCamelCase) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("could not find root in given interval.")
else:
lowercase__ : float = start + (end - start) / 2.0
while abs(start - mid) > 10**-7: # until precisely equals to 10^-7
if function(_lowerCamelCase) == 0:
return mid
elif function(_lowerCamelCase) * function(_lowerCamelCase) < 0:
lowercase__ : Optional[int] = mid
else:
lowercase__ : int = mid
lowercase__ : List[Any] = start + (end - start) / 2.0
return mid
def lowercase_ ( _lowerCamelCase : float):
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 333 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class snake_case_ ( __A ):
__A : List[str] = "vit_mae"
def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]:
super().__init__(**lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Any = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Any = num_channels
lowercase__ : str = qkv_bias
lowercase__ : Optional[Any] = decoder_num_attention_heads
lowercase__ : Any = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : Union[str, Any] = decoder_intermediate_size
lowercase__ : int = mask_ratio
lowercase__ : Tuple = norm_pix_loss
| 333 | 1 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class snake_case_ :
def __init__( self : str , lowercase_ : List[str] , lowercase_ : Optional[int]=3 , lowercase_ : Optional[int]=32 , lowercase_ : Dict=3 , lowercase_ : int=10 , lowercase_ : int=[8, 16, 32, 64] , lowercase_ : Union[str, Any]=[1, 1, 2, 1] , lowercase_ : Optional[Any]=True , lowercase_ : List[str]=True , lowercase_ : str="relu" , lowercase_ : Optional[Any]=3 , lowercase_ : Any=None , lowercase_ : Union[str, Any]=["stage2", "stage3", "stage4"] , lowercase_ : Optional[int]=[2, 3, 4] , lowercase_ : Optional[Any]=1 , ) -> Optional[Any]:
lowercase__ : Any = parent
lowercase__ : Dict = batch_size
lowercase__ : Optional[Any] = image_size
lowercase__ : Union[str, Any] = num_channels
lowercase__ : str = embeddings_size
lowercase__ : Any = hidden_sizes
lowercase__ : str = depths
lowercase__ : List[Any] = is_training
lowercase__ : Optional[int] = use_labels
lowercase__ : Optional[Any] = hidden_act
lowercase__ : List[str] = num_labels
lowercase__ : Tuple = scope
lowercase__ : Union[str, Any] = len(lowercase_ )
lowercase__ : Any = out_features
lowercase__ : Union[str, Any] = out_indices
lowercase__ : Optional[Any] = num_groups
def __UpperCamelCase ( self : Dict ) -> int:
lowercase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ : Tuple = None
if self.use_labels:
lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels )
lowercase__ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self : Any ) -> List[str]:
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def __UpperCamelCase ( self : str , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Dict ) -> Union[str, Any]:
lowercase__ : Dict = BitModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : str = model(lowercase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str] ) -> int:
lowercase__ : List[str] = self.num_labels
lowercase__ : Optional[Any] = BitForImageClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Dict = model(lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Optional[int] ) -> str:
lowercase__ : List[str] = BitBackbone(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Union[str, Any] = model(lowercase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowercase__ : Tuple = None
lowercase__ : List[str] = BitBackbone(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Any = model(lowercase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
lowercase__ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = config_and_inputs
lowercase__ : int = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class snake_case_ ( __A ,__A ,unittest.TestCase ):
__A : str = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__A : Dict = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
__A : Union[str, Any] = False
__A : str = False
__A : Dict = False
__A : List[Any] = False
__A : Union[str, Any] = False
def __UpperCamelCase ( self : Dict ) -> Tuple:
lowercase__ : Tuple = BitModelTester(self )
lowercase__ : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ )
def __UpperCamelCase ( self : Optional[int] ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __UpperCamelCase ( self : Tuple ) -> Optional[int]:
return
@unittest.skip(reason="Bit does not output attentions" )
def __UpperCamelCase ( self : str ) -> List[str]:
pass
@unittest.skip(reason="Bit does not use inputs_embeds" )
def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]:
pass
@unittest.skip(reason="Bit does not support input and output embeddings" )
def __UpperCamelCase ( self : int ) -> Union[str, Any]:
pass
def __UpperCamelCase ( self : Tuple ) -> Tuple:
lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Union[str, Any] = model_class(lowercase_ )
lowercase__ : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : List[str] = [*signature.parameters.keys()]
lowercase__ : Union[str, Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[Any]:
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def __UpperCamelCase ( self : Any ) -> Any:
lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowercase_ )
def __UpperCamelCase ( self : int ) -> Optional[Any]:
lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Dict = model_class(config=lowercase_ )
for name, module in model.named_modules():
if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def __UpperCamelCase ( self : Any ) -> List[str]:
def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : int ):
lowercase__ : Any = model_class(lowercase_ )
model.to(lowercase_ )
model.eval()
with torch.no_grad():
lowercase__ : int = model(**self._prepare_for_class(lowercase_ , lowercase_ ) )
lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase__ : str = self.model_tester.num_stages
self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : Dict = ["preactivation", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowercase__ : int = layer_type
lowercase__ : int = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ : Union[str, Any] = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
@unittest.skip(reason="Bit does not use feedforward chunking" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
pass
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
@slow
def __UpperCamelCase ( self : str ) -> Any:
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Optional[int] = BitModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
def lowercase_ ( ):
lowercase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class snake_case_ ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self : Union[str, Any] ) -> int:
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def __UpperCamelCase ( self : Tuple ) -> Dict:
lowercase__ : Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ )
lowercase__ : Union[str, Any] = self.default_image_processor
lowercase__ : Tuple = prepare_img()
lowercase__ : int = image_processor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ )
# forward pass
with torch.no_grad():
lowercase__ : str = model(**lowercase_ )
# verify the logits
lowercase__ : Tuple = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowercase_ )
lowercase__ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(lowercase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
@require_torch
class snake_case_ ( __A ,unittest.TestCase ):
__A : List[Any] = (BitBackbone,) if is_torch_available() else ()
__A : List[str] = BitConfig
__A : List[str] = False
def __UpperCamelCase ( self : int ) -> Tuple:
lowercase__ : Any = BitModelTester(self )
| 333 | def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while a != 0:
lowercase__ , lowercase__ : Dict = b % a, a
return b
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if gcd(_lowerCamelCase , _lowerCamelCase) != 1:
lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m
while va != 0:
lowercase__ : Tuple = ua // va
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 333 | 1 |
import doctest
from collections import deque
import numpy as np
class snake_case_ :
def __init__( self : List[str] ) -> None:
lowercase__ : Union[str, Any] = [2, 1, 2, -1]
lowercase__ : Dict = [1, 2, 3, 4]
def __UpperCamelCase ( self : Optional[int] ) -> list[float]:
lowercase__ : List[str] = len(self.first_signal )
lowercase__ : Optional[int] = len(self.second_signal )
lowercase__ : Tuple = max(lowercase_ , lowercase_ )
# create a zero matrix of max_length x max_length
lowercase__ : Union[str, Any] = [[0] * max_length for i in range(lowercase_ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowercase_ ):
lowercase__ : List[Any] = deque(self.second_signal )
rotated_signal.rotate(lowercase_ )
for j, item in enumerate(lowercase_ ):
matrix[i][j] += item
# multiply the matrix with the first signal
lowercase__ : Optional[int] = np.matmul(np.transpose(lowercase_ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowercase_ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 333 | import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 1 |
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
set_seed(770)
UpperCamelCase = {
'''c_attn''': '''att_proj''',
'''c_proj''': '''out_proj''',
'''c_fc''': '''in_proj''',
'''transformer.''': '''''',
'''h.''': '''layers.''',
'''ln_1''': '''layernorm_1''',
'''ln_2''': '''layernorm_2''',
'''ln_f''': '''layernorm_final''',
'''wpe''': '''position_embeds_layer''',
'''wte''': '''input_embeds_layer''',
}
UpperCamelCase = {
'''text_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text.pt''',
},
'''coarse_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse.pt''',
},
'''fine_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine.pt''',
},
'''text''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text_2.pt''',
},
'''coarse''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse_2.pt''',
},
'''fine''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine_2.pt''',
},
}
UpperCamelCase = os.path.dirname(os.path.abspath(__file__))
UpperCamelCase = os.path.join(os.path.expanduser('''~'''), '''.cache''')
UpperCamelCase = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''')
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[str]=False):
lowercase__ : Union[str, Any] = model_type
if use_small:
key += "_small"
return os.path.join(_lowerCamelCase , REMOTE_MODEL_PATHS[key]["file_name"])
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Dict):
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase)
hf_hub_download(repo_id=_lowerCamelCase , filename=_lowerCamelCase , local_dir=_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : List[Any]=False , _lowerCamelCase : Optional[int]="text"):
if model_type == "text":
lowercase__ : Dict = BarkSemanticModel
lowercase__ : Optional[Any] = BarkSemanticConfig
lowercase__ : Union[str, Any] = BarkSemanticGenerationConfig
elif model_type == "coarse":
lowercase__ : Union[str, Any] = BarkCoarseModel
lowercase__ : Tuple = BarkCoarseConfig
lowercase__ : List[str] = BarkCoarseGenerationConfig
elif model_type == "fine":
lowercase__ : Optional[int] = BarkFineModel
lowercase__ : Union[str, Any] = BarkFineConfig
lowercase__ : Optional[Any] = BarkFineGenerationConfig
else:
raise NotImplementedError()
lowercase__ : Union[str, Any] = f'''{model_type}_small''' if use_small else model_type
lowercase__ : str = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(_lowerCamelCase):
logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''')
_download(model_info["repo_id"] , model_info["file_name"])
lowercase__ : int = torch.load(_lowerCamelCase , map_location=_lowerCamelCase)
# this is a hack
lowercase__ : Dict = checkpoint["model_args"]
if "input_vocab_size" not in model_args:
lowercase__ : str = model_args["vocab_size"]
lowercase__ : Union[str, Any] = model_args["vocab_size"]
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
lowercase__ : Union[str, Any] = model_args.pop("n_head")
lowercase__ : int = model_args.pop("n_embd")
lowercase__ : Optional[int] = model_args.pop("n_layer")
lowercase__ : List[Any] = ConfigClass(**checkpoint["model_args"])
lowercase__ : List[str] = ModelClass(config=_lowerCamelCase)
lowercase__ : int = GenerationConfigClass()
lowercase__ : List[Any] = model_generation_config
lowercase__ : Tuple = checkpoint["model"]
# fixup checkpoint
lowercase__ : Optional[Any] = "_orig_mod."
for k, v in list(state_dict.items()):
if k.startswith(_lowerCamelCase):
# replace part of the key with corresponding layer name in HF implementation
lowercase__ : List[str] = k[len(_lowerCamelCase) :]
for old_layer_name in new_layer_name_dict:
lowercase__ : Any = new_k.replace(_lowerCamelCase , new_layer_name_dict[old_layer_name])
lowercase__ : List[Any] = state_dict.pop(_lowerCamelCase)
lowercase__ : int = set(state_dict.keys()) - set(model.state_dict().keys())
lowercase__ : Union[str, Any] = {k for k in extra_keys if not k.endswith(".attn.bias")}
lowercase__ : List[Any] = set(model.state_dict().keys()) - set(state_dict.keys())
lowercase__ : List[str] = {k for k in missing_keys if not k.endswith(".attn.bias")}
if len(_lowerCamelCase) != 0:
raise ValueError(f'''extra keys found: {extra_keys}''')
if len(_lowerCamelCase) != 0:
raise ValueError(f'''missing keys: {missing_keys}''')
model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase)
lowercase__ : Optional[int] = model.num_parameters(exclude_embeddings=_lowerCamelCase)
lowercase__ : Optional[int] = checkpoint["best_val_loss"].item()
logger.info(f'''model loaded: {round(n_params/1E6 , 1)}M params, {round(_lowerCamelCase , 3)} loss''')
model.eval()
model.to(_lowerCamelCase)
del checkpoint, state_dict
return model
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False , _lowerCamelCase : Union[str, Any]="text"):
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
lowercase__ : Union[str, Any] = "cpu" # do conversion on cpu
lowercase__ : int = _get_ckpt_path(_lowerCamelCase , use_small=_lowerCamelCase)
lowercase__ : List[str] = _load_model(_lowerCamelCase , _lowerCamelCase , model_type=_lowerCamelCase , use_small=_lowerCamelCase)
# load bark initial model
lowercase__ : Tuple = _bark_load_model(_lowerCamelCase , "cpu" , model_type=_lowerCamelCase , use_small=_lowerCamelCase)
if model_type == "text":
lowercase__ : str = bark_model["model"]
if model.num_parameters(exclude_embeddings=_lowerCamelCase) != bark_model.get_num_params():
raise ValueError("initial and new models don't have the same number of parameters")
# check if same output as the bark model
lowercase__ : Any = 5
lowercase__ : Any = 10
if model_type in ["text", "coarse"]:
lowercase__ : List[str] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int)
lowercase__ : Optional[Any] = bark_model(_lowerCamelCase)[0]
lowercase__ : Dict = model(_lowerCamelCase)
# take last logits
lowercase__ : Union[str, Any] = output_new_model_total.logits[:, [-1], :]
else:
lowercase__ : int = 3
lowercase__ : Tuple = 8
lowercase__ : Dict = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int)
lowercase__ : Optional[int] = model(_lowerCamelCase , _lowerCamelCase)
lowercase__ : int = bark_model(_lowerCamelCase , _lowerCamelCase)
lowercase__ : str = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError("initial and new outputs don't have the same shape")
if (output_new_model - output_old_model).abs().max().item() > 1E-3:
raise ValueError("initial and new outputs are not equal")
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
model.save_pretrained(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : str , _lowerCamelCase : Any , ):
lowercase__ : Any = os.path.join(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = BarkSemanticConfig.from_pretrained(os.path.join(_lowerCamelCase , "config.json"))
lowercase__ : Optional[int] = BarkCoarseConfig.from_pretrained(os.path.join(_lowerCamelCase , "config.json"))
lowercase__ : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(_lowerCamelCase , "config.json"))
lowercase__ : List[str] = EncodecConfig.from_pretrained("facebook/encodec_24khz")
lowercase__ : int = BarkSemanticModel.from_pretrained(_lowerCamelCase)
lowercase__ : List[str] = BarkCoarseModel.from_pretrained(_lowerCamelCase)
lowercase__ : Union[str, Any] = BarkFineModel.from_pretrained(_lowerCamelCase)
lowercase__ : Optional[int] = EncodecModel.from_pretrained("facebook/encodec_24khz")
lowercase__ : Optional[Any] = BarkConfig.from_sub_model_configs(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
lowercase__ : Any = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config)
lowercase__ : Union[str, Any] = BarkModel(_lowerCamelCase)
lowercase__ : Optional[Any] = semantic
lowercase__ : Tuple = coarseAcoustic
lowercase__ : Any = fineAcoustic
lowercase__ : Any = codec
lowercase__ : str = bark_generation_config
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
bark.save_pretrained(_lowerCamelCase , repo_id=_lowerCamelCase , push_to_hub=_lowerCamelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''')
UpperCamelCase = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 333 | import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 | 1 |
from collections.abc import Sequence
def lowercase_ ( _lowerCamelCase : Sequence[float] , _lowerCamelCase : bool = False):
if not arr:
return 0
lowercase__ : Optional[Any] = 0 if allow_empty_subarrays else float("-inf")
lowercase__ : Dict = 0.0
for num in arr:
lowercase__ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num)
lowercase__ : Dict = max(_lowerCamelCase , _lowerCamelCase)
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCamelCase = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(f"{max_subarray_sum(nums) = }")
| 333 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 1 |
import math
from datetime import datetime, timedelta
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Dict = year % 19
lowercase__ : int = year % 4
lowercase__ : Dict = year % 7
lowercase__ : int = math.floor(year / 100)
lowercase__ : Tuple = math.floor((13 + 8 * leap_day_inhibits) / 25)
lowercase__ : str = leap_day_inhibits / 4
lowercase__ : int = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
lowercase__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
lowercase__ : Union[str, Any] = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
lowercase__ : Optional[Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(_lowerCamelCase , 4 , 19)
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(_lowerCamelCase , 4 , 18)
else:
return datetime(_lowerCamelCase , 3 , 22) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday))
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
UpperCamelCase = '''will be''' if year > datetime.now().year else '''was'''
print(f"Easter in {year} {tense} {gauss_easter(year)}")
| 333 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class snake_case_ ( __A ):
__A : List[str] = "unispeech"
def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : Any = feat_extract_norm
lowercase__ : Optional[Any] = feat_extract_activation
lowercase__ : Dict = list(lowercase_ )
lowercase__ : Union[str, Any] = list(lowercase_ )
lowercase__ : List[str] = list(lowercase_ )
lowercase__ : List[str] = conv_bias
lowercase__ : Any = num_conv_pos_embeddings
lowercase__ : Dict = num_conv_pos_embedding_groups
lowercase__ : int = len(self.conv_dim )
lowercase__ : str = num_hidden_layers
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : Any = attention_dropout
lowercase__ : Union[str, Any] = activation_dropout
lowercase__ : Any = feat_proj_dropout
lowercase__ : str = final_dropout
lowercase__ : int = layerdrop
lowercase__ : Optional[int] = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = num_ctc_classes
lowercase__ : int = vocab_size
lowercase__ : str = do_stable_layer_norm
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : List[Any] = apply_spec_augment
lowercase__ : Dict = mask_time_prob
lowercase__ : Tuple = mask_time_length
lowercase__ : str = mask_time_min_masks
lowercase__ : List[Any] = mask_feature_prob
lowercase__ : int = mask_feature_length
lowercase__ : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__ : Optional[int] = num_codevectors_per_group
lowercase__ : List[str] = num_codevector_groups
lowercase__ : Dict = contrastive_logits_temperature
lowercase__ : Tuple = feat_quantizer_dropout
lowercase__ : Any = num_negatives
lowercase__ : Dict = codevector_dim
lowercase__ : Tuple = proj_codevector_dim
lowercase__ : List[str] = diversity_loss_weight
# ctc loss
lowercase__ : Tuple = ctc_loss_reduction
lowercase__ : Dict = ctc_zero_infinity
# pretraining loss
lowercase__ : Optional[Any] = replace_prob
@property
def __UpperCamelCase ( self : Dict ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 333 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 333 | def lowercase_ ( _lowerCamelCase : list):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : int = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j]
lowercase__ : List[str] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 333 | 1 |
from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : Any = ["transformers", "torch", "note_seq"]
def __init__( self : List[str] , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ) -> str:
requires_backends(self , ["transformers", "torch", "note_seq"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : str , **lowercase_ : int ) -> Tuple:
requires_backends(cls , ["transformers", "torch", "note_seq"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["transformers", "torch", "note_seq"] )
| 333 | import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class snake_case_ ( __A ):
__A : int = "token-classification"
def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]:
if type(lowercase_ ) == dict:
lowercase__ : Dict = Namespace(**lowercase_ )
lowercase__ : str = import_module("tasks" )
try:
lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels )
lowercase__ : int = CrossEntropyLoss().ignore_index
super().__init__(lowercase_ , len(self.labels ) , self.mode )
def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any:
return self.model(**lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple:
lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : Tuple = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : Optional[int] = self(**lowercase_ )
lowercase__ : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
lowercase__ : Any = self._feature_file(lowercase_ )
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ )
lowercase__ : Dict = self.token_classification_task.convert_examples_to_features(
lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowercase_ )
torch.save(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader:
lowercase__ : str = self._feature_file(lowercase_ )
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str:
"""Compute validation""" ""
lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : int = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : List[Any] = self(**lowercase_ )
lowercase__ , lowercase__ : Any = outputs[:2]
lowercase__ : Optional[Any] = logits.detach().cpu().numpy()
lowercase__ : int = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]:
lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean()
lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 )
lowercase__ : Dict = np.argmax(lowercase_ , axis=2 )
lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 )
lowercase__ : Any = dict(enumerate(self.labels ) )
lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )]
lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
lowercase__ : Any = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase_ , lowercase_ ),
"precision": precision_score(lowercase_ , lowercase_ ),
"recall": recall_score(lowercase_ , lowercase_ ),
"f1": fa_score(lowercase_ , lowercase_ ),
}
lowercase__ : List[Any] = dict(results.items() )
lowercase__ : List[str] = results
return ret, preds_list, out_label_list
def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict:
# when stable
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
lowercase__ : Any = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int:
# updating to test_epoch_end instead of deprecated test_end
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
lowercase__ : Optional[int] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple:
# Add NER specific options
BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ )
parser.add_argument(
"--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=1_28 , type=lowercase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCamelCase = parser.parse_args()
UpperCamelCase = NERTransformer(args)
UpperCamelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
UpperCamelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 333 | 1 |
from ...configuration_utils import PretrainedConfig
class snake_case_ ( __A ):
__A : Optional[Any] = "bert-generation"
def __init__( self : Optional[int] , lowercase_ : Any=5_03_58 , lowercase_ : List[Any]=10_24 , lowercase_ : Optional[Any]=24 , lowercase_ : Union[str, Any]=16 , lowercase_ : Tuple=40_96 , lowercase_ : List[Any]="gelu" , lowercase_ : str=0.1 , lowercase_ : Dict=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : Optional[int]=0.02 , lowercase_ : Dict=1E-12 , lowercase_ : Optional[Any]=0 , lowercase_ : str=2 , lowercase_ : int=1 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Union[str, Any]=True , **lowercase_ : Dict , ) -> Optional[int]:
super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
lowercase__ : Tuple = vocab_size
lowercase__ : Dict = hidden_size
lowercase__ : Dict = num_hidden_layers
lowercase__ : Union[str, Any] = num_attention_heads
lowercase__ : int = hidden_act
lowercase__ : int = intermediate_size
lowercase__ : Any = hidden_dropout_prob
lowercase__ : Optional[int] = attention_probs_dropout_prob
lowercase__ : str = max_position_embeddings
lowercase__ : Optional[int] = initializer_range
lowercase__ : List[Any] = layer_norm_eps
lowercase__ : Any = position_embedding_type
lowercase__ : Optional[int] = use_cache
| 333 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 333 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class snake_case_ ( __A ,unittest.TestCase ):
__A : List[Any] = ShapEPipeline
__A : Tuple = ["prompt"]
__A : Any = ["prompt"]
__A : Union[str, Any] = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
__A : Union[str, Any] = False
@property
def __UpperCamelCase ( self : Dict ) -> int:
return 32
@property
def __UpperCamelCase ( self : Union[str, Any] ) -> int:
return 32
@property
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
return self.time_input_dim * 4
@property
def __UpperCamelCase ( self : List[str] ) -> Optional[int]:
return 8
@property
def __UpperCamelCase ( self : List[Any] ) -> Any:
lowercase__ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
return tokenizer
@property
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(lowercase_ )
@property
def __UpperCamelCase ( self : Optional[int] ) -> Tuple:
torch.manual_seed(0 )
lowercase__ : List[str] = {
"num_attention_heads": 2,
"attention_head_dim": 16,
"embedding_dim": self.time_input_dim,
"num_embeddings": 32,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
lowercase__ : List[str] = PriorTransformer(**lowercase_ )
return model
@property
def __UpperCamelCase ( self : int ) -> str:
torch.manual_seed(0 )
lowercase__ : Any = {
"param_shapes": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 12,
"background": (
0.1,
0.1,
0.1,
),
}
lowercase__ : List[Any] = ShapERenderer(**lowercase_ )
return model
def __UpperCamelCase ( self : Any ) -> Tuple:
lowercase__ : str = self.dummy_prior
lowercase__ : int = self.dummy_text_encoder
lowercase__ : Optional[Any] = self.dummy_tokenizer
lowercase__ : Any = self.dummy_renderer
lowercase__ : List[str] = HeunDiscreteScheduler(
beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=lowercase_ , clip_sample=lowercase_ , clip_sample_range=1.0 , )
lowercase__ : Optional[int] = {
"prior": prior,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"renderer": renderer,
"scheduler": scheduler,
}
return components
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[Any]=0 ) -> Tuple:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Dict = torch.manual_seed(lowercase_ )
else:
lowercase__ : Dict = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Tuple = {
"prompt": "horse",
"generator": generator,
"num_inference_steps": 1,
"frame_size": 32,
"output_type": "np",
}
return inputs
def __UpperCamelCase ( self : Dict ) -> Any:
lowercase__ : List[str] = "cpu"
lowercase__ : List[str] = self.get_dummy_components()
lowercase__ : Union[str, Any] = self.pipeline_class(**lowercase_ )
lowercase__ : Optional[int] = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase__ : Optional[int] = pipe(**self.get_dummy_inputs(lowercase_ ) )
lowercase__ : Union[str, Any] = output.images[0]
lowercase__ : int = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowercase__ : Optional[Any] = np.array(
[
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
0.00_03_92_16,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCamelCase ( self : List[str] ) -> Dict:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : List[str] = torch_device == "cpu"
lowercase__ : Optional[int] = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=lowercase_ , relax_max_difference=lowercase_ , )
def __UpperCamelCase ( self : Any ) -> Union[str, Any]:
lowercase__ : Union[str, Any] = self.get_dummy_components()
lowercase__ : Optional[Any] = self.pipeline_class(**lowercase_ )
lowercase__ : List[str] = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase__ : Any = 1
lowercase__ : Tuple = 2
lowercase__ : Tuple = self.get_dummy_inputs(lowercase_ )
for key in inputs.keys():
if key in self.batch_params:
lowercase__ : Any = batch_size * [inputs[key]]
lowercase__ : Any = pipe(**lowercase_ , num_images_per_prompt=lowercase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : Any ) -> List[str]:
lowercase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/shap_e/test_shap_e_np_out.npy" )
lowercase__ : Union[str, Any] = ShapEPipeline.from_pretrained("openai/shap-e" )
lowercase__ : Optional[int] = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase__ : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(0 )
lowercase__ : Any = pipe(
"a shark" , generator=lowercase_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
| 333 | # Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : List[str]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000):
lowercase__ : Optional[int] = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Tuple = sigmoid_function(_lowerCamelCase)
lowercase__ : Dict = np.dot(x.T , h - y) / y.size
lowercase__ : int = theta - alpha * gradient # updating the weights
lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : List[Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 333 | 1 |
import argparse
UpperCamelCase = '''docs/source/_static/js/custom.js'''
def lowercase_ ( _lowerCamelCase : Tuple):
with open(_lowerCamelCase , encoding="utf-8" , newline="\n") as f:
lowercase__ : str = f.readlines()
lowercase__ : Dict = 0
# First let's put the right version
while not lines[index].startswith("const stableVersion ="):
index += 1
lowercase__ : Optional[int] = f'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith("const versionMapping = {"):
index += 1
# We go until the end
while not lines[index].startswith("}"):
index += 1
# We add the new version at the end
lines[index - 1] += f''' "v{version}": "v{version}",\n'''
with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n") as f:
f.writelines(_lowerCamelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
UpperCamelCase = parser.parse_args()
update_custom_js(args.version)
| 333 | import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class snake_case_ ( __A ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__A : ClassVar[Features] = Features({"text": Value("string" )} )
__A : ClassVar[Features] = Features({"labels": ClassLabel} )
__A : str = "text"
__A : str = "labels"
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
lowercase__ : Optional[int] = copy.deepcopy(self )
lowercase__ : Tuple = self.label_schema.copy()
lowercase__ : Union[str, Any] = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 333 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
UpperCamelCase = {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[Any] = "albert"
def __init__( self : int , lowercase_ : Dict=3_00_00 , lowercase_ : List[Any]=1_28 , lowercase_ : List[str]=40_96 , lowercase_ : Optional[Any]=12 , lowercase_ : Optional[Any]=1 , lowercase_ : List[str]=64 , lowercase_ : Optional[int]=1_63_84 , lowercase_ : Union[str, Any]=1 , lowercase_ : Optional[Any]="gelu_new" , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[int]=0 , lowercase_ : int=5_12 , lowercase_ : int=2 , lowercase_ : Any=0.02 , lowercase_ : List[str]=1E-12 , lowercase_ : List[str]=0.1 , lowercase_ : List[Any]="absolute" , lowercase_ : Any=0 , lowercase_ : Dict=2 , lowercase_ : List[str]=3 , **lowercase_ : Union[str, Any] , ) -> List[str]:
super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
lowercase__ : Optional[int] = vocab_size
lowercase__ : List[Any] = embedding_size
lowercase__ : Any = hidden_size
lowercase__ : int = num_hidden_layers
lowercase__ : int = num_hidden_groups
lowercase__ : str = num_attention_heads
lowercase__ : str = inner_group_num
lowercase__ : List[str] = hidden_act
lowercase__ : int = intermediate_size
lowercase__ : int = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : List[Any] = max_position_embeddings
lowercase__ : str = type_vocab_size
lowercase__ : Dict = initializer_range
lowercase__ : Any = layer_norm_eps
lowercase__ : Union[str, Any] = classifier_dropout_prob
lowercase__ : Union[str, Any] = position_embedding_type
class snake_case_ ( __A ):
@property
def __UpperCamelCase ( self : int ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
lowercase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowercase__ : int = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 333 | def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((number_a + number_a) / 2)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(_lowerCamelCase : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
lowercase__ : Optional[int] = lower
lowercase__ : List[Any] = higher
lowercase__ : Dict = []
while True:
lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase)
last_numbers.append(_lowerCamelCase)
if answer(_lowerCamelCase) == "low":
lowercase__ : List[str] = number
elif answer(_lowerCamelCase) == "high":
lowercase__ : Optional[int] = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''')
print(f'''details : {last_numbers!s}''')
def lowercase_ ( ):
lowercase__ : Tuple = int(input("Enter lower value : ").strip())
lowercase__ : Optional[int] = int(input("Enter high value : ").strip())
lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip())
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
main()
| 333 | 1 |
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCamelCase = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : str ) -> List[str]:
lowercase__ : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
lowercase__ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : Dict = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ )
lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" )
with open(lowercase_ , "w" , newline="\n" ) as f:
f.write(lowercase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowercase_ )
with open(lowercase_ , "r" ) as f:
self.assertTrue(f.read() , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : int ) -> str:
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , )
# Copy consistency with a really long name
lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
| 333 | 1 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
UpperCamelCase = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''')
UpperCamelCase = (
subprocess.check_output(f"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode('''utf-8''').split()
)
UpperCamelCase = '''|'''.join(sys.argv[1:])
UpperCamelCase = re.compile(Rf"^({joined_dirs}).*?\.py$")
UpperCamelCase = [x for x in modified_files if regex.match(x)]
print(''' '''.join(relevant_modified_files), end='''''')
| 333 | from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True):
model.train()
lowercase__ : Tuple = model(_lowerCamelCase)
lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False):
set_seed(42)
lowercase__ : Dict = RegressionModel()
lowercase__ : int = deepcopy(_lowerCamelCase)
lowercase__ : str = RegressionDataset(length=80)
lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16)
model.to(accelerator.device)
if sched:
lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3)
lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3)
lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
# Make a copy of `model`
if sched:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( _lowerCamelCase : Tuple):
# Test when on a single CPU or GPU that the context manager does nothing
lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Any):
# Test on distributed setup that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False):
lowercase__ : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))]
GradientState._reset_state()
def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False):
lowercase__ : Dict = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowercase_ ( ):
lowercase__ : List[str] = Accelerator()
lowercase__ : List[Any] = RegressionDataset(length=80)
lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ : int = RegressionDataset(length=96)
lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if iteration < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if batch_num < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ):
lowercase__ : str = Accelerator()
lowercase__ : Dict = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
test_noop_sync(_lowerCamelCase)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**")
test_distributed_sync(_lowerCamelCase)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 1 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Union[str, Any] = "mvp"
__A : int = ["past_key_values"]
__A : int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Union[str, Any] , lowercase_ : Optional[int]=5_02_67 , lowercase_ : int=10_24 , lowercase_ : List[Any]=12 , lowercase_ : List[str]=40_96 , lowercase_ : Dict=16 , lowercase_ : Union[str, Any]=12 , lowercase_ : Any=40_96 , lowercase_ : Optional[Any]=16 , lowercase_ : str=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : int="gelu" , lowercase_ : str=10_24 , lowercase_ : Dict=0.1 , lowercase_ : Dict=0.0 , lowercase_ : Dict=0.0 , lowercase_ : str=0.02 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[Any]=True , lowercase_ : int=1 , lowercase_ : List[str]=0 , lowercase_ : Optional[Any]=2 , lowercase_ : int=True , lowercase_ : Dict=2 , lowercase_ : Optional[int]=2 , lowercase_ : str=False , lowercase_ : int=1_00 , lowercase_ : List[Any]=8_00 , **lowercase_ : Dict , ) -> Tuple:
lowercase__ : Optional[Any] = vocab_size
lowercase__ : List[str] = max_position_embeddings
lowercase__ : str = d_model
lowercase__ : List[Any] = encoder_ffn_dim
lowercase__ : Optional[int] = encoder_layers
lowercase__ : Union[str, Any] = encoder_attention_heads
lowercase__ : List[str] = decoder_ffn_dim
lowercase__ : int = decoder_layers
lowercase__ : List[Any] = decoder_attention_heads
lowercase__ : Dict = dropout
lowercase__ : List[Any] = attention_dropout
lowercase__ : int = activation_dropout
lowercase__ : Union[str, Any] = activation_function
lowercase__ : Tuple = init_std
lowercase__ : Tuple = encoder_layerdrop
lowercase__ : Optional[int] = decoder_layerdrop
lowercase__ : Tuple = classifier_dropout
lowercase__ : int = use_cache
lowercase__ : Tuple = encoder_layers
lowercase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ : List[str] = use_prompt
lowercase__ : Dict = prompt_length
lowercase__ : Union[str, Any] = prompt_mid_dim
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , decoder_start_token_id=lowercase_ , forced_eos_token_id=lowercase_ , **lowercase_ , )
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , lowercase_ ):
lowercase__ : Tuple = self.bos_token_id
warnings.warn(
F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"The config can simply be saved and uploaded again to be fixed." )
| 333 | import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str):
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase)
lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase)
lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase)
lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
lowercase__ : Any = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowercase__ : int = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Dict = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global].")
# Encoder
for layer_index in range(config.num_layers):
lowercase__ : str = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : Any = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[str] = tax_attention_value
lowercase__ : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Any = tax_global_layer_norm
if split_mlp_wi:
lowercase__ : Tuple = tax_mlp_wi_a
lowercase__ : str = tax_mlp_wi_a
else:
lowercase__ : List[Any] = tax_mlp_wi
lowercase__ : str = tax_mlp_wo
lowercase__ : int = tax_mlp_layer_norm
lowercase__ : List[str] = flax_model_encoder_layer_block
# Only for layer 0:
lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : Optional[int] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_encoder_global_rel_embedding
# Assigning
lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
lowercase__ : Union[str, Any] = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"]
lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"]
lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"]
lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : List[Any] = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[Any] = tax_attention_value
lowercase__ : List[str] = tax_pre_attention_layer_norm
lowercase__ : List[Any] = tax_enc_dec_attention_key
lowercase__ : Optional[Any] = tax_enc_dec_attention_out
lowercase__ : str = tax_enc_dec_attention_query
lowercase__ : Union[str, Any] = tax_enc_dec_attention_value
lowercase__ : Tuple = tax_cross_layer_norm
if split_mlp_wi:
lowercase__ : List[str] = tax_mlp_wi_a
lowercase__ : List[Any] = tax_mlp_wi_a
else:
lowercase__ : Tuple = tax_mlp_wi
lowercase__ : Any = tax_mlp_wo
lowercase__ : Tuple = txa_mlp_layer_norm
lowercase__ : int = flax_model_decoder_layer_block
# Decoder Normalization
lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
lowercase__ : List[Any] = txa_decoder_norm
# Only for layer 0:
lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_decoder_rel_embedding
# Token Embeddings
lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"]
lowercase__ : Optional[Any] = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(_lowerCamelCase)
print("T5X Model was sucessfully converted!")
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
UpperCamelCase = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 333 | 1 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
UpperCamelCase = {
'''vocab_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'''
},
'''merges_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'''
},
'''tokenizer_config_file''': {
'''facebook/blenderbot_small-90M''': (
'''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'''
)
},
}
UpperCamelCase = {'''facebook/blenderbot_small-90M''': 512}
def lowercase_ ( _lowerCamelCase : Optional[int]):
lowercase__ : Optional[Any] = set()
lowercase__ : int = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
lowercase__ : Dict = char
lowercase__ : Optional[Any] = set(_lowerCamelCase)
return pairs
class snake_case_ ( __A ):
__A : List[Any] = VOCAB_FILES_NAMES
__A : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : str = ["input_ids", "attention_mask"]
def __init__( self : List[str] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[Any]="__start__" , lowercase_ : Tuple="__end__" , lowercase_ : Optional[Any]="__unk__" , lowercase_ : Union[str, Any]="__null__" , **lowercase_ : Optional[int] , ) -> List[str]:
super().__init__(unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_ )
with open(lowercase_ , encoding="utf-8" ) as vocab_handle:
lowercase__ : Union[str, Any] = json.load(lowercase_ )
lowercase__ : str = {v: k for k, v in self.encoder.items()}
with open(lowercase_ , encoding="utf-8" ) as merges_handle:
lowercase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowercase__ : Dict = [tuple(merge.split() ) for merge in merges]
lowercase__ : Optional[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
lowercase__ : str = {}
@property
def __UpperCamelCase ( self : Optional[int] ) -> int:
return len(self.encoder )
def __UpperCamelCase ( self : Dict ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def __UpperCamelCase ( self : Dict , lowercase_ : str ) -> str:
if token in self.cache:
return self.cache[token]
lowercase__ : Optional[Any] = re.sub("([.,!?()])" , R" \1" , lowercase_ )
lowercase__ : Tuple = re.sub("(')" , R" \1 " , lowercase_ )
lowercase__ : Dict = re.sub(R"\s{2,}" , " " , lowercase_ )
if "\n" in token:
lowercase__ : Any = token.replace("\n" , " __newln__" )
lowercase__ : List[Any] = token.split(" " )
lowercase__ : Union[str, Any] = []
for token in tokens:
if not len(lowercase_ ):
continue
lowercase__ : Any = token.lower()
lowercase__ : Dict = tuple(lowercase_ )
lowercase__ : Any = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
lowercase__ : int = get_pairs(lowercase_ )
if not pairs:
words.append(lowercase_ )
continue
while True:
lowercase__ : Any = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowercase__ , lowercase__ : str = bigram
lowercase__ : Dict = []
lowercase__ : str = 0
while i < len(lowercase_ ):
try:
lowercase__ : Any = word.index(lowercase_ , lowercase_ )
new_word.extend(word[i:j] )
lowercase__ : Union[str, Any] = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase__ : List[Any] = tuple(lowercase_ )
lowercase__ : Tuple = new_word
if len(lowercase_ ) == 1:
break
else:
lowercase__ : Tuple = get_pairs(lowercase_ )
lowercase__ : List[Any] = "@@ ".join(lowercase_ )
lowercase__ : List[Any] = word[:-4]
lowercase__ : Tuple = word
words.append(lowercase_ )
return " ".join(lowercase_ )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : str ) -> List[str]:
lowercase__ : str = []
lowercase__ : Optional[Any] = re.findall(R"\S+\n?" , lowercase_ )
for token in words:
split_tokens.extend(list(self.bpe(lowercase_ ).split(" " ) ) )
return split_tokens
def __UpperCamelCase ( self : List[str] , lowercase_ : str ) -> int:
lowercase__ : str = token.lower()
return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) )
def __UpperCamelCase ( self : Tuple , lowercase_ : int ) -> str:
return self.decoder.get(lowercase_ , self.unk_token )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> str:
lowercase__ : Dict = " ".join(lowercase_ ).replace("@@ " , "" ).strip()
return out_string
def __UpperCamelCase ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(lowercase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ : str = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowercase__ : Optional[int] = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowercase_ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" )
lowercase__ : Optional[int] = 0
with open(lowercase_ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
lowercase__ : Any = token_index
writer.write(" ".join(lowercase_ ) + "\n" )
index += 1
return vocab_file, merge_file
| 333 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[int] = "rwkv"
__A : List[str] = {"max_position_embeddings": "context_length"}
def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int:
lowercase__ : List[str] = vocab_size
lowercase__ : str = context_length
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : str = rescale_every
lowercase__ : Optional[int] = use_cache
lowercase__ : int = bos_token_id
lowercase__ : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Optional[Any] = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 333 | class snake_case_ :
def __init__( self : int ) -> Optional[int]:
lowercase__ : Optional[int] = 0
lowercase__ : List[str] = 0
lowercase__ : Any = {}
def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]:
if vertex not in self.adjacency:
lowercase__ : List[Any] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]:
self.add_vertex(lowercase_ )
self.add_vertex(lowercase_ )
if head == tail:
return
lowercase__ : int = weight
lowercase__ : Any = weight
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[Any] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
edges.remove((tail, head, weight) )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(lowercase_ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : int = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge
lowercase__ : Union[str, Any] = weight
lowercase__ : Dict = weight
def __str__( self : str ) -> Any:
lowercase__ : str = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Optional[Any] = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Any = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[str] ) -> Dict:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]:
lowercase__ : Any = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : List[Any] = []
for vertex in vertices:
g.add_vertex(lowercase_ )
for edge in edges:
g.add_edge(*lowercase_ )
return g
class snake_case_ :
def __init__( self : int ) -> List[str]:
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
def __len__( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.parent )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple:
if item in self.parent:
return self.find(lowercase_ )
lowercase__ : Union[str, Any] = item
lowercase__ : int = 0
return item
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any:
if item not in self.parent:
return self.make_set(lowercase_ )
if item != self.parent[item]:
lowercase__ : Union[str, Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]:
lowercase__ : Dict = self.find(lowercase_ )
lowercase__ : Optional[int] = self.find(lowercase_ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Dict = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : int = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]:
lowercase__ : List[Any] = graph.num_vertices
lowercase__ : Optional[Any] = Graph.UnionFind()
lowercase__ : int = []
while num_components > 1:
lowercase__ : List[Any] = {}
for vertex in graph.get_vertices():
lowercase__ : Any = -1
lowercase__ : List[str] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : str = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[str] = edge
lowercase__ : List[str] = union_find.find(lowercase_ )
lowercase__ : Union[str, Any] = union_find.find(lowercase_ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Dict = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex]
if union_find.find(lowercase_ ) != union_find.find(lowercase_ ):
union_find.union(lowercase_ , lowercase_ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : Optional[Any] = num_components - 1
lowercase__ : List[Any] = Graph.build(edges=lowercase_ )
return mst
| 333 | 1 |
import math
def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float):
if (
not isinstance(_lowerCamelCase , (int, float))
or power_factor < -1
or power_factor > 1
):
raise ValueError("power_factor must be a valid float value between -1 and 1.")
return apparent_power * power_factor
def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float):
if (
not isinstance(_lowerCamelCase , (int, float))
or power_factor < -1
or power_factor > 1
):
raise ValueError("power_factor must be a valid float value between -1 and 1.")
return apparent_power * math.sqrt(1 - power_factor**2)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 | 1 |
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_ :
def __init__( self : List[str] , lowercase_ : List[str] , lowercase_ : List[str]=13 , lowercase_ : List[str]=7 , lowercase_ : str=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=True , lowercase_ : Optional[int]=False , lowercase_ : List[str]=False , lowercase_ : Optional[int]=False , lowercase_ : Dict=2 , lowercase_ : Optional[int]=99 , lowercase_ : List[Any]=0 , lowercase_ : str=32 , lowercase_ : Any=5 , lowercase_ : str=4 , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=5_12 , lowercase_ : Union[str, Any]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : str=2 , lowercase_ : Any=4 , lowercase_ : str="last" , lowercase_ : Optional[Any]=True , lowercase_ : Any=None , lowercase_ : Dict=0 , ) -> Optional[int]:
lowercase__ : Optional[Any] = parent
lowercase__ : str = batch_size
lowercase__ : List[str] = seq_length
lowercase__ : Optional[Any] = is_training
lowercase__ : int = use_input_lengths
lowercase__ : List[str] = use_token_type_ids
lowercase__ : str = use_labels
lowercase__ : int = gelu_activation
lowercase__ : List[Any] = sinusoidal_embeddings
lowercase__ : Union[str, Any] = causal
lowercase__ : Union[str, Any] = asm
lowercase__ : Optional[int] = n_langs
lowercase__ : Union[str, Any] = vocab_size
lowercase__ : List[Any] = n_special
lowercase__ : Tuple = hidden_size
lowercase__ : Optional[int] = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : Any = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : List[str] = max_position_embeddings
lowercase__ : Optional[Any] = type_sequence_label_size
lowercase__ : Tuple = initializer_range
lowercase__ : Dict = num_labels
lowercase__ : Optional[Any] = num_choices
lowercase__ : str = summary_type
lowercase__ : Optional[Any] = use_proj
lowercase__ : Any = scope
lowercase__ : int = bos_token_id
def __UpperCamelCase ( self : Any ) -> List[str]:
lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ : Union[str, Any] = None
if self.use_input_lengths:
lowercase__ : List[str] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowercase__ : List[str] = None
if self.use_token_type_ids:
lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowercase__ : Optional[Any] = None
lowercase__ : Optional[int] = None
lowercase__ : Optional[int] = None
if self.use_labels:
lowercase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , 2 ).float()
lowercase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowercase__ : Union[str, Any] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __UpperCamelCase ( self : Tuple ) -> str:
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Dict , ) -> Union[str, Any]:
lowercase__ : Dict = XLMModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : List[str] = model(lowercase_ , lengths=lowercase_ , langs=lowercase_ )
lowercase__ : Optional[int] = model(lowercase_ , langs=lowercase_ )
lowercase__ : List[Any] = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Optional[int] , ) -> int:
lowercase__ : Optional[Any] = XLMWithLMHeadModel(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Tuple = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : str , lowercase_ : Any , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : int , ) -> str:
lowercase__ : Union[str, Any] = XLMForQuestionAnsweringSimple(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Any = model(lowercase_ )
lowercase__ : Union[str, Any] = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ )
lowercase__ : Union[str, Any] = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : str , ) -> Union[str, Any]:
lowercase__ : List[Any] = XLMForQuestionAnswering(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Dict = model(lowercase_ )
lowercase__ : List[Any] = model(
lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , p_mask=lowercase_ , )
lowercase__ : int = model(
lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , cls_index=lowercase_ , is_impossible=lowercase_ , )
((lowercase__) , ) : Tuple = result_with_labels.to_tuple()
lowercase__ : Tuple = model(lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ )
((lowercase__) , ) : List[str] = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : int , ) -> Union[str, Any]:
lowercase__ : Dict = XLMForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : List[str] = model(lowercase_ )
lowercase__ : List[str] = model(lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , ) -> List[Any]:
lowercase__ : Union[str, Any] = self.num_labels
lowercase__ : Any = XLMForTokenClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self : Dict , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : Any , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Dict , ) -> str:
lowercase__ : Optional[Any] = self.num_choices
lowercase__ : int = XLMForMultipleChoice(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase__ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ : str = model(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
lowercase__ : Any = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) : List[Any] = config_and_inputs
lowercase__ : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
return config, inputs_dict
@require_torch
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : List[Any] = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__A : str = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__A : Union[str, Any] = (
{
"feature-extraction": XLMModel,
"fill-mask": XLMWithLMHeadModel,
"question-answering": XLMForQuestionAnsweringSimple,
"text-classification": XLMForSequenceClassification,
"text-generation": XLMWithLMHeadModel,
"token-classification": XLMForTokenClassification,
"zero-shot": XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def __UpperCamelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] ) -> List[str]:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Tuple=False ) -> Union[str, Any]:
lowercase__ : Dict = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
lowercase__ : Optional[int] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase_ )
lowercase__ : Tuple = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase_ )
return inputs_dict
def __UpperCamelCase ( self : Optional[Any] ) -> List[str]:
lowercase__ : Tuple = XLMModelTester(self )
lowercase__ : int = ConfigTester(self , config_class=lowercase_ , emb_dim=37 )
def __UpperCamelCase ( self : List[Any] ) -> Dict:
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : str ) -> Tuple:
lowercase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowercase_ )
def __UpperCamelCase ( self : str ) -> Dict:
lowercase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowercase_ )
def __UpperCamelCase ( self : List[str] ) -> Dict:
lowercase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowercase_ )
def __UpperCamelCase ( self : int ) -> Tuple:
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowercase_ )
def __UpperCamelCase ( self : Any ) -> Dict:
lowercase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowercase_ )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=1 ) -> str:
self.assertIsInstance(lowercase_ , lowercase_ )
self.assertListEqual(
[isinstance(lowercase_ , lowercase_ ) for iter_attentions in attentions] , [True] * len(lowercase_ ) )
self.assertEqual(len(lowercase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowercase_ ):
# adds PAD dummy token
lowercase__ : Optional[Any] = min_length + idx + 1
lowercase__ : Any = min_length + idx + 1
lowercase__ : str = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowercase_ ) )
def __UpperCamelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Tuple=False , lowercase_ : Union[str, Any]=1 ) -> List[str]:
self.assertIsInstance(lowercase_ , lowercase_ )
self.assertListEqual(
[isinstance(lowercase_ , lowercase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowercase_ ) , )
self.assertEqual(len(lowercase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowercase_ ):
# adds PAD dummy token
lowercase__ : str = min_length + idx + 1
lowercase__ : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowercase_ ) , )
pass
@slow
def __UpperCamelCase ( self : int ) -> List[Any]:
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : List[Any] = XLMModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@require_torch
class snake_case_ ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : int = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" )
model.to(lowercase_ )
lowercase__ : Optional[int] = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowercase_ ) # the president
lowercase__ : Any = [
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
lowercase__ : Dict = model.generate(lowercase_ , do_sample=lowercase_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowercase_ )
| 333 | def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 1
lowercase__ : int = 0
for divide_by_number in range(_lowerCamelCase , digit + 1):
lowercase__ : list[int] = []
lowercase__ : Dict = numerator
for _ in range(1 , digit + 1):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase):
lowercase__ : Union[str, Any] = len(_lowerCamelCase)
lowercase__ : Optional[int] = divide_by_number
else:
has_been_divided.append(_lowerCamelCase)
lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[int] = "rwkv"
__A : List[str] = {"max_position_embeddings": "context_length"}
def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int:
lowercase__ : List[str] = vocab_size
lowercase__ : str = context_length
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : str = rescale_every
lowercase__ : Optional[int] = use_cache
lowercase__ : int = bos_token_id
lowercase__ : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 1 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
UpperCamelCase = random.Random()
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any]=1.0 , _lowerCamelCase : Dict=None , _lowerCamelCase : Optional[int]=None):
if rng is None:
lowercase__ : int = global_rng
lowercase__ : List[Any] = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
class snake_case_ ( unittest.TestCase ):
def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[int]=7 , lowercase_ : Union[str, Any]=4_00 , lowercase_ : Any=20_00 , lowercase_ : Any=1 , lowercase_ : Optional[int]=0.0 , lowercase_ : Union[str, Any]=1_60_00 , lowercase_ : Union[str, Any]=True , lowercase_ : List[Any]=True , ) -> Tuple:
lowercase__ : str = parent
lowercase__ : Any = batch_size
lowercase__ : Union[str, Any] = min_seq_length
lowercase__ : List[str] = max_seq_length
lowercase__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowercase__ : str = feature_size
lowercase__ : Any = padding_value
lowercase__ : Dict = sampling_rate
lowercase__ : Union[str, Any] = return_attention_mask
lowercase__ : str = do_normalize
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __UpperCamelCase ( self : str , lowercase_ : str=False , lowercase_ : Tuple=False ) -> Optional[Any]:
def _flatten(lowercase_ : List[str] ):
return list(itertools.chain(*lowercase_ ) )
if equal_length:
lowercase__ : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
lowercase__ : str = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
lowercase__ : Optional[Any] = [np.asarray(lowercase_ ) for x in speech_inputs]
return speech_inputs
class snake_case_ ( __A ,unittest.TestCase ):
__A : Optional[Any] = WavaVecaFeatureExtractor
def __UpperCamelCase ( self : Optional[int] ) -> str:
lowercase__ : Dict = WavaVecaFeatureExtractionTester(self )
def __UpperCamelCase ( self : Any , lowercase_ : Optional[Any] ) -> Optional[int]:
self.assertTrue(np.all(np.mean(lowercase_ , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(lowercase_ , axis=0 ) - 1 ) < 1E-3 ) )
def __UpperCamelCase ( self : int ) -> Dict:
# Tests that all call wrap to encode_plus and batch_encode_plus
lowercase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
lowercase__ : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowercase__ : int = [np.asarray(lowercase_ ) for speech_input in speech_inputs]
# Test not batched input
lowercase__ : List[str] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values
lowercase__ : Dict = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) )
# Test batched
lowercase__ : Union[str, Any] = feat_extract(lowercase_ , return_tensors="np" ).input_values
lowercase__ : Dict = feat_extract(lowercase_ , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ):
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
lowercase__ : Tuple = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
lowercase__ : Union[str, Any] = np.asarray(lowercase_ )
lowercase__ : str = feat_extract(lowercase_ , return_tensors="np" ).input_values
lowercase__ : Optional[Any] = feat_extract(lowercase_ , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ):
self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) )
def __UpperCamelCase ( self : Any ) -> Optional[Any]:
lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowercase__ : Any = ["longest", "max_length", "do_not_pad"]
lowercase__ : Tuple = [None, 16_00, None]
for max_length, padding in zip(lowercase_ , lowercase_ ):
lowercase__ : str = feat_extract(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors="np" )
lowercase__ : List[Any] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:8_00] )
self.assertTrue(input_values[0][8_00:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:10_00] )
self.assertTrue(input_values[0][10_00:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:12_00] )
def __UpperCamelCase ( self : Tuple ) -> str:
lowercase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ : Optional[Any] = range(8_00 , 14_00 , 2_00 )
lowercase__ : Dict = [floats_list((1, x) )[0] for x in lengths]
lowercase__ : Union[str, Any] = ["longest", "max_length", "do_not_pad"]
lowercase__ : Optional[int] = [None, 16_00, None]
for max_length, padding in zip(lowercase_ , lowercase_ ):
lowercase__ : Any = feat_extract(lowercase_ , max_length=lowercase_ , padding=lowercase_ )
lowercase__ : str = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:8_00] )
self._check_zero_mean_unit_variance(input_values[1][:10_00] )
self._check_zero_mean_unit_variance(input_values[2][:12_00] )
def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]:
lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowercase__ : List[str] = feat_extract(
lowercase_ , truncation=lowercase_ , max_length=10_00 , padding="max_length" , return_tensors="np" )
lowercase__ : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def __UpperCamelCase ( self : List[Any] ) -> int:
lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ : int = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowercase__ : Tuple = feat_extract(
lowercase_ , truncation=lowercase_ , max_length=10_00 , padding="longest" , return_tensors="np" )
lowercase__ : Union[str, Any] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1, :10_00] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 10_00) )
lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowercase__ : str = feat_extract(
lowercase_ , truncation=lowercase_ , max_length=20_00 , padding="longest" , return_tensors="np" )
lowercase__ : List[Any] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1, :10_00] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 12_00) )
@require_torch
def __UpperCamelCase ( self : Any ) -> List[Any]:
import torch
lowercase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowercase__ : Any = np.random.rand(1_00 ).astype(np.floataa )
lowercase__ : str = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
lowercase__ : Any = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
lowercase__ : int = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]:
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
lowercase__ : Optional[Any] = WavaVecaConfig.from_pretrained(lowercase_ )
lowercase__ : Dict = WavaVecaFeatureExtractor.from_pretrained(lowercase_ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
| 333 | import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False):
try:
lowercase__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''')
return _value
UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skip("Test was skipped")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None):
if test_case is None:
return partial(_lowerCamelCase , version=_lowerCamelCase)
return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase)
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase)
class snake_case_ ( unittest.TestCase ):
__A : int = True
@classmethod
def __UpperCamelCase ( cls : str ) -> str:
lowercase__ : str = tempfile.mkdtemp()
@classmethod
def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCamelCase ( self : str ) -> Optional[int]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowercase_ )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str:
lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Optional[int] = tensor[None].clone().to(state.device)
lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu()
lowercase__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowerCamelCase):
return False
return True
class snake_case_ :
def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : int = returncode
lowercase__ : Dict = stdout
lowercase__ : List[Any] = stderr
async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str):
while True:
lowercase__ : int = await stream.readline()
if line:
callback(_lowerCamelCase)
else:
break
async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False):
if echo:
print("\nRunning: " , " ".join(_lowerCamelCase))
lowercase__ : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Tuple = []
lowercase__ : List[Any] = []
def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""):
lowercase__ : Optional[int] = line.decode("utf-8").rstrip()
sink.append(_lowerCamelCase)
if not quiet:
print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))),
] , timeout=_lowerCamelCase , )
return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True):
lowercase__ : Optional[Any] = asyncio.get_event_loop()
lowercase__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase))
lowercase__ : str = " ".join(_lowerCamelCase)
if result.returncode > 0:
lowercase__ : Dict = "\n".join(result.stderr)
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False):
try:
lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowerCamelCase , "decode"):
lowercase__ : Optional[Any] = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 333 | 1 |
import os
from distutils.util import strtobool
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Optional[Any]):
for e in env_keys:
lowercase__ : Any = int(os.environ.get(_lowerCamelCase , -1))
if val >= 0:
return val
return default
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any]=False):
lowercase__ : int = os.environ.get(_lowerCamelCase , str(_lowerCamelCase))
return strtobool(_lowerCamelCase) == 1 # As its name indicates `strtobool` actually returns an int...
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : List[str]="no"):
lowercase__ : List[str] = os.environ.get(_lowerCamelCase , str(_lowerCamelCase))
return value
| 333 | from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[Any] = ["flax"]
def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[int] = ["flax"]
def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[str] = ["flax"]
def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
| 333 | 1 |
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case_ ( __A ,unittest.TestCase ):
__A : str = None
__A : List[Any] = BloomTokenizerFast
__A : Optional[Any] = BloomTokenizerFast
__A : Optional[int] = True
__A : Any = False
__A : List[Any] = "tokenizer_file"
__A : str = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
def __UpperCamelCase ( self : List[str] ) -> Dict:
super().setUp()
lowercase__ : Any = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self : Optional[Any] , **lowercase_ : Tuple ) -> List[str]:
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ )
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
lowercase__ : List[Any] = self.get_rust_tokenizer()
lowercase__ : Dict = ["The quick brown fox</s>", "jumps over the lazy dog</s>"]
lowercase__ : Optional[Any] = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]]
lowercase__ : Any = tokenizer.batch_encode_plus(lowercase_ )["input_ids"]
self.assertListEqual(lowercase_ , lowercase_ )
lowercase__ : Any = tokenizer.batch_decode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Tuple=6 ) -> List[str]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
lowercase__ : List[Any] = "This is a simple input"
lowercase__ : Optional[int] = ["This is a simple input 1", "This is a simple input 2"]
lowercase__ : int = ("This is a simple input", "This is a pair")
lowercase__ : Union[str, Any] = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
try:
tokenizer_r.encode(lowercase_ , max_length=lowercase_ )
tokenizer_r.encode_plus(lowercase_ , max_length=lowercase_ )
tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ )
tokenizer_r.encode(lowercase_ , max_length=lowercase_ )
tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ )
except ValueError:
self.fail("Bloom Tokenizer should be able to deal with padding" )
lowercase__ : Optional[Any] = None # Hotfixing padding = None
self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" )
# Simple input
self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" )
# Simple input
self.assertRaises(
lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , )
# Pair input
self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" )
# Pair input
self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" )
# Pair input
self.assertRaises(
lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , )
def __UpperCamelCase ( self : Optional[int] ) -> Any:
lowercase__ : int = self.get_rust_tokenizer()
lowercase__ : Union[str, Any] = load_dataset("xnli" , "all_languages" , split="test" , streaming=lowercase_ )
lowercase__ : Tuple = next(iter(lowercase_ ) )["premise"] # pick up one data
lowercase__ : List[str] = list(sample_data.values() )
lowercase__ : Union[str, Any] = list(map(tokenizer.encode , lowercase_ ) )
lowercase__ : Union[str, Any] = [tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) for x in output_tokens]
self.assertListEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
# The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have
# any sequence length constraints. This test of the parent class will fail since it relies on the
# maximum sequence length of the positoonal embeddings.
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 333 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class snake_case_ ( __A ):
__A : List[str] = "vit_mae"
def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]:
super().__init__(**lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Any = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Any = num_channels
lowercase__ : str = qkv_bias
lowercase__ : Optional[Any] = decoder_num_attention_heads
lowercase__ : Any = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : Union[str, Any] = decoder_intermediate_size
lowercase__ : int = mask_ratio
lowercase__ : Tuple = norm_pix_loss
| 333 | 1 |
import math
from numpy import inf
from scipy.integrate import quad
def lowercase_ ( _lowerCamelCase : float):
if num <= 0:
raise ValueError("math domain error")
return quad(_lowerCamelCase , 0 , _lowerCamelCase , args=(_lowerCamelCase))[0]
def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float):
return math.pow(_lowerCamelCase , z - 1) * math.exp(-x)
if __name__ == "__main__":
from doctest import testmod
testmod()
| 333 | def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while a != 0:
lowercase__ , lowercase__ : Dict = b % a, a
return b
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if gcd(_lowerCamelCase , _lowerCamelCase) != 1:
lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m
while va != 0:
lowercase__ : Tuple = ua // va
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 333 | 1 |
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while second != 0:
lowercase__ : List[Any] = first & second
first ^= second
lowercase__ : Optional[int] = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = int(input('''Enter the first number: ''').strip())
UpperCamelCase = int(input('''Enter the second number: ''').strip())
print(f"{add(first, second) = }")
| 333 | import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': (
'''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json'''
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class snake_case_ ( __A ):
__A : Tuple = "trajectory_transformer"
__A : Tuple = ["past_key_values"]
__A : Union[str, Any] = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Dict , lowercase_ : Any=1_00 , lowercase_ : List[Any]=5 , lowercase_ : Tuple=1 , lowercase_ : Dict=1 , lowercase_ : Any=2_49 , lowercase_ : Tuple=6 , lowercase_ : Optional[int]=17 , lowercase_ : Dict=25 , lowercase_ : List[str]=4 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[int]=1_28 , lowercase_ : str=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.00_06 , lowercase_ : Tuple=5_12 , lowercase_ : Any=0.02 , lowercase_ : Any=1E-12 , lowercase_ : int=1 , lowercase_ : List[Any]=True , lowercase_ : int=1 , lowercase_ : Dict=5_02_56 , lowercase_ : Any=5_02_56 , **lowercase_ : Any , ) -> str:
lowercase__ : List[str] = vocab_size
lowercase__ : List[str] = action_weight
lowercase__ : Optional[Any] = reward_weight
lowercase__ : Any = value_weight
lowercase__ : Tuple = max_position_embeddings
lowercase__ : Any = block_size
lowercase__ : str = action_dim
lowercase__ : int = observation_dim
lowercase__ : Any = transition_dim
lowercase__ : Optional[int] = learning_rate
lowercase__ : Union[str, Any] = n_layer
lowercase__ : Optional[Any] = n_head
lowercase__ : List[str] = n_embd
lowercase__ : Union[str, Any] = embd_pdrop
lowercase__ : List[Any] = attn_pdrop
lowercase__ : List[str] = resid_pdrop
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Union[str, Any] = layer_norm_eps
lowercase__ : Optional[int] = kaiming_initializer_range
lowercase__ : Any = use_cache
super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {}
class snake_case_ ( SCREAMING_SNAKE_CASE_ ):
__A : int = "llama"
__A : Dict = ["past_key_values"]
def __init__( self : Any , lowercase_ : List[str]=3_20_00 , lowercase_ : Union[str, Any]=40_96 , lowercase_ : Optional[Any]=1_10_08 , lowercase_ : Any=32 , lowercase_ : str=32 , lowercase_ : Optional[int]=None , lowercase_ : Dict="silu" , lowercase_ : Dict=20_48 , lowercase_ : List[str]=0.02 , lowercase_ : Union[str, Any]=1E-6 , lowercase_ : Dict=True , lowercase_ : List[str]=0 , lowercase_ : Tuple=1 , lowercase_ : Tuple=2 , lowercase_ : Optional[Any]=1 , lowercase_ : Any=False , lowercase_ : Tuple=None , **lowercase_ : List[Any] , ) -> Optional[int]:
lowercase__ : str = vocab_size
lowercase__ : List[str] = max_position_embeddings
lowercase__ : List[Any] = hidden_size
lowercase__ : Union[str, Any] = intermediate_size
lowercase__ : Optional[int] = num_hidden_layers
lowercase__ : List[Any] = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : Optional[Any] = num_key_value_heads
lowercase__ : int = hidden_act
lowercase__ : Any = initializer_range
lowercase__ : Any = rms_norm_eps
lowercase__ : Union[str, Any] = pretraining_tp
lowercase__ : Optional[int] = use_cache
lowercase__ : Any = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
F'''got {self.rope_scaling}''' )
lowercase__ : Optional[Any] = self.rope_scaling.get("type" , __a )
lowercase__ : Tuple = self.rope_scaling.get("factor" , __a )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0:
raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 350 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 0 |
import qiskit
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
lowercase__ : str = qiskit.Aer.get_backend("aer_simulator")
lowercase__ : Any = qiskit.QuantumCircuit(4 , 2)
# encode inputs in qubits 0 and 1
if bita == 1:
qc_ha.x(0)
if bita == 1:
qc_ha.x(1)
qc_ha.barrier()
# use cnots to write XOR of the inputs on qubit2
qc_ha.cx(0 , 2)
qc_ha.cx(1 , 2)
# use ccx / toffoli gate to write AND of the inputs on qubit3
qc_ha.ccx(0 , 1 , 3)
qc_ha.barrier()
# extract outputs
qc_ha.measure(2 , 0) # extract XOR value
qc_ha.measure(3 , 1) # extract AND value
# Execute the circuit on the qasm simulator
lowercase__ : List[Any] = qiskit.execute(lowercase__ , lowercase__ , shots=1000)
# Return the histogram data of the results of the experiment
return job.result().get_counts(lowercase__)
if __name__ == "__main__":
UpperCamelCase = half_adder(1, 1)
print(f"Half Adder Output Qubit Counts: {counts}")
| 351 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class snake_case_ ( __A ):
__A : List[str] = "unispeech"
def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : Any = feat_extract_norm
lowercase__ : Optional[Any] = feat_extract_activation
lowercase__ : Dict = list(lowercase_ )
lowercase__ : Union[str, Any] = list(lowercase_ )
lowercase__ : List[str] = list(lowercase_ )
lowercase__ : List[str] = conv_bias
lowercase__ : Any = num_conv_pos_embeddings
lowercase__ : Dict = num_conv_pos_embedding_groups
lowercase__ : int = len(self.conv_dim )
lowercase__ : str = num_hidden_layers
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : Any = attention_dropout
lowercase__ : Union[str, Any] = activation_dropout
lowercase__ : Any = feat_proj_dropout
lowercase__ : str = final_dropout
lowercase__ : int = layerdrop
lowercase__ : Optional[int] = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = num_ctc_classes
lowercase__ : int = vocab_size
lowercase__ : str = do_stable_layer_norm
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : List[Any] = apply_spec_augment
lowercase__ : Dict = mask_time_prob
lowercase__ : Tuple = mask_time_length
lowercase__ : str = mask_time_min_masks
lowercase__ : List[Any] = mask_feature_prob
lowercase__ : int = mask_feature_length
lowercase__ : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__ : Optional[int] = num_codevectors_per_group
lowercase__ : List[str] = num_codevector_groups
lowercase__ : Dict = contrastive_logits_temperature
lowercase__ : Tuple = feat_quantizer_dropout
lowercase__ : Any = num_negatives
lowercase__ : Dict = codevector_dim
lowercase__ : Tuple = proj_codevector_dim
lowercase__ : List[str] = diversity_loss_weight
# ctc loss
lowercase__ : Tuple = ctc_loss_reduction
lowercase__ : Dict = ctc_zero_infinity
# pretraining loss
lowercase__ : Optional[Any] = replace_prob
@property
def __UpperCamelCase ( self : Dict ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 333 | 0 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class snake_case_ ( _UpperCAmelCase ):
def __init__( self : Tuple , *lowercase_ : Optional[int] , **lowercase_ : List[str] ) -> str:
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 352 | def lowercase_ ( _lowerCamelCase : list):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : int = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j]
lowercase__ : List[str] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : list):
lowercase__ : Dict = len(__lowerCAmelCase)
for i in range(1 , __lowerCAmelCase):
lowercase__ : Optional[Any] = collection[i]
lowercase__ : Dict = 0
lowercase__ : Any = i - 1
while low <= high:
lowercase__ : List[Any] = (low + high) // 2
if val < collection[mid]:
lowercase__ : List[Any] = mid - 1
else:
lowercase__ : Tuple = mid + 1
for j in range(__lowerCAmelCase , __lowerCAmelCase , -1):
lowercase__ : Union[str, Any] = collection[j - 1]
lowercase__ : Dict = val
return collection
if __name__ == "__main__":
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(binary_insertion_sort(unsorted))
| 353 | import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class snake_case_ ( __A ):
__A : int = "token-classification"
def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]:
if type(lowercase_ ) == dict:
lowercase__ : Dict = Namespace(**lowercase_ )
lowercase__ : str = import_module("tasks" )
try:
lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels )
lowercase__ : int = CrossEntropyLoss().ignore_index
super().__init__(lowercase_ , len(self.labels ) , self.mode )
def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any:
return self.model(**lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple:
lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : Tuple = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : Optional[int] = self(**lowercase_ )
lowercase__ : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
lowercase__ : Any = self._feature_file(lowercase_ )
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ )
lowercase__ : Dict = self.token_classification_task.convert_examples_to_features(
lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowercase_ )
torch.save(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader:
lowercase__ : str = self._feature_file(lowercase_ )
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str:
"""Compute validation""" ""
lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : int = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : List[Any] = self(**lowercase_ )
lowercase__ , lowercase__ : Any = outputs[:2]
lowercase__ : Optional[Any] = logits.detach().cpu().numpy()
lowercase__ : int = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]:
lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean()
lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 )
lowercase__ : Dict = np.argmax(lowercase_ , axis=2 )
lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 )
lowercase__ : Any = dict(enumerate(self.labels ) )
lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )]
lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
lowercase__ : Any = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase_ , lowercase_ ),
"precision": precision_score(lowercase_ , lowercase_ ),
"recall": recall_score(lowercase_ , lowercase_ ),
"f1": fa_score(lowercase_ , lowercase_ ),
}
lowercase__ : List[Any] = dict(results.items() )
lowercase__ : List[str] = results
return ret, preds_list, out_label_list
def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict:
# when stable
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
lowercase__ : Any = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int:
# updating to test_epoch_end instead of deprecated test_end
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
lowercase__ : Optional[int] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple:
# Add NER specific options
BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ )
parser.add_argument(
"--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=1_28 , type=lowercase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCamelCase = parser.parse_args()
UpperCamelCase = NERTransformer(args)
UpperCamelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
UpperCamelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 333 | 0 |
UpperCamelCase = frozenset(
[
'''prompt''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
UpperCamelCase = frozenset(['''prompt''', '''negative_prompt'''])
UpperCamelCase = frozenset([])
UpperCamelCase = frozenset(['''image'''])
UpperCamelCase = frozenset(
[
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
UpperCamelCase = frozenset(['''image'''])
UpperCamelCase = frozenset(
[
'''prompt''',
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
UpperCamelCase = frozenset(['''prompt''', '''image''', '''negative_prompt'''])
UpperCamelCase = frozenset(
[
# Text guided image variation with an image mask
'''prompt''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
UpperCamelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt'''])
UpperCamelCase = frozenset(
[
# image variation with an image mask
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
UpperCamelCase = frozenset(['''image''', '''mask_image'''])
UpperCamelCase = frozenset(
[
'''example_image''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
UpperCamelCase = frozenset(['''example_image''', '''image''', '''mask_image'''])
UpperCamelCase = frozenset(['''class_labels'''])
UpperCamelCase = frozenset(['''class_labels'''])
UpperCamelCase = frozenset(['''batch_size'''])
UpperCamelCase = frozenset([])
UpperCamelCase = frozenset(['''batch_size'''])
UpperCamelCase = frozenset([])
UpperCamelCase = frozenset(
[
'''prompt''',
'''audio_length_in_s''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
UpperCamelCase = frozenset(['''prompt''', '''negative_prompt'''])
UpperCamelCase = frozenset(['''input_tokens'''])
UpperCamelCase = frozenset(['''input_tokens'''])
| 354 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 333 | 0 |
import requests
from bsa import BeautifulSoup
def lowercase_ ( _lowerCamelCase : str = "https://www.worldometers.info/coronavirus"):
lowercase__ : List[str] = BeautifulSoup(requests.get(__a).text , "html.parser")
lowercase__ : Dict = soup.findAll("h1")
lowercase__ : Union[str, Any] = soup.findAll("div" , {"class": "maincounter-number"})
keys += soup.findAll("span" , {"class": "panel-title"})
values += soup.findAll("div" , {"class": "number-table-main"})
return {key.text.strip(): value.text.strip() for key, value in zip(__a , __a)}
if __name__ == "__main__":
print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''')
for key, value in world_covidaa_stats().items():
print(f"{key}\n{value}\n")
| 355 | # Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : List[str]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000):
lowercase__ : Optional[int] = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Tuple = sigmoid_function(_lowerCamelCase)
lowercase__ : Dict = np.dot(x.T , h - y) / y.size
lowercase__ : int = theta - alpha * gradient # updating the weights
lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : List[Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 333 | 0 |
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : int):
# Construct model
if gpta_config_file == "":
lowercase__ : Any = GPTaConfig()
else:
lowercase__ : int = GPTaConfig.from_json_file(__snake_case)
lowercase__ : List[Any] = GPTaModel(__snake_case)
# Load weights from numpy
load_tf_weights_in_gpta(__snake_case , __snake_case , __snake_case)
# Save pytorch-model
lowercase__ : Tuple = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
lowercase__ : int = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''')
torch.save(model.state_dict() , __snake_case)
print(f'''Save configuration file to {pytorch_config_dump_path}''')
with open(__snake_case , "w" , encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--gpt2_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained OpenAI model. \n'''
'''This specifies the model architecture.'''
),
)
UpperCamelCase = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 356 | import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class snake_case_ ( __A ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__A : ClassVar[Features] = Features({"text": Value("string" )} )
__A : ClassVar[Features] = Features({"labels": ClassLabel} )
__A : str = "text"
__A : str = "labels"
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
lowercase__ : Optional[int] = copy.deepcopy(self )
lowercase__ : Tuple = self.label_schema.copy()
lowercase__ : Union[str, Any] = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : list):
lowercase__ : Tuple = 0
while len(__A) > 1:
lowercase__ : Optional[Any] = 0
# Consider two files with minimum cost to be merged
for _ in range(2):
lowercase__ : Optional[Any] = files.index(min(__A))
temp += files[min_index]
files.pop(__A)
files.append(__A)
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 | def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((number_a + number_a) / 2)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(_lowerCamelCase : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
lowercase__ : Optional[int] = lower
lowercase__ : List[Any] = higher
lowercase__ : Dict = []
while True:
lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase)
last_numbers.append(_lowerCamelCase)
if answer(_lowerCamelCase) == "low":
lowercase__ : List[str] = number
elif answer(_lowerCamelCase) == "high":
lowercase__ : Optional[int] = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''')
print(f'''details : {last_numbers!s}''')
def lowercase_ ( ):
lowercase__ : Tuple = int(input("Enter lower value : ").strip())
lowercase__ : Optional[int] = int(input("Enter high value : ").strip())
lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip())
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
main()
| 333 | 0 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_ :
def __init__( self : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[int]=12 , lowercase_ : Optional[Any]=7 , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=True , lowercase_ : Optional[int]=99 , lowercase_ : Dict=32 , lowercase_ : Union[str, Any]=32 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=4 , lowercase_ : List[Any]=37 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : int=5_12 , lowercase_ : Tuple=0.02 , lowercase_ : Any=0 , lowercase_ : str=None , ) -> Optional[Any]:
lowercase__ : str = parent
lowercase__ : int = batch_size
lowercase__ : Union[str, Any] = seq_length
lowercase__ : List[Any] = is_training
lowercase__ : Union[str, Any] = use_input_mask
lowercase__ : List[str] = use_labels
lowercase__ : int = vocab_size
lowercase__ : Any = hidden_size
lowercase__ : List[Any] = projection_dim
lowercase__ : Dict = num_hidden_layers
lowercase__ : Dict = num_attention_heads
lowercase__ : str = intermediate_size
lowercase__ : int = dropout
lowercase__ : int = attention_dropout
lowercase__ : Dict = max_position_embeddings
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : Dict = scope
lowercase__ : Union[str, Any] = bos_token_id
def __UpperCamelCase ( self : Any ) -> str:
lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ : Union[str, Any] = None
if self.use_input_mask:
lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
if input_mask is not None:
lowercase__ : int = input_mask.numpy()
lowercase__ : Tuple = input_mask.shape
lowercase__ : Any = np.random.randint(1 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(_UpperCamelCase ):
lowercase__ : Optional[int] = 1
lowercase__ : List[str] = 0
lowercase__ : Tuple = self.get_config()
return config, input_ids, tf.convert_to_tensor(_UpperCamelCase )
def __UpperCamelCase ( self : str ) -> Dict:
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[int] ) -> Dict:
lowercase__ : List[str] = TFBlipTextModel(config=_UpperCamelCase )
lowercase__ : List[Any] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , training=_UpperCamelCase )
lowercase__ : Any = model(_UpperCamelCase , training=_UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __UpperCamelCase ( self : List[str] ) -> int:
lowercase__ : Union[str, Any] = self.prepare_config_and_inputs()
lowercase__ : str = config_and_inputs
lowercase__ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class snake_case_ ( lowercase__ ,unittest.TestCase ):
__A : Optional[Any] = (TFBlipTextModel,) if is_tf_available() else ()
__A : int = False
__A : List[Any] = False
__A : Dict = False
def __UpperCamelCase ( self : List[Any] ) -> int:
lowercase__ : List[str] = BlipTextModelTester(self )
lowercase__ : Tuple = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 )
def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]:
lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def __UpperCamelCase ( self : Tuple ) -> str:
pass
def __UpperCamelCase ( self : Tuple ) -> Optional[int]:
pass
@unittest.skip(reason="Blip does not use inputs_embeds" )
def __UpperCamelCase ( self : Any ) -> int:
pass
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" )
def __UpperCamelCase ( self : Tuple ) -> Optional[int]:
pass
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" )
def __UpperCamelCase ( self : List[Any] ) -> Dict:
pass
@slow
def __UpperCamelCase ( self : Any ) -> Union[str, Any]:
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Optional[Any] = TFBlipTextModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def __UpperCamelCase ( self : Dict , lowercase_ : Tuple=True ) -> Dict:
super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCamelCase )
| 358 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCamelCase = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : str ) -> List[str]:
lowercase__ : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
lowercase__ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : Dict = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ )
lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" )
with open(lowercase_ , "w" , newline="\n" ) as f:
f.write(lowercase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowercase_ )
with open(lowercase_ , "r" ) as f:
self.assertTrue(f.read() , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : int ) -> str:
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , )
# Copy consistency with a really long name
lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
| 333 | 0 |
import math
def lowercase_ ( _lowerCamelCase : List[Any] = 100):
lowercase__ : str = sum(i * i for i in range(1 , n + 1))
lowercase__ : Optional[Any] = int(math.pow(sum(range(1 , n + 1)) , 2))
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(f"{solution() = }")
| 359 | from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True):
model.train()
lowercase__ : Tuple = model(_lowerCamelCase)
lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False):
set_seed(42)
lowercase__ : Dict = RegressionModel()
lowercase__ : int = deepcopy(_lowerCamelCase)
lowercase__ : str = RegressionDataset(length=80)
lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16)
model.to(accelerator.device)
if sched:
lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3)
lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3)
lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
# Make a copy of `model`
if sched:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( _lowerCamelCase : Tuple):
# Test when on a single CPU or GPU that the context manager does nothing
lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Any):
# Test on distributed setup that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False):
lowercase__ : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))]
GradientState._reset_state()
def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False):
lowercase__ : Dict = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowercase_ ( ):
lowercase__ : List[str] = Accelerator()
lowercase__ : List[Any] = RegressionDataset(length=80)
lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ : int = RegressionDataset(length=96)
lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if iteration < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if batch_num < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ):
lowercase__ : str = Accelerator()
lowercase__ : Dict = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
test_noop_sync(_lowerCamelCase)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**")
test_distributed_sync(_lowerCamelCase)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 0 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def lowercase_ ( _lowerCamelCase : Optional[int]):
lowercase__ : int = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
lowercase__ : Tuple = emb.weight.shape
lowercase__ : str = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase)
lowercase__ : List[Any] = emb.weight.data
return lin_layer
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=None):
lowercase__ : Dict = {}
for old_key in state_dict.keys():
lowercase__ : Any = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
lowercase__ : Any = key.replace("moe_layer.experts.0" , f'''ffn.experts.expert_{expert_idx}''')
else:
lowercase__ : Dict = key.replace("moe_layer.experts." , "ffn.experts.expert_")
if "gate" in key:
lowercase__ : Tuple = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier")
if "fc2" and "experts" not in key:
lowercase__ : Dict = key.replace(".fc2." , ".ffn.fc2.")
if "fc1" and "experts" not in key:
lowercase__ : Optional[int] = key.replace(".fc1." , ".ffn.fc1.")
if ".encoder_attn." in key:
lowercase__ : Optional[int] = key.replace(".encoder_attn." , ".cross_attention.")
if "encoder_attn_layer_norm" in key:
lowercase__ : Any = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm")
if "final_layer_norm" in key:
lowercase__ : str = key.replace("final_layer_norm" , "ff_layer_norm")
lowercase__ : Dict = state_dict[old_key]
return new_dict
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : str = WEIGHTS_NAME):
lowercase__ : Any = []
lowercase__ : Union[str, Any] = 0
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase)
for expert in range(__lowerCamelCase):
lowercase__ : List[Any] = switch_checkpoint_path + f'''-rank-{expert}.pt'''
if os.path.isfile(__lowerCamelCase):
lowercase__ : Optional[int] = torch.load(__lowerCamelCase)["model"]
remove_ignore_keys_(__lowerCamelCase)
lowercase__ : List[str] = rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase)
lowercase__ : Any = os.path.join(
__lowerCamelCase , weights_name.replace(".bin" , f'''-{len(__lowerCamelCase)+1:05d}-of-???.bin'''))
torch.save(__lowerCamelCase , __lowerCamelCase)
sharded_state_dicts.append(expert_state.keys())
total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size(
expert_state[list(__lowerCamelCase)[0]].dtype)
# Add the last block
lowercase__ : Tuple = os.path.join(__lowerCamelCase , weights_name.replace(".bin" , f'''-{len(__lowerCamelCase)+1:05d}-of-???.bin'''))
lowercase__ : List[Any] = torch.load(switch_checkpoint_path + "-shared.pt")["model"]
remove_ignore_keys_(__lowerCamelCase)
lowercase__ : Any = rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase)
lowercase__ : Any = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys())
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(__lowerCamelCase) == 1:
lowercase__ : Dict = os.path.join(__lowerCamelCase , __lowerCamelCase)
torch.save(__lowerCamelCase , __lowerCamelCase)
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(__lowerCamelCase , __lowerCamelCase)
# Otherwise, let's build the index
lowercase__ : str = {}
for idx, shard in enumerate(__lowerCamelCase):
lowercase__ : Optional[int] = weights_name.replace(".bin" , f'''-{idx+1:05d}-of-{len(__lowerCamelCase):05d}.bin''')
lowercase__ : Tuple = os.path.join(__lowerCamelCase , weights_name.replace(".bin" , f'''-{idx+1:05d}-of-???.bin'''))
os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase))
for key in shard:
lowercase__ : int = shard_file
# Add the metadata
lowercase__ : Optional[int] = {"total_size": total_size}
lowercase__ : Dict = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(__lowerCamelCase , __lowerCamelCase) , "w" , encoding="utf-8") as f:
lowercase__ : int = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase) + "\n"
f.write(__lowerCamelCase)
return metadata, index
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--nllb_moe_checkpoint_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''',
type=str,
required=False,
help='''Path to a directory containing a folder per layer. Follows the original Google format.''',
)
parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''')
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''',
type=str,
required=False,
help='''Path to the output pytorch model.''',
)
UpperCamelCase = parser.parse_args()
UpperCamelCase , UpperCamelCase = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
UpperCamelCase = NllbMoeConfig.from_pretrained(
'''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('''Done''')
model.save_pretrained(args.pytorch_dump_folder_path)
| 360 | import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str):
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase)
lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase)
lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase)
lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
lowercase__ : Any = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowercase__ : int = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Dict = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global].")
# Encoder
for layer_index in range(config.num_layers):
lowercase__ : str = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : Any = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[str] = tax_attention_value
lowercase__ : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Any = tax_global_layer_norm
if split_mlp_wi:
lowercase__ : Tuple = tax_mlp_wi_a
lowercase__ : str = tax_mlp_wi_a
else:
lowercase__ : List[Any] = tax_mlp_wi
lowercase__ : str = tax_mlp_wo
lowercase__ : int = tax_mlp_layer_norm
lowercase__ : List[str] = flax_model_encoder_layer_block
# Only for layer 0:
lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : Optional[int] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_encoder_global_rel_embedding
# Assigning
lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
lowercase__ : Union[str, Any] = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"]
lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"]
lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"]
lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : List[Any] = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[Any] = tax_attention_value
lowercase__ : List[str] = tax_pre_attention_layer_norm
lowercase__ : List[Any] = tax_enc_dec_attention_key
lowercase__ : Optional[Any] = tax_enc_dec_attention_out
lowercase__ : str = tax_enc_dec_attention_query
lowercase__ : Union[str, Any] = tax_enc_dec_attention_value
lowercase__ : Tuple = tax_cross_layer_norm
if split_mlp_wi:
lowercase__ : List[str] = tax_mlp_wi_a
lowercase__ : List[Any] = tax_mlp_wi_a
else:
lowercase__ : Tuple = tax_mlp_wi
lowercase__ : Any = tax_mlp_wo
lowercase__ : Tuple = txa_mlp_layer_norm
lowercase__ : int = flax_model_decoder_layer_block
# Decoder Normalization
lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
lowercase__ : List[Any] = txa_decoder_norm
# Only for layer 0:
lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_decoder_rel_embedding
# Token Embeddings
lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"]
lowercase__ : Optional[Any] = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(_lowerCamelCase)
print("T5X Model was sucessfully converted!")
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
UpperCamelCase = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 333 | 0 |
from __future__ import annotations
def lowercase_ ( _lowerCamelCase : list):
if not nums:
raise ValueError("List is empty")
return sum(lowerCAmelCase__) / len(lowerCAmelCase__)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[int] = "rwkv"
__A : List[str] = {"max_position_embeddings": "context_length"}
def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int:
lowercase__ : List[str] = vocab_size
lowercase__ : str = context_length
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : str = rescale_every
lowercase__ : Optional[int] = use_cache
lowercase__ : int = bos_token_id
lowercase__ : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | 0 |
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def lowercase_ ( ):
"""simple docstring"""
lowercase__ : Optional[Any] = {
'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'],
'path': ['test_1.py', 'test_2.py', 'unit_test.py'],
'content': ['a ' * 20, 'a ' * 30, 'b ' * 7],
}
lowercase__ : Tuple = Dataset.from_dict(lowercase__)
return dataset
class snake_case_ ( __A ):
def __UpperCamelCase ( self : Tuple ) -> List[str]:
lowercase__ : int = get_dataset()
lowercase__ : List[Any] = make_duplicate_clusters(lowercase_ , 0.85 )
self.assertEqual(len(duplicate_clusters[0] ) , 2 )
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
lowercase__ : List[Any] = get_dataset()
lowercase__ : str = deduplicate_dataset(lowercase_ )
self.assertEqual(len(lowercase_ ) , 2 )
print(lowercase_ )
self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 )
self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowercase_ )
| 362 | class snake_case_ :
def __init__( self : int ) -> Optional[int]:
lowercase__ : Optional[int] = 0
lowercase__ : List[str] = 0
lowercase__ : Any = {}
def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]:
if vertex not in self.adjacency:
lowercase__ : List[Any] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]:
self.add_vertex(lowercase_ )
self.add_vertex(lowercase_ )
if head == tail:
return
lowercase__ : int = weight
lowercase__ : Any = weight
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[Any] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
edges.remove((tail, head, weight) )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(lowercase_ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : int = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge
lowercase__ : Union[str, Any] = weight
lowercase__ : Dict = weight
def __str__( self : str ) -> Any:
lowercase__ : str = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Optional[Any] = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Any = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[str] ) -> Dict:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]:
lowercase__ : Any = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : List[Any] = []
for vertex in vertices:
g.add_vertex(lowercase_ )
for edge in edges:
g.add_edge(*lowercase_ )
return g
class snake_case_ :
def __init__( self : int ) -> List[str]:
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
def __len__( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.parent )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple:
if item in self.parent:
return self.find(lowercase_ )
lowercase__ : Union[str, Any] = item
lowercase__ : int = 0
return item
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any:
if item not in self.parent:
return self.make_set(lowercase_ )
if item != self.parent[item]:
lowercase__ : Union[str, Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]:
lowercase__ : Dict = self.find(lowercase_ )
lowercase__ : Optional[int] = self.find(lowercase_ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Dict = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : int = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]:
lowercase__ : List[Any] = graph.num_vertices
lowercase__ : Optional[Any] = Graph.UnionFind()
lowercase__ : int = []
while num_components > 1:
lowercase__ : List[Any] = {}
for vertex in graph.get_vertices():
lowercase__ : Any = -1
lowercase__ : List[str] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : str = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[str] = edge
lowercase__ : List[str] = union_find.find(lowercase_ )
lowercase__ : Union[str, Any] = union_find.find(lowercase_ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Dict = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex]
if union_find.find(lowercase_ ) != union_find.find(lowercase_ ):
union_find.union(lowercase_ , lowercase_ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : Optional[Any] = num_components - 1
lowercase__ : List[Any] = Graph.build(edges=lowercase_ )
return mst
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Any , ):
lowercase__ : int = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters):
raise ValueError("All input parameters must be positive")
if any(p > 1 for p in parameters[1:4]):
raise ValueError("Relative densities cannot be greater than one")
else:
lowercase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy)
lowercase__ : List[Any] = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
lowercase__ : List[Any] = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
UpperCamelCase = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1E-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 363 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 | 0 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). " ,a_ ,)
class snake_case_ ( a_ ):
__A : Union[str, Any] = RobertaConfig
__A : Any = '''roberta'''
def __init__( self : Any , lowercase_ : List[Any] ) -> Tuple:
super().__init__(lowercase_ )
lowercase__ : str = RobertaEmbeddings(lowercase_ )
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " ,a_ ,)
class snake_case_ ( a_ ):
__A : Optional[int] = RobertaConfig
__A : Union[str, Any] = '''roberta'''
def __init__( self : str , lowercase_ : str ) -> Union[str, Any]:
super().__init__(lowercase_ )
lowercase__ : Tuple = config.num_labels
lowercase__ : str = config.num_hidden_layers
lowercase__ : str = DeeRobertaModel(lowercase_ )
lowercase__ : Optional[Any] = nn.Dropout(config.hidden_dropout_prob )
lowercase__ : Any = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : List[str]=None , lowercase_ : List[Any]=None , lowercase_ : Tuple=None , lowercase_ : List[Any]=None , lowercase_ : List[Any]=-1 , lowercase_ : Union[str, Any]=False , ) -> Dict:
lowercase__ : List[str] = self.num_layers
try:
lowercase__ : List[Any] = self.roberta(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , )
lowercase__ : str = outputs[1]
lowercase__ : Optional[Any] = self.dropout(lowercase_ )
lowercase__ : str = self.classifier(lowercase_ )
lowercase__ : Tuple = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
lowercase__ : List[str] = e.message
lowercase__ : Optional[int] = e.exit_layer
lowercase__ : str = outputs[0]
if not self.training:
lowercase__ : Union[str, Any] = entropy(lowercase_ )
lowercase__ : str = []
lowercase__ : Optional[Any] = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
lowercase__ : List[Any] = MSELoss()
lowercase__ : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
lowercase__ : Union[str, Any] = CrossEntropyLoss()
lowercase__ : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
lowercase__ : List[Any] = []
for highway_exit in outputs[-1]:
lowercase__ : Any = highway_exit[0]
if not self.training:
highway_logits_all.append(lowercase_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
lowercase__ : Optional[Any] = MSELoss()
lowercase__ : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
lowercase__ : int = CrossEntropyLoss()
lowercase__ : Union[str, Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(lowercase_ )
if train_highway:
lowercase__ : Optional[Any] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
lowercase__ : int = (loss,) + outputs
if not self.training:
lowercase__ : List[str] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
lowercase__ : int = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 364 | def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 1
lowercase__ : int = 0
for divide_by_number in range(_lowerCamelCase , digit + 1):
lowercase__ : list[int] = []
lowercase__ : Dict = numerator
for _ in range(1 , digit + 1):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase):
lowercase__ : Union[str, Any] = len(_lowerCamelCase)
lowercase__ : Optional[int] = divide_by_number
else:
has_been_divided.append(_lowerCamelCase)
lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : int):
if not isinstance(__a , __a):
lowercase__ : Any = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__a)
if number < 0:
return False
lowercase__ : Tuple = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 365 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 0 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print('''Googling.....''')
UpperCamelCase = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:])
UpperCamelCase = requests.get(url, headers={'''UserAgent''': UserAgent().random})
# res.raise_for_status()
with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class
for data in res.iter_content(1_0000):
out_file.write(data)
UpperCamelCase = BeautifulSoup(res.text, '''html.parser''')
UpperCamelCase = list(soup.select('''.eZt8xd'''))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get('''href'''))
else:
webbrowser.open(f"https://google.com{link.get('href')}")
| 366 | import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False):
try:
lowercase__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''')
return _value
UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skip("Test was skipped")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None):
if test_case is None:
return partial(_lowerCamelCase , version=_lowerCamelCase)
return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase)
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase)
class snake_case_ ( unittest.TestCase ):
__A : int = True
@classmethod
def __UpperCamelCase ( cls : str ) -> str:
lowercase__ : str = tempfile.mkdtemp()
@classmethod
def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCamelCase ( self : str ) -> Optional[int]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowercase_ )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str:
lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Optional[int] = tensor[None].clone().to(state.device)
lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu()
lowercase__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowerCamelCase):
return False
return True
class snake_case_ :
def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : int = returncode
lowercase__ : Dict = stdout
lowercase__ : List[Any] = stderr
async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str):
while True:
lowercase__ : int = await stream.readline()
if line:
callback(_lowerCamelCase)
else:
break
async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False):
if echo:
print("\nRunning: " , " ".join(_lowerCamelCase))
lowercase__ : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Tuple = []
lowercase__ : List[Any] = []
def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""):
lowercase__ : Optional[int] = line.decode("utf-8").rstrip()
sink.append(_lowerCamelCase)
if not quiet:
print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))),
] , timeout=_lowerCamelCase , )
return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True):
lowercase__ : Optional[Any] = asyncio.get_event_loop()
lowercase__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase))
lowercase__ : str = " ".join(_lowerCamelCase)
if result.returncode > 0:
lowercase__ : Dict = "\n".join(result.stderr)
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False):
try:
lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowerCamelCase , "decode"):
lowercase__ : Optional[Any] = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((input_a, input_a).count(1) != 0)
def lowercase_ ( ):
assert or_gate(0 , 0) == 0
assert or_gate(0 , 1) == 1
assert or_gate(1 , 0) == 1
assert or_gate(1 , 1) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 367 | from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[Any] = ["flax"]
def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[int] = ["flax"]
def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[str] = ["flax"]
def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
| 333 | 0 |
"""simple docstring"""
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : Optional[Any]):
lowercase__ : Optional[int] = R"\w+[.]\d+"
lowercase__ : Dict = re.findall(_UpperCamelCase , _UpperCamelCase)
for pat in pats:
lowercase__ : int = key.replace(_UpperCamelCase , "_".join(pat.split(".")))
return key
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]):
lowercase__ : Union[str, Any] = pt_tuple_key[:-1] + ("scale",)
if (
any("norm" in str_ for str_ in pt_tuple_key)
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
lowercase__ : List[Any] = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
lowercase__ : str = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
lowercase__ : str = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowercase__ : int = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
lowercase__ : Any = pt_tensor.transpose(2 , 3 , 1 , 0)
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowercase__ : int = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
lowercase__ : str = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowercase__ : List[str] = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowercase__ : Dict = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any]=42):
# Step 1: Convert pytorch tensor to numpy
lowercase__ : List[Any] = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
lowercase__ : Optional[Any] = flax_model.init_weights(PRNGKey(_UpperCamelCase))
lowercase__ : Optional[Any] = flatten_dict(_UpperCamelCase)
lowercase__ : Optional[int] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowercase__ : str = rename_key(_UpperCamelCase)
lowercase__ : Union[str, Any] = tuple(renamed_pt_key.split("."))
# Correctly rename weight parameters
lowercase__ , lowercase__ : str = rename_key_and_reshape_tensor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase)
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''')
# also add unexpected weight so that warning is thrown
lowercase__ : Dict = jnp.asarray(_UpperCamelCase)
return unflatten_dict(_UpperCamelCase)
| 368 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class snake_case_ ( __A ):
__A : List[str] = "vit_mae"
def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]:
super().__init__(**lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Any = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Any = num_channels
lowercase__ : str = qkv_bias
lowercase__ : Optional[Any] = decoder_num_attention_heads
lowercase__ : Any = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : Union[str, Any] = decoder_intermediate_size
lowercase__ : int = mask_ratio
lowercase__ : Tuple = norm_pix_loss
| 333 | 0 |
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class snake_case_ ( a__ ,unittest.TestCase ):
__A : int = BioGptTokenizer
__A : Tuple = False
def __UpperCamelCase ( self : str ) -> List[str]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase__ : int = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
lowercase__ : Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) )
lowercase__ : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
lowercase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(_lowerCamelCase ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(_lowerCamelCase ) )
def __UpperCamelCase ( self : List[str] , lowercase_ : Any ) -> Any:
lowercase__ : List[str] = '''lower newer'''
lowercase__ : Optional[Any] = '''lower newer'''
return input_text, output_text
def __UpperCamelCase ( self : str ) -> List[str]:
lowercase__ : str = BioGptTokenizer(self.vocab_file , self.merges_file )
lowercase__ : Optional[Any] = '''lower'''
lowercase__ : Optional[Any] = ['''low''', '''er</w>''']
lowercase__ : Optional[int] = tokenizer.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
lowercase__ : Any = tokens + ['''<unk>''']
lowercase__ : Any = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
@slow
def __UpperCamelCase ( self : int ) -> str:
lowercase__ : int = BioGptTokenizer.from_pretrained("microsoft/biogpt" )
lowercase__ : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=_lowerCamelCase )
lowercase__ : Tuple = tokenizer.encode("multi-sequence build" , add_special_tokens=_lowerCamelCase )
lowercase__ : List[str] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase )
lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 369 | def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while a != 0:
lowercase__ , lowercase__ : Dict = b % a, a
return b
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if gcd(_lowerCamelCase , _lowerCamelCase) != 1:
lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m
while va != 0:
lowercase__ : Tuple = ua // va
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 333 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 370 | import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 0 |
"""simple docstring"""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
UpperCamelCase = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
UpperCamelCase = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
UpperCamelCase = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
UpperCamelCase = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
UpperCamelCase = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
UpperCamelCase = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class snake_case_ ( _UpperCAmelCase ):
__A : Any = VOCAB_FILES_NAMES
__A : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
__A : str = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : int = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class snake_case_ ( _UpperCAmelCase ):
__A : int = VOCAB_FILES_NAMES
__A : Dict = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
__A : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
UpperCamelCase = collections.namedtuple(
'''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text''']
)
UpperCamelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits'''])
UpperCamelCase = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(_UpperCAmelCase )
class snake_case_ :
def __call__( self : int , lowercase_ : int , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Union[bool, str] = False , lowercase_ : Union[bool, str] = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[bool] = None , **lowercase_ : int , ) -> Any:
if titles is None and texts is None:
return super().__call__(
lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , )
elif titles is None or texts is None:
lowercase__ : Tuple = titles if texts is None else texts
return super().__call__(
lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , )
lowercase__ : List[Any] = titles if not isinstance(lowercase_ , lowercase_ ) else [titles]
lowercase__ : Dict = texts if not isinstance(lowercase_ , lowercase_ ) else [texts]
lowercase__ : List[Any] = len(lowercase_ )
lowercase__ : Optional[Any] = questions if not isinstance(lowercase_ , lowercase_ ) else [questions] * n_passages
if len(lowercase_ ) != len(lowercase_ ):
raise ValueError(
F'''There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts.''' )
lowercase__ : Any = super().__call__(lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""]
lowercase__ : str = super().__call__(lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""]
lowercase__ : List[Any] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowercase_ , lowercase_ )
]
}
if return_attention_mask is not False:
lowercase__ : int = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
lowercase__ : int = attention_mask
return self.pad(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : BatchEncoding , lowercase_ : DPRReaderOutput , lowercase_ : int = 16 , lowercase_ : int = 64 , lowercase_ : int = 4 , ) -> Optional[Any]:
lowercase__ : Optional[int] = reader_input["""input_ids"""]
lowercase__ : Optional[int] = reader_output[:3]
lowercase__ : Union[str, Any] = len(lowercase_ )
lowercase__ : List[Any] = sorted(range(lowercase_ ) , reverse=lowercase_ , key=relevance_logits.__getitem__ )
lowercase__ : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
lowercase__ : Optional[Any] = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
lowercase__ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
lowercase__ : Any = sequence_ids.index(self.pad_token_id )
else:
lowercase__ : Dict = len(lowercase_ )
lowercase__ : Any = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase_ , top_spans=lowercase_ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase_ , start_index=lowercase_ , end_index=lowercase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(lowercase_ ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def __UpperCamelCase ( self : Dict , lowercase_ : List[int] , lowercase_ : List[int] , lowercase_ : int , lowercase_ : int , ) -> Dict:
lowercase__ : Tuple = []
for start_index, start_score in enumerate(lowercase_ ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
lowercase__ : str = sorted(lowercase_ , key=lambda lowercase_ : x[1] , reverse=lowercase_ )
lowercase__ : Dict = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
lowercase__ : Optional[int] = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowercase_ ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(_UpperCAmelCase )
class snake_case_ ( _UpperCAmelCase ,_UpperCAmelCase ):
__A : Any = VOCAB_FILES_NAMES
__A : Optional[int] = READER_PRETRAINED_VOCAB_FILES_MAP
__A : Any = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : List[Any] = READER_PRETRAINED_INIT_CONFIGURATION
__A : Any = ["input_ids", "attention_mask"]
| 371 | import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 | 0 |
"""simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class snake_case_ ( __lowercase ,unittest.TestCase ):
__A : Union[str, Any] = BarthezTokenizer
__A : Tuple = BarthezTokenizerFast
__A : Optional[int] = True
__A : List[Any] = True
def __UpperCamelCase ( self : Dict ) -> List[str]:
super().setUp()
lowercase__ : Dict = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=_a )
lowercase__ : Union[str, Any] = tokenizer
def __UpperCamelCase ( self : Tuple ) -> Any:
lowercase__ : Optional[Any] = "<pad>"
lowercase__ : List[Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a )
def __UpperCamelCase ( self : List[str] ) -> List[str]:
lowercase__ : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(_a ) , 10_11_22 )
def __UpperCamelCase ( self : int ) -> Any:
self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22 )
@require_torch
def __UpperCamelCase ( self : Any ) -> int:
lowercase__ : Dict = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowercase__ : Optional[Any] = [0, 57, 30_18, 7_03_07, 91, 2]
lowercase__ : int = self.tokenizer(
_a , max_length=len(_a ) , padding=_a , truncation=_a , return_tensors="pt" )
self.assertIsInstance(_a , _a )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowercase__ : List[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(_a , _a )
def __UpperCamelCase ( self : Tuple ) -> int:
if not self.test_rust_tokenizer:
return
lowercase__ : Dict = self.get_tokenizer()
lowercase__ : Tuple = self.get_rust_tokenizer()
lowercase__ : Optional[Any] = "I was born in 92000, and this is falsé."
lowercase__ : Tuple = tokenizer.tokenize(_a )
lowercase__ : Optional[int] = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
lowercase__ : Optional[Any] = tokenizer.encode(_a , add_special_tokens=_a )
lowercase__ : Optional[Any] = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
lowercase__ : Tuple = self.get_rust_tokenizer()
lowercase__ : int = tokenizer.encode(_a )
lowercase__ : Any = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
@slow
def __UpperCamelCase ( self : Dict ) -> Dict:
# fmt: off
lowercase__ : Union[str, Any] = {"input_ids": [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowercase__ : Union[str, Any] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=_a , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=_a , )
| 350 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 0 |
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int):
return [
int(1000 * (box[0] / width)),
int(1000 * (box[1] / height)),
int(1000 * (box[2] / width)),
int(1000 * (box[3] / height)),
]
def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] = None):
lowercase__ : List[Any] = tesseract_config if tesseract_config is not None else ""
# apply OCR
lowercase__ : Optional[Any] = to_pil_image(__lowerCamelCase)
lowercase__ : Optional[Any] = pil_image.size
lowercase__ : Any = pytesseract.image_to_data(__lowerCamelCase , lang=__lowerCamelCase , output_type="dict" , config=__lowerCamelCase)
lowercase__ : Optional[int] = data["text"], data["left"], data["top"], data["width"], data["height"]
# filter empty words and corresponding coordinates
lowercase__ : Optional[int] = [idx for idx, word in enumerate(__lowerCamelCase) if not word.strip()]
lowercase__ : Union[str, Any] = [word for idx, word in enumerate(__lowerCamelCase) if idx not in irrelevant_indices]
lowercase__ : Union[str, Any] = [coord for idx, coord in enumerate(__lowerCamelCase) if idx not in irrelevant_indices]
lowercase__ : Optional[int] = [coord for idx, coord in enumerate(__lowerCamelCase) if idx not in irrelevant_indices]
lowercase__ : Dict = [coord for idx, coord in enumerate(__lowerCamelCase) if idx not in irrelevant_indices]
lowercase__ : Tuple = [coord for idx, coord in enumerate(__lowerCamelCase) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
lowercase__ : int = []
for x, y, w, h in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase):
lowercase__ : Any = [x, y, x + w, y + h]
actual_boxes.append(__lowerCamelCase)
# finally, normalize the bounding boxes
lowercase__ : int = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase))
assert len(__lowerCamelCase) == len(__lowerCamelCase), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class snake_case_ ( lowercase__ ):
__A : int = ["""pixel_values"""]
def __init__( self : Dict , lowercase_ : List[Any] = True , lowercase_ : Dict = None , lowercase_ : Dict = PILImageResampling.BILINEAR , lowercase_ : Any = True , lowercase_ : Dict = None , lowercase_ : Union[str, Any] = "" , **lowercase_ : List[str] , ) -> Tuple:
super().__init__(**lowercase_ )
lowercase__ : Dict = size if size is not None else {"height": 2_24, "width": 2_24}
lowercase__ : Any = get_size_dict(lowercase_ )
lowercase__ : List[Any] = do_resize
lowercase__ : List[str] = size
lowercase__ : int = resample
lowercase__ : List[Any] = apply_ocr
lowercase__ : Tuple = ocr_lang
lowercase__ : Optional[Any] = tesseract_config
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] = PILImageResampling.BILINEAR , lowercase_ : Union[str, Any] = None , **lowercase_ : Tuple , ) -> Any:
lowercase__ : Union[str, Any] = get_size_dict(lowercase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
lowercase__ : int = (size["height"], size["width"])
return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Union[str, Any] = None , lowercase_ : List[str] = None , lowercase_ : List[str] = None , lowercase_ : Optional[int] = None , lowercase_ : Union[str, Any] = None , lowercase_ : Union[str, Any] = None , lowercase_ : Optional[Any] = None , lowercase_ : Union[str, Any] = ChannelDimension.FIRST , **lowercase_ : Tuple , ) -> int:
lowercase__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize
lowercase__ : Union[str, Any] = size if size is not None else self.size
lowercase__ : Union[str, Any] = get_size_dict(lowercase_ )
lowercase__ : int = resample if resample is not None else self.resample
lowercase__ : Dict = apply_ocr if apply_ocr is not None else self.apply_ocr
lowercase__ : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang
lowercase__ : Union[str, Any] = tesseract_config if tesseract_config is not None else self.tesseract_config
lowercase__ : List[Any] = make_list_of_images(lowercase_ )
if not valid_images(lowercase_ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
# All transformations expect numpy arrays.
lowercase__ : Tuple = [to_numpy_array(lowercase_ ) for image in images]
if apply_ocr:
requires_backends(self , "pytesseract" )
lowercase__ : Any = []
lowercase__ : List[Any] = []
for image in images:
lowercase__ : List[str] = apply_tesseract(lowercase_ , lowercase_ , lowercase_ )
words_batch.append(lowercase_ )
boxes_batch.append(lowercase_ )
if do_resize:
lowercase__ : Tuple = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
lowercase__ : str = [flip_channel_order(lowercase_ ) for image in images]
lowercase__ : int = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images]
lowercase__ : List[Any] = BatchFeature(data={"pixel_values": images} , tensor_type=lowercase_ )
if apply_ocr:
lowercase__ : Any = words_batch
lowercase__ : Dict = boxes_batch
return data
| 351 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class snake_case_ ( __A ):
__A : List[str] = "unispeech"
def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : Any = feat_extract_norm
lowercase__ : Optional[Any] = feat_extract_activation
lowercase__ : Dict = list(lowercase_ )
lowercase__ : Union[str, Any] = list(lowercase_ )
lowercase__ : List[str] = list(lowercase_ )
lowercase__ : List[str] = conv_bias
lowercase__ : Any = num_conv_pos_embeddings
lowercase__ : Dict = num_conv_pos_embedding_groups
lowercase__ : int = len(self.conv_dim )
lowercase__ : str = num_hidden_layers
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : Any = attention_dropout
lowercase__ : Union[str, Any] = activation_dropout
lowercase__ : Any = feat_proj_dropout
lowercase__ : str = final_dropout
lowercase__ : int = layerdrop
lowercase__ : Optional[int] = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = num_ctc_classes
lowercase__ : int = vocab_size
lowercase__ : str = do_stable_layer_norm
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : List[Any] = apply_spec_augment
lowercase__ : Dict = mask_time_prob
lowercase__ : Tuple = mask_time_length
lowercase__ : str = mask_time_min_masks
lowercase__ : List[Any] = mask_feature_prob
lowercase__ : int = mask_feature_length
lowercase__ : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__ : Optional[int] = num_codevectors_per_group
lowercase__ : List[str] = num_codevector_groups
lowercase__ : Dict = contrastive_logits_temperature
lowercase__ : Tuple = feat_quantizer_dropout
lowercase__ : Any = num_negatives
lowercase__ : Dict = codevector_dim
lowercase__ : Tuple = proj_codevector_dim
lowercase__ : List[str] = diversity_loss_weight
# ctc loss
lowercase__ : Tuple = ctc_loss_reduction
lowercase__ : Dict = ctc_zero_infinity
# pretraining loss
lowercase__ : Optional[Any] = replace_prob
@property
def __UpperCamelCase ( self : Dict ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 333 | 0 |
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
UpperCamelCase = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
UpperCamelCase = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''')
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : str=False):
lowercase__ : Union[str, Any] = create_model(
"HTSAT-tiny" , "roberta" , _snake_case , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=_snake_case , fusion_type="aff_2d" if enable_fusion else None , )
return model, model_cfg
def lowercase_ ( _lowerCamelCase : Dict):
lowercase__ : Any = {}
lowercase__ : Tuple = r'''.*sequential.(\d+).*'''
lowercase__ : Dict = r'''.*_projection.(\d+).*'''
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
lowercase__ : str = key.replace(_snake_case , _snake_case)
if re.match(_snake_case , _snake_case):
# replace sequential layers with list
lowercase__ : int = re.match(_snake_case , _snake_case).group(1)
lowercase__ : Optional[int] = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(_snake_case)//3}.linear.''')
elif re.match(_snake_case , _snake_case):
lowercase__ : Union[str, Any] = int(re.match(_snake_case , _snake_case).group(1))
# Because in CLAP they use `nn.Sequential`...
lowercase__ : Any = 1 if projecton_layer == 0 else 2
lowercase__ : Dict = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''')
if "audio" and "qkv" in key:
# split qkv into query key and value
lowercase__ : str = value
lowercase__ : Optional[Any] = mixed_qkv.size(0) // 3
lowercase__ : Tuple = mixed_qkv[:qkv_dim]
lowercase__ : int = mixed_qkv[qkv_dim : qkv_dim * 2]
lowercase__ : List[Any] = mixed_qkv[qkv_dim * 2 :]
lowercase__ : Optional[int] = query_layer
lowercase__ : Optional[Any] = key_layer
lowercase__ : Optional[int] = value_layer
else:
lowercase__ : Optional[Any] = value
return model_state_dict
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=False):
lowercase__ : Optional[int] = init_clap(_snake_case , enable_fusion=_snake_case)
clap_model.eval()
lowercase__ : str = clap_model.state_dict()
lowercase__ : int = rename_state_dict(_snake_case)
lowercase__ : Dict = ClapConfig()
lowercase__ : Tuple = enable_fusion
lowercase__ : str = ClapModel(_snake_case)
# ignore the spectrogram embedding layer
model.load_state_dict(_snake_case , strict=_snake_case)
model.save_pretrained(_snake_case)
transformers_config.save_pretrained(_snake_case)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''')
UpperCamelCase = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 352 | def lowercase_ ( _lowerCamelCase : list):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : int = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j]
lowercase__ : List[str] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 333 | 0 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''):
raise Exception('''requires fairseq >= 1.0.0a''')
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = """Hello world! cécé herlolip"""
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : List[str]):
lowercase__ : Any = FairseqRobertaModel.from_pretrained(_A)
roberta.eval() # disable dropout
lowercase__ : Tuple = roberta.model.encoder.sentence_encoder
lowercase__ : List[Any] = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , )
if classification_head:
lowercase__ : List[Any] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0]
print("Our RoBERTa config:" , _A)
lowercase__ : List[str] = XLMRobertaXLForSequenceClassification(_A) if classification_head else XLMRobertaXLForMaskedLM(_A)
model.eval()
# Now let's copy all the weights.
# Embeddings
lowercase__ : Optional[int] = roberta_sent_encoder.embed_tokens.weight
lowercase__ : Optional[Any] = roberta_sent_encoder.embed_positions.weight
lowercase__ : Union[str, Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c RoBERTa doesn't use them.
lowercase__ : Dict = roberta_sent_encoder.layer_norm.weight
lowercase__ : List[Any] = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers):
# Encoder: start of layer
lowercase__ : BertLayer = model.roberta.encoder.layer[i]
lowercase__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
lowercase__ : RobertaAttention = layer.attention
lowercase__ : int = roberta_layer.self_attn_layer_norm.weight
lowercase__ : str = roberta_layer.self_attn_layer_norm.bias
# self attention
lowercase__ : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size))
)
lowercase__ : Optional[Any] = roberta_layer.self_attn.q_proj.weight
lowercase__ : Union[str, Any] = roberta_layer.self_attn.q_proj.bias
lowercase__ : Optional[Any] = roberta_layer.self_attn.k_proj.weight
lowercase__ : Dict = roberta_layer.self_attn.k_proj.bias
lowercase__ : List[Any] = roberta_layer.self_attn.v_proj.weight
lowercase__ : Optional[int] = roberta_layer.self_attn.v_proj.bias
# self-attention output
lowercase__ : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
lowercase__ : Tuple = roberta_layer.self_attn.out_proj.weight
lowercase__ : Dict = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
lowercase__ : Dict = roberta_layer.final_layer_norm.weight
lowercase__ : Union[str, Any] = roberta_layer.final_layer_norm.bias
# intermediate
lowercase__ : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
lowercase__ : List[Any] = roberta_layer.fca.weight
lowercase__ : int = roberta_layer.fca.bias
# output
lowercase__ : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
lowercase__ : Tuple = roberta_layer.fca.weight
lowercase__ : Tuple = roberta_layer.fca.bias
# end of layer
if classification_head:
lowercase__ : str = roberta.model.classification_heads['mnli'].dense.weight
lowercase__ : Optional[int] = roberta.model.classification_heads['mnli'].dense.bias
lowercase__ : Optional[Any] = roberta.model.classification_heads['mnli'].out_proj.weight
lowercase__ : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
lowercase__ : List[Any] = roberta.model.encoder.lm_head.dense.weight
lowercase__ : Dict = roberta.model.encoder.lm_head.dense.bias
lowercase__ : Any = roberta.model.encoder.lm_head.layer_norm.weight
lowercase__ : Dict = roberta.model.encoder.lm_head.layer_norm.bias
lowercase__ : int = roberta.model.encoder.lm_head.weight
lowercase__ : List[Any] = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowercase__ : torch.Tensor = roberta.encode(_A).unsqueeze(0) # batch of size 1
lowercase__ : int = model(_A)[0]
if classification_head:
lowercase__ : List[Any] = roberta.model.classification_heads['mnli'](roberta.extract_features(_A))
else:
lowercase__ : Dict = roberta.model(_A)[0]
print(our_output.shape , their_output.shape)
lowercase__ : List[str] = torch.max(torch.abs(our_output - their_output)).item()
print(f'''max_absolute_diff = {max_absolute_diff}''') # ~ 1e-7
lowercase__ : List[Any] = torch.allclose(_A , _A , atol=1E-3)
print("Do both models output the same tensors?" , "🔥" if success else "💩")
if not success:
raise Exception("Something went wRoNg")
pathlib.Path(_A).mkdir(parents=_A , exist_ok=_A)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_A)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
UpperCamelCase = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 353 | import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class snake_case_ ( __A ):
__A : int = "token-classification"
def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]:
if type(lowercase_ ) == dict:
lowercase__ : Dict = Namespace(**lowercase_ )
lowercase__ : str = import_module("tasks" )
try:
lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels )
lowercase__ : int = CrossEntropyLoss().ignore_index
super().__init__(lowercase_ , len(self.labels ) , self.mode )
def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any:
return self.model(**lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple:
lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : Tuple = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : Optional[int] = self(**lowercase_ )
lowercase__ : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
lowercase__ : Any = self._feature_file(lowercase_ )
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ )
lowercase__ : Dict = self.token_classification_task.convert_examples_to_features(
lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowercase_ )
torch.save(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader:
lowercase__ : str = self._feature_file(lowercase_ )
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str:
"""Compute validation""" ""
lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : int = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : List[Any] = self(**lowercase_ )
lowercase__ , lowercase__ : Any = outputs[:2]
lowercase__ : Optional[Any] = logits.detach().cpu().numpy()
lowercase__ : int = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]:
lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean()
lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 )
lowercase__ : Dict = np.argmax(lowercase_ , axis=2 )
lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 )
lowercase__ : Any = dict(enumerate(self.labels ) )
lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )]
lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
lowercase__ : Any = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase_ , lowercase_ ),
"precision": precision_score(lowercase_ , lowercase_ ),
"recall": recall_score(lowercase_ , lowercase_ ),
"f1": fa_score(lowercase_ , lowercase_ ),
}
lowercase__ : List[Any] = dict(results.items() )
lowercase__ : List[str] = results
return ret, preds_list, out_label_list
def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict:
# when stable
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
lowercase__ : Any = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int:
# updating to test_epoch_end instead of deprecated test_end
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
lowercase__ : Optional[int] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple:
# Add NER specific options
BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ )
parser.add_argument(
"--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=1_28 , type=lowercase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCamelCase = parser.parse_args()
UpperCamelCase = NERTransformer(args)
UpperCamelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
UpperCamelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ : Optional[int] = set()
# edges = list of graph's edges
lowercase__ : Optional[int] = get_edges(_lowerCamelCase)
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
lowercase__ , lowercase__ : int = edges.pop()
chosen_vertices.add(_lowerCamelCase)
chosen_vertices.add(_lowerCamelCase)
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(_lowerCamelCase)
return chosen_vertices
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ : str = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node))
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 354 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : str):
if not all(char in "01" for char in bin_string):
raise ValueError("Non-binary value was passed to the function")
if not bin_string:
raise ValueError("Empty string was passed to the function")
lowercase__ : Any = """"""
while len(snake_case_) % 3 != 0:
lowercase__ : List[str] = """0""" + bin_string
lowercase__ : Tuple = [
bin_string[index : index + 3]
for index in range(len(snake_case_))
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
lowercase__ : int = 0
for index, val in enumerate(snake_case_):
oct_val += int(2 ** (2 - index) * int(snake_case_))
oct_string += str(snake_case_)
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 355 | # Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : List[str]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000):
lowercase__ : Optional[int] = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Tuple = sigmoid_function(_lowerCamelCase)
lowercase__ : Dict = np.dot(x.T , h - y) / y.size
lowercase__ : int = theta - alpha * gradient # updating the weights
lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : List[Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 333 | 0 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class snake_case_ :
def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[Any]=14 , lowercase_ : str=7 , lowercase_ : str=True , lowercase_ : int=True , lowercase_ : List[Any]=False , lowercase_ : Any=True , lowercase_ : Any=99 , lowercase_ : Any=32 , lowercase_ : Any=4 , lowercase_ : int=4 , lowercase_ : str=4 , lowercase_ : Tuple=37 , lowercase_ : Dict="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Optional[Any]=5_12 , lowercase_ : List[str]=0.02 , ) -> Tuple:
lowercase__ : List[Any] = parent
lowercase__ : Union[str, Any] = batch_size
lowercase__ : Dict = seq_length
lowercase__ : Optional[Any] = is_training
lowercase__ : Optional[int] = use_input_mask
lowercase__ : Optional[Any] = use_token_type_ids
lowercase__ : Optional[Any] = use_labels
lowercase__ : Any = vocab_size
lowercase__ : Tuple = hidden_size
lowercase__ : Any = rotary_dim
lowercase__ : str = num_hidden_layers
lowercase__ : int = num_attention_heads
lowercase__ : Any = intermediate_size
lowercase__ : Dict = hidden_act
lowercase__ : Optional[Any] = hidden_dropout_prob
lowercase__ : Optional[int] = attention_probs_dropout_prob
lowercase__ : Optional[Any] = max_position_embeddings
lowercase__ : Union[str, Any] = initializer_range
lowercase__ : int = None
lowercase__ : Union[str, Any] = vocab_size - 1
lowercase__ : str = vocab_size - 1
lowercase__ : Optional[int] = vocab_size - 1
def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ : Optional[int] = None
if self.use_input_mask:
lowercase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ : Optional[int] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def __UpperCamelCase ( self : str ) -> Optional[Any]:
lowercase__ : Optional[int] = self.prepare_config_and_inputs()
lowercase__ : List[str] = config_and_inputs
lowercase__ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def __UpperCamelCase ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Tuple ) -> Tuple:
lowercase__ : str = 20
lowercase__ : Dict = model_class_name(lowercase_ )
lowercase__ : Optional[int] = model.init_cache(input_ids.shape[0] , lowercase_ )
lowercase__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" )
lowercase__ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowercase__ : Dict = model(
input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , )
lowercase__ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" )
lowercase__ : List[str] = model(
input_ids[:, -1:] , attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowercase_ , )
lowercase__ : Any = model(lowercase_ )
lowercase__ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Any ) -> str:
lowercase__ : int = 20
lowercase__ : List[Any] = model_class_name(lowercase_ )
lowercase__ : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowercase__ : Optional[int] = model.init_cache(input_ids.shape[0] , lowercase_ )
lowercase__ : Dict = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowercase__ : Tuple = model(
input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , )
lowercase__ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" )
lowercase__ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowercase_ , position_ids=lowercase_ , )
lowercase__ : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ )
lowercase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' )
@require_flax
class snake_case_ ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__A : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__A : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def __UpperCamelCase ( self : Any ) -> Any:
lowercase__ : List[str] = FlaxGPTJModelTester(self )
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
for model_class_name in self.all_model_classes:
lowercase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Tuple ) -> Any:
for model_class_name in self.all_model_classes:
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
lowercase_ , lowercase_ , lowercase_ , lowercase_ )
@tooslow
def __UpperCamelCase ( self : int ) -> str:
lowercase__ : Optional[int] = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" )
lowercase__ : Tuple = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=lowercase_ , truncation=lowercase_ )
lowercase__ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" )
lowercase__ : List[str] = False
lowercase__ : Optional[Any] = model.config.eos_token_id
lowercase__ : List[Any] = jax.jit(model.generate )
lowercase__ : Any = jit_generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences
lowercase__ : str = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowercase__ : Optional[int] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(lowercase_ , lowercase_ )
@is_pt_flax_cross_test
def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]:
lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowercase__ : int = self._prepare_for_class(lowercase_ , lowercase_ )
lowercase__ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Dict = getattr(lowercase_ , lowercase_ )
lowercase__ : Optional[Any] = pt_inputs["""input_ids"""].shape
lowercase__ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowercase_ ):
lowercase__ : Optional[Any] = 0
lowercase__ : Any = 1
lowercase__ : Tuple = 0
lowercase__ : List[Any] = 1
lowercase__ : Tuple = pt_model_class(lowercase_ ).eval()
lowercase__ : List[str] = model_class(lowercase_ , dtype=jnp.floataa )
lowercase__ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ )
lowercase__ : List[str] = fx_state
with torch.no_grad():
lowercase__ : List[str] = pt_model(**lowercase_ ).to_tuple()
lowercase__ : int = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(lowercase_ , lowercase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowercase_ )
lowercase__ : Optional[int] = model_class.from_pretrained(lowercase_ , from_pt=lowercase_ )
lowercase__ : Union[str, Any] = fx_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(
len(lowercase_ ) , len(lowercase_ ) , "Output lengths differ between Flax and PyTorch" )
for fx_output_loaded, pt_output in zip(lowercase_ , lowercase_ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowercase__ : str = self._prepare_for_class(lowercase_ , lowercase_ )
lowercase__ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowercase__ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ : Any = getattr(lowercase_ , lowercase_ )
lowercase__ : str = pt_model_class(lowercase_ ).eval()
lowercase__ : Any = model_class(lowercase_ , dtype=jnp.floataa )
lowercase__ : Union[str, Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params )
lowercase__ : List[Any] = pt_inputs["""input_ids"""].shape
lowercase__ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(lowercase_ ):
lowercase__ : Any = 0
lowercase__ : Optional[int] = 1
lowercase__ : Tuple = 0
lowercase__ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowercase__ : List[str] = pt_model(**lowercase_ ).to_tuple()
lowercase__ : Tuple = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(lowercase_ , lowercase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowercase_ )
lowercase__ : Optional[Any] = pt_model_class.from_pretrained(lowercase_ , from_flax=lowercase_ )
with torch.no_grad():
lowercase__ : Dict = pt_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(
len(lowercase_ ) , len(lowercase_ ) , "Output lengths differ between Flax and PyTorch" )
for fx_output, pt_output in zip(lowercase_ , lowercase_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def __UpperCamelCase ( self : str ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
lowercase__ : Optional[Any] = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" )
lowercase__ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowercase_ )
| 356 | import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class snake_case_ ( __A ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__A : ClassVar[Features] = Features({"text": Value("string" )} )
__A : ClassVar[Features] = Features({"labels": ClassLabel} )
__A : str = "text"
__A : str = "labels"
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
lowercase__ : Optional[int] = copy.deepcopy(self )
lowercase__ : Tuple = self.label_schema.copy()
lowercase__ : Union[str, Any] = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 333 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class snake_case_ ( __lowerCamelCase ):
__A : Union[str, Any] = 'yolos'
def __init__( self : Dict , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : int=12 , lowercase_ : int=30_72 , lowercase_ : List[str]="gelu" , lowercase_ : Union[str, Any]=0.0 , lowercase_ : int=0.0 , lowercase_ : Optional[int]=0.02 , lowercase_ : Dict=1E-12 , lowercase_ : List[Any]=[5_12, 8_64] , lowercase_ : Optional[int]=16 , lowercase_ : Any=3 , lowercase_ : Union[str, Any]=True , lowercase_ : List[str]=1_00 , lowercase_ : List[str]=True , lowercase_ : Any=False , lowercase_ : Optional[Any]=1 , lowercase_ : Any=5 , lowercase_ : Any=2 , lowercase_ : Tuple=5 , lowercase_ : str=2 , lowercase_ : Any=0.1 , **lowercase_ : Any , ) -> Optional[Any]:
super().__init__(**UpperCamelCase_ )
lowercase__ : Dict = hidden_size
lowercase__ : Union[str, Any] = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : str = intermediate_size
lowercase__ : List[Any] = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : str = attention_probs_dropout_prob
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = layer_norm_eps
lowercase__ : Optional[int] = image_size
lowercase__ : Optional[Any] = patch_size
lowercase__ : Any = num_channels
lowercase__ : Any = qkv_bias
lowercase__ : Union[str, Any] = num_detection_tokens
lowercase__ : Optional[Any] = use_mid_position_embeddings
lowercase__ : int = auxiliary_loss
# Hungarian matcher
lowercase__ : str = class_cost
lowercase__ : str = bbox_cost
lowercase__ : List[Any] = giou_cost
# Loss coefficients
lowercase__ : int = bbox_loss_coefficient
lowercase__ : Any = giou_loss_coefficient
lowercase__ : Union[str, Any] = eos_coefficient
class snake_case_ ( __lowerCamelCase ):
__A : Tuple = version.parse("1.11" )
@property
def __UpperCamelCase ( self : Any ) -> int:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __UpperCamelCase ( self : Dict ) -> int:
return 1E-4
@property
def __UpperCamelCase ( self : Dict ) -> List[Any]:
return 12
| 357 | def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((number_a + number_a) / 2)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(_lowerCamelCase : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
lowercase__ : Optional[int] = lower
lowercase__ : List[Any] = higher
lowercase__ : Dict = []
while True:
lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase)
last_numbers.append(_lowerCamelCase)
if answer(_lowerCamelCase) == "low":
lowercase__ : List[str] = number
elif answer(_lowerCamelCase) == "high":
lowercase__ : Optional[int] = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''')
print(f'''details : {last_numbers!s}''')
def lowercase_ ( ):
lowercase__ : Tuple = int(input("Enter lower value : ").strip())
lowercase__ : Optional[int] = int(input("Enter high value : ").strip())
lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip())
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
main()
| 333 | 0 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
] )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : int ) -> Any:
if self.framework == "pytorch":
subprocess.run(
F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=__lowerCAmelCase , )
assert hasattr(self , "env" )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] ) -> int:
lowercase__ : List[Any] = F'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}'''
# distributed data settings
lowercase__ : Dict = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__lowerCAmelCase , instance_count=__lowerCAmelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__lowerCAmelCase , py_version="py36" , )
def __UpperCamelCase ( self : List[str] , lowercase_ : List[str] ) -> Any:
TrainingJobAnalytics(__lowerCAmelCase ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(2,)] )
def __UpperCamelCase ( self : int , lowercase_ : Optional[Any] ) -> Union[str, Any]:
# create estimator
lowercase__ : Tuple = self.create_estimator(__lowerCAmelCase )
# run training
estimator.fit()
# result dataframe
lowercase__ : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowercase__ : Any = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
lowercase__ : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowercase__ : Tuple = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , __lowerCAmelCase )
| 358 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCamelCase = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : str ) -> List[str]:
lowercase__ : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
lowercase__ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : Dict = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ )
lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" )
with open(lowercase_ , "w" , newline="\n" ) as f:
f.write(lowercase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowercase_ )
with open(lowercase_ , "r" ) as f:
self.assertTrue(f.read() , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : int ) -> str:
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , )
# Copy consistency with a really long name
lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
| 333 | 0 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class snake_case_ ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
lowercase__ : Tuple = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
lowercase__ : List[Any] = AutoTokenizer.from_pretrained("google/mt5-small" )
lowercase__ : Tuple = tokenizer("Hello there" , return_tensors="np" ).input_ids
lowercase__ : List[str] = tokenizer("Hi I am" , return_tensors="np" ).input_ids
lowercase__ : str = shift_tokens_right(a_ , model.config.pad_token_id , model.config.decoder_start_token_id )
lowercase__ : Dict = model(a_ , decoder_input_ids=a_ ).logits
lowercase__ : Union[str, Any] = optax.softmax_cross_entropy(a_ , onehot(a_ , logits.shape[-1] ) ).mean()
lowercase__ : Optional[Any] = -(labels.shape[-1] * loss.item())
lowercase__ : Dict = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 359 | from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True):
model.train()
lowercase__ : Tuple = model(_lowerCamelCase)
lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False):
set_seed(42)
lowercase__ : Dict = RegressionModel()
lowercase__ : int = deepcopy(_lowerCamelCase)
lowercase__ : str = RegressionDataset(length=80)
lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16)
model.to(accelerator.device)
if sched:
lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3)
lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3)
lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
# Make a copy of `model`
if sched:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( _lowerCamelCase : Tuple):
# Test when on a single CPU or GPU that the context manager does nothing
lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Any):
# Test on distributed setup that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False):
lowercase__ : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))]
GradientState._reset_state()
def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False):
lowercase__ : Dict = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowercase_ ( ):
lowercase__ : List[str] = Accelerator()
lowercase__ : List[Any] = RegressionDataset(length=80)
lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ : int = RegressionDataset(length=96)
lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if iteration < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if batch_num < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ):
lowercase__ : str = Accelerator()
lowercase__ : Dict = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
test_noop_sync(_lowerCamelCase)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**")
test_distributed_sync(_lowerCamelCase)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 0 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case_ ( __A ,unittest.TestCase ):
__A : Optional[Any] = RobertaTokenizer
__A : Dict = RobertaTokenizerFast
__A : List[str] = True
__A : List[str] = {'cls_token': '<s>'}
def __UpperCamelCase ( self : List[Any] ) -> Optional[int]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase__ : Dict = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
lowercase__ : List[str] = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) )
lowercase__ : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
lowercase__ : Any = {"unk_token": "<unk>"}
lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__lowerCAmelCase ) )
def __UpperCamelCase ( self : Optional[Any] , **lowercase_ : List[str] ) -> int:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def __UpperCamelCase ( self : str , **lowercase_ : Optional[int] ) -> Any:
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase )
def __UpperCamelCase ( self : List[str] , lowercase_ : Any ) -> List[str]:
lowercase__ : List[Any] = "lower newer"
lowercase__ : Optional[Any] = "lower newer"
return input_text, output_text
def __UpperCamelCase ( self : Dict ) -> Dict:
lowercase__ : Tuple = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowercase__ : List[Any] = "lower newer"
lowercase__ : Any = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
lowercase__ : Any = tokenizer.tokenize(__lowerCAmelCase ) # , add_prefix_space=True)
self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
lowercase__ : Any = tokens + [tokenizer.unk_token]
lowercase__ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
def __UpperCamelCase ( self : Any ) -> List[str]:
lowercase__ : Tuple = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=__lowerCAmelCase ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=__lowerCAmelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
lowercase__ : Optional[int] = self.tokenizer_class.from_pretrained("roberta-base" )
lowercase__ : List[Any] = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCAmelCase )
lowercase__ : int = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCAmelCase )
lowercase__ : Optional[int] = tokenizer.encode(
"sequence builders" , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase )
lowercase__ : List[str] = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase )
lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase )
lowercase__ : str = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Union[str, Any] = self.get_tokenizer()
lowercase__ : List[str] = "Encode this sequence."
lowercase__ : int = tokenizer.byte_encoder[" ".encode("utf-8" )[0]]
# Testing encoder arguments
lowercase__ : Optional[int] = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase )
lowercase__ : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
lowercase__ : int = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase )
lowercase__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
tokenizer.add_special_tokens({"bos_token": "<s>"} )
lowercase__ : str = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
lowercase__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
# Testing spaces after special tokens
lowercase__ : Optional[Any] = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase )} ) # mask token has a left space
lowercase__ : Dict = tokenizer.convert_tokens_to_ids(__lowerCAmelCase )
lowercase__ : str = "Encode <mask> sequence"
lowercase__ : Dict = "Encode <mask>sequence"
lowercase__ : Optional[int] = tokenizer.encode(__lowerCAmelCase )
lowercase__ : Tuple = encoded.index(__lowerCAmelCase )
lowercase__ : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
lowercase__ : List[Any] = tokenizer.encode(__lowerCAmelCase )
lowercase__ : str = encoded.index(__lowerCAmelCase )
lowercase__ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__lowerCAmelCase , __lowerCAmelCase )
def __UpperCamelCase ( self : Optional[Any] ) -> List[str]:
pass
def __UpperCamelCase ( self : str ) -> Optional[int]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
lowercase__ : Dict = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase )
lowercase__ : str = "A, <mask> AllenNLP sentence."
lowercase__ : str = tokenizer_r.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase )
lowercase__ : List[Any] = tokenizer_p.encode_plus(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
lowercase__ : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
__lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
__lowerCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
lowercase__ : Any = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
lowercase__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["add_prefix_space"] , __lowerCAmelCase )
self.assertEqual(post_processor_state["add_prefix_space"] , __lowerCAmelCase )
self.assertEqual(post_processor_state["trim_offsets"] , __lowerCAmelCase )
def __UpperCamelCase ( self : List[str] ) -> Optional[int]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowercase__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
lowercase__ : List[str] = F'''{text_of_1_token} {text_of_1_token}'''
lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
lowercase__ : List[Any] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
lowercase__ : str = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCAmelCase ) + 1, len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
lowercase__ : Optional[int] = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
lowercase__ : Dict = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__lowerCAmelCase ), len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
lowercase__ : Tuple = F''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
lowercase__ : int = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
lowercase__ : int = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ) + 1, 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
lowercase__ : Tuple = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
lowercase__ : str = self.rust_tokenizer_class.from_pretrained(
__lowerCAmelCase , use_fast=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase )
lowercase__ : Tuple = tokenizer_r(__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__lowerCAmelCase ), 1 + len(__lowerCAmelCase ) + 1 + len(__lowerCAmelCase )) , )
| 360 | import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str):
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase)
lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase)
lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase)
lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
lowercase__ : Any = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowercase__ : int = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Dict = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global].")
# Encoder
for layer_index in range(config.num_layers):
lowercase__ : str = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : Any = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[str] = tax_attention_value
lowercase__ : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Any = tax_global_layer_norm
if split_mlp_wi:
lowercase__ : Tuple = tax_mlp_wi_a
lowercase__ : str = tax_mlp_wi_a
else:
lowercase__ : List[Any] = tax_mlp_wi
lowercase__ : str = tax_mlp_wo
lowercase__ : int = tax_mlp_layer_norm
lowercase__ : List[str] = flax_model_encoder_layer_block
# Only for layer 0:
lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : Optional[int] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_encoder_global_rel_embedding
# Assigning
lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
lowercase__ : Union[str, Any] = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"]
lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"]
lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"]
lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : List[Any] = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[Any] = tax_attention_value
lowercase__ : List[str] = tax_pre_attention_layer_norm
lowercase__ : List[Any] = tax_enc_dec_attention_key
lowercase__ : Optional[Any] = tax_enc_dec_attention_out
lowercase__ : str = tax_enc_dec_attention_query
lowercase__ : Union[str, Any] = tax_enc_dec_attention_value
lowercase__ : Tuple = tax_cross_layer_norm
if split_mlp_wi:
lowercase__ : List[str] = tax_mlp_wi_a
lowercase__ : List[Any] = tax_mlp_wi_a
else:
lowercase__ : Tuple = tax_mlp_wi
lowercase__ : Any = tax_mlp_wo
lowercase__ : Tuple = txa_mlp_layer_norm
lowercase__ : int = flax_model_decoder_layer_block
# Decoder Normalization
lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
lowercase__ : List[Any] = txa_decoder_norm
# Only for layer 0:
lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_decoder_rel_embedding
# Token Embeddings
lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"]
lowercase__ : Optional[Any] = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(_lowerCamelCase)
print("T5X Model was sucessfully converted!")
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
UpperCamelCase = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 333 | 0 |
class snake_case_ :
def __init__( self : int ) -> Any:
lowercase__ : Optional[Any] = {}
def __UpperCamelCase ( self : Tuple ) -> None:
print(self.vertex )
for i in self.vertex:
print(_snake_case , " -> " , " -> ".join([str(_snake_case ) for j in self.vertex[i]] ) )
def __UpperCamelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Dict ) -> None:
if from_vertex in self.vertex:
self.vertex[from_vertex].append(_snake_case )
else:
# else make a new vertex
lowercase__ : Optional[Any] = [to_vertex]
def __UpperCamelCase ( self : Dict ) -> None:
lowercase__ : List[str] = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(_snake_case , _snake_case )
def __UpperCamelCase ( self : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any] ) -> None:
lowercase__ : Optional[Any] = True
print(_snake_case , end=" " )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(_snake_case , _snake_case )
if __name__ == "__main__":
UpperCamelCase = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('''DFS:''')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 361 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[int] = "rwkv"
__A : List[str] = {"max_position_embeddings": "context_length"}
def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int:
lowercase__ : List[str] = vocab_size
lowercase__ : str = context_length
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : str = rescale_every
lowercase__ : Optional[int] = use_cache
lowercase__ : int = bos_token_id
lowercase__ : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
'''configuration_time_series_transformer''': [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TimeSeriesTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TimeSeriesTransformerForPrediction''',
'''TimeSeriesTransformerModel''',
'''TimeSeriesTransformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 362 | class snake_case_ :
def __init__( self : int ) -> Optional[int]:
lowercase__ : Optional[int] = 0
lowercase__ : List[str] = 0
lowercase__ : Any = {}
def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]:
if vertex not in self.adjacency:
lowercase__ : List[Any] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]:
self.add_vertex(lowercase_ )
self.add_vertex(lowercase_ )
if head == tail:
return
lowercase__ : int = weight
lowercase__ : Any = weight
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[Any] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
edges.remove((tail, head, weight) )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(lowercase_ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : int = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge
lowercase__ : Union[str, Any] = weight
lowercase__ : Dict = weight
def __str__( self : str ) -> Any:
lowercase__ : str = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Optional[Any] = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Any = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[str] ) -> Dict:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]:
lowercase__ : Any = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : List[Any] = []
for vertex in vertices:
g.add_vertex(lowercase_ )
for edge in edges:
g.add_edge(*lowercase_ )
return g
class snake_case_ :
def __init__( self : int ) -> List[str]:
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
def __len__( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.parent )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple:
if item in self.parent:
return self.find(lowercase_ )
lowercase__ : Union[str, Any] = item
lowercase__ : int = 0
return item
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any:
if item not in self.parent:
return self.make_set(lowercase_ )
if item != self.parent[item]:
lowercase__ : Union[str, Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]:
lowercase__ : Dict = self.find(lowercase_ )
lowercase__ : Optional[int] = self.find(lowercase_ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Dict = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : int = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]:
lowercase__ : List[Any] = graph.num_vertices
lowercase__ : Optional[Any] = Graph.UnionFind()
lowercase__ : int = []
while num_components > 1:
lowercase__ : List[Any] = {}
for vertex in graph.get_vertices():
lowercase__ : Any = -1
lowercase__ : List[str] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : str = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[str] = edge
lowercase__ : List[str] = union_find.find(lowercase_ )
lowercase__ : Union[str, Any] = union_find.find(lowercase_ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Dict = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex]
if union_find.find(lowercase_ ) != union_find.find(lowercase_ ):
union_find.union(lowercase_ , lowercase_ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : Optional[Any] = num_components - 1
lowercase__ : List[Any] = Graph.build(edges=lowercase_ )
return mst
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : int = 100_0000):
lowercase__ : Any = limit + 1
lowercase__ : Tuple = [0] * limit
for first_term in range(1 , UpperCamelCase__):
for n in range(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__):
lowercase__ : Tuple = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
lowercase__ : Optional[Any] = sum(1 for x in frequency[1:limit] if x == 10)
return count
if __name__ == "__main__":
print(f"{solution() = }")
| 363 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 | 0 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
UpperCamelCase = pd.read_csv('''sample_data.csv''', header=None)
UpperCamelCase = df.shape[:1][0]
# If you're using some other dataset input the target column
UpperCamelCase = df.iloc[:, 1:2]
UpperCamelCase = actual_data.values.reshape(len_data, 1)
UpperCamelCase = MinMaxScaler().fit_transform(actual_data)
UpperCamelCase = 10
UpperCamelCase = 5
UpperCamelCase = 20
UpperCamelCase = len_data - periods * look_back
UpperCamelCase = actual_data[:division]
UpperCamelCase = actual_data[division - look_back :]
UpperCamelCase = [], []
UpperCamelCase = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
UpperCamelCase = np.array(train_x)
UpperCamelCase = np.array(test_x)
UpperCamelCase = np.array([list(i.ravel()) for i in train_y])
UpperCamelCase = np.array([list(i.ravel()) for i in test_y])
UpperCamelCase = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss='''mean_squared_error''', optimizer='''adam''')
UpperCamelCase = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
UpperCamelCase = model.predict(x_test)
| 364 | def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 1
lowercase__ : int = 0
for divide_by_number in range(_lowerCamelCase , digit + 1):
lowercase__ : list[int] = []
lowercase__ : Dict = numerator
for _ in range(1 , digit + 1):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase):
lowercase__ : Union[str, Any] = len(_lowerCamelCase)
lowercase__ : Optional[int] = divide_by_number
else:
has_been_divided.append(_lowerCamelCase)
lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger('''transformers.models.speecht5''')
UpperCamelCase = {
"speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm",
"speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection",
"speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv",
"speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed",
}
UpperCamelCase = {
"text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens",
"text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha",
}
UpperCamelCase = {
"speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0",
"speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1",
"speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer",
"speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha",
"speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer",
}
UpperCamelCase = {
"speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out",
"speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out",
"speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv",
"speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm",
"speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv",
"speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm",
"speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv",
"speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm",
"speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv",
"speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm",
"speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv",
"speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm",
}
UpperCamelCase = {
"text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens",
}
UpperCamelCase = {
"text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head",
}
UpperCamelCase = {
"encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj",
"encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj",
"encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj",
"encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj",
"encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm",
"encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense",
"encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense",
"encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm",
"encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k",
}
UpperCamelCase = {
"decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj",
"decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj",
"decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj",
"decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj",
"decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm",
"decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj",
"decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj",
"decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj",
"decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj",
"decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm",
"decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense",
"decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense",
"decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm",
}
UpperCamelCase = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
UpperCamelCase = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
UpperCamelCase = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
UpperCamelCase = []
UpperCamelCase = [
"encoder.version",
"encoder.layers.*.norm_k.weight",
"encoder.layers.*.norm_k.bias",
"decoder.version",
"decoder.layers.*.norm_k.weight",
"decoder.layers.*.norm_k.bias",
"decoder.pos_emb.pe_k",
"speech_encoder_prenet.embed_positions._float_tensor",
"text_decoder_prenet.embed_positions._float_tensor",
]
UpperCamelCase = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"speech_decoder_prenet.*",
"speech_decoder_postnet.*",
]
UpperCamelCase = IGNORE_KEYS + [
"encoder.proj",
"speech_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
UpperCamelCase = IGNORE_KEYS + [
"encoder.proj",
"text_encoder_prenet.*",
"text_decoder_prenet.*",
"text_decoder_postnet.*",
]
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int]):
for attribute in key.split("."):
lowercase__ : Optional[int] = getattr(_UpperCAmelCase , _UpperCAmelCase)
if weight_type is not None:
lowercase__ : Any = getattr(_UpperCAmelCase , _UpperCAmelCase).shape
else:
lowercase__ : Union[str, Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''')
if weight_type == "weight":
lowercase__ : Optional[int] = value
elif weight_type == "weight_g":
lowercase__ : int = value
elif weight_type == "weight_v":
lowercase__ : List[Any] = value
elif weight_type == "bias":
lowercase__ : Dict = value
elif weight_type == "running_mean":
lowercase__ : List[Any] = value
elif weight_type == "running_var":
lowercase__ : str = value
elif weight_type == "num_batches_tracked":
lowercase__ : int = value
else:
lowercase__ : str = value
logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''')
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any]):
for key in ignore_keys:
if key.endswith(".*"):
if name.startswith(key[:-1]):
return True
elif ".*." in key:
lowercase__ : Optional[int] = key.split(".*.")
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any]):
lowercase__ : List[Any] = []
if task == "s2t":
lowercase__ : List[str] = hf_model.speechta.encoder.prenet.feature_encoder
lowercase__ : int = MAPPING_S2T
lowercase__ : Dict = IGNORE_KEYS_S2T
elif task == "t2s":
lowercase__ : Optional[int] = None
lowercase__ : str = MAPPING_T2S
lowercase__ : Union[str, Any] = IGNORE_KEYS_T2S
elif task == "s2s":
lowercase__ : int = hf_model.speechta.encoder.prenet.feature_encoder
lowercase__ : Tuple = MAPPING_S2S
lowercase__ : List[str] = IGNORE_KEYS_S2S
else:
raise ValueError(f'''Unsupported task: {task}''')
for name, value in fairseq_dict.items():
if should_ignore(_UpperCAmelCase , _UpperCAmelCase):
logger.info(f'''{name} was ignored''')
continue
lowercase__ : List[str] = False
if "conv_layers" in name:
load_conv_layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , )
lowercase__ : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
lowercase__ : str = key.split(".*.")
if prefix in name and suffix in name:
lowercase__ : Any = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
lowercase__ : Optional[Any] = True
if "*" in mapped_key:
lowercase__ : Union[str, Any] = name.split(_UpperCAmelCase)[0].split(".")[-2]
lowercase__ : Optional[Any] = mapped_key.replace("*" , _UpperCAmelCase)
if "weight_g" in name:
lowercase__ : List[str] = "weight_g"
elif "weight_v" in name:
lowercase__ : int = "weight_v"
elif "bias" in name:
lowercase__ : Optional[Any] = "bias"
elif "weight" in name:
lowercase__ : Tuple = "weight"
elif "running_mean" in name:
lowercase__ : Union[str, Any] = "running_mean"
elif "running_var" in name:
lowercase__ : str = "running_var"
elif "num_batches_tracked" in name:
lowercase__ : int = "num_batches_tracked"
else:
lowercase__ : int = None
set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
continue
if not is_used:
unused_weights.append(_UpperCAmelCase)
logger.warning(f'''Unused weights: {unused_weights}''')
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : List[Any]):
lowercase__ : Tuple = full_name.split("conv_layers.")[-1]
lowercase__ : Any = name.split(".")
lowercase__ : Tuple = int(items[0])
lowercase__ : List[Any] = int(items[1])
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''')
lowercase__ : Union[str, Any] = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''')
lowercase__ : Dict = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''')
lowercase__ : List[Any] = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''')
lowercase__ : Optional[Any] = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
else:
unused_weights.append(_UpperCAmelCase)
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Any=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Union[str, Any]=None , ):
if config_path is not None:
lowercase__ : List[str] = SpeechTaConfig.from_pretrained(_UpperCAmelCase)
else:
lowercase__ : List[str] = SpeechTaConfig()
if task == "s2t":
lowercase__ : Tuple = config.max_text_positions
lowercase__ : int = SpeechTaForSpeechToText(_UpperCAmelCase)
elif task == "t2s":
lowercase__ : Tuple = 1876
lowercase__ : List[Any] = 600
lowercase__ : Any = config.max_speech_positions
lowercase__ : Union[str, Any] = SpeechTaForTextToSpeech(_UpperCAmelCase)
elif task == "s2s":
lowercase__ : Tuple = 1876
lowercase__ : int = config.max_speech_positions
lowercase__ : List[Any] = SpeechTaForSpeechToSpeech(_UpperCAmelCase)
else:
raise ValueError(f'''Unknown task name: {task}''')
if vocab_path:
lowercase__ : Dict = SpeechTaTokenizer(_UpperCAmelCase , model_max_length=config.max_text_positions)
# Mask token behaves like a normal word, i.e. include the space before it
lowercase__ : List[Any] = AddedToken("<mask>" , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase)
lowercase__ : List[Any] = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token})
tokenizer.add_tokens(["<ctc_blank>"])
lowercase__ : List[Any] = SpeechTaFeatureExtractor()
lowercase__ : Union[str, Any] = SpeechTaProcessor(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase)
processor.save_pretrained(_UpperCAmelCase)
lowercase__ : Union[str, Any] = torch.load(_UpperCAmelCase)
recursively_load_weights(fairseq_checkpoint["model"] , _UpperCAmelCase , _UpperCAmelCase)
model.save_pretrained(_UpperCAmelCase)
if repo_id:
print("Pushing to the hub...")
processor.push_to_hub(_UpperCAmelCase)
model.push_to_hub(_UpperCAmelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
UpperCamelCase = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 365 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 0 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case_ ( lowerCamelCase_ ):
def __init__( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : str=13 , lowercase_ : str=7 , lowercase_ : Dict=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : Optional[Any]=True , lowercase_ : Any=False , lowercase_ : List[Any]=False , lowercase_ : List[Any]=False , lowercase_ : Optional[int]=2 , lowercase_ : Union[str, Any]=99 , lowercase_ : str=0 , lowercase_ : Any=32 , lowercase_ : List[Any]=5 , lowercase_ : Optional[int]=4 , lowercase_ : Dict=0.1 , lowercase_ : str=0.1 , lowercase_ : List[str]=5_12 , lowercase_ : int=12 , lowercase_ : List[Any]=2 , lowercase_ : Tuple=0.02 , lowercase_ : Any=3 , lowercase_ : Dict=4 , lowercase_ : List[Any]="last" , lowercase_ : Union[str, Any]=None , lowercase_ : Union[str, Any]=None , ) -> int:
lowercase__ : Union[str, Any] = parent
lowercase__ : int = batch_size
lowercase__ : Union[str, Any] = seq_length
lowercase__ : Optional[int] = is_training
lowercase__ : Optional[int] = use_input_lengths
lowercase__ : Optional[Any] = use_token_type_ids
lowercase__ : Dict = use_labels
lowercase__ : str = gelu_activation
lowercase__ : List[str] = sinusoidal_embeddings
lowercase__ : List[str] = causal
lowercase__ : Optional[Any] = asm
lowercase__ : Tuple = n_langs
lowercase__ : int = vocab_size
lowercase__ : Tuple = n_special
lowercase__ : int = hidden_size
lowercase__ : int = num_hidden_layers
lowercase__ : Optional[Any] = num_attention_heads
lowercase__ : Dict = hidden_dropout_prob
lowercase__ : str = attention_probs_dropout_prob
lowercase__ : int = max_position_embeddings
lowercase__ : int = type_vocab_size
lowercase__ : List[Any] = type_sequence_label_size
lowercase__ : Any = initializer_range
lowercase__ : Any = num_labels
lowercase__ : Any = num_choices
lowercase__ : List[str] = summary_type
lowercase__ : int = use_proj
lowercase__ : str = scope
def __UpperCamelCase ( self : List[str] ) -> Tuple:
lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ : str = None
if self.use_input_lengths:
lowercase__ : Optional[Any] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowercase__ : List[str] = None
if self.use_token_type_ids:
lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowercase__ : int = None
lowercase__ : Optional[int] = None
lowercase__ : Any = None
if self.use_labels:
lowercase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float()
lowercase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
lowercase__ : Optional[int] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __UpperCamelCase ( self : str ) -> Tuple:
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Tuple , ) -> int:
lowercase__ : Optional[Any] = FlaubertModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
lowercase__ : str = model(lowerCAmelCase__ , lengths=lowerCAmelCase__ , langs=lowerCAmelCase__ )
lowercase__ : Dict = model(lowerCAmelCase__ , langs=lowerCAmelCase__ )
lowercase__ : Tuple = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self : str , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : str , ) -> Tuple:
lowercase__ : Optional[Any] = FlaubertWithLMHeadModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
lowercase__ : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[str] , ) -> int:
lowercase__ : Any = FlaubertForQuestionAnsweringSimple(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
lowercase__ : Tuple = model(lowerCAmelCase__ )
lowercase__ : Union[str, Any] = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCamelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : str , lowercase_ : int , lowercase_ : Any , ) -> Optional[int]:
lowercase__ : Optional[int] = FlaubertForQuestionAnswering(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
lowercase__ : Tuple = model(lowerCAmelCase__ )
lowercase__ : Any = model(
lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , p_mask=lowerCAmelCase__ , )
lowercase__ : Optional[Any] = model(
lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , )
((lowercase__ ) , ) : Optional[int] = result_with_labels.to_tuple()
lowercase__ : Optional[int] = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ )
((lowercase__ ) , ) : Optional[int] = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str , ) -> str:
lowercase__ : List[Any] = FlaubertForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
lowercase__ : Optional[Any] = model(lowerCAmelCase__ )
lowercase__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str , ) -> int:
lowercase__ : str = self.num_labels
lowercase__ : Optional[Any] = FlaubertForTokenClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
lowercase__ : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self : Any , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : str , lowercase_ : str , lowercase_ : str , lowercase_ : List[str] , lowercase_ : int , ) -> Optional[Any]:
lowercase__ : Union[str, Any] = self.num_choices
lowercase__ : str = FlaubertForMultipleChoice(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
lowercase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowercase__ : int = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCamelCase ( self : Tuple ) -> List[str]:
lowercase__ : Dict = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) : str = config_and_inputs
lowercase__ : Optional[Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"lengths": input_lengths,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class snake_case_ ( lowerCamelCase_ ,lowerCamelCase_ ,unittest.TestCase ):
__A : Tuple = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
__A : Any = (
{
"""feature-extraction""": FlaubertModel,
"""fill-mask""": FlaubertWithLMHeadModel,
"""question-answering""": FlaubertForQuestionAnsweringSimple,
"""text-classification""": FlaubertForSequenceClassification,
"""token-classification""": FlaubertForTokenClassification,
"""zero-shot""": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Any ) -> Any:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __UpperCamelCase ( self : Any , lowercase_ : int , lowercase_ : int , lowercase_ : Union[str, Any]=False ) -> Tuple:
lowercase__ : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
lowercase__ : str = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
lowercase__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
return inputs_dict
def __UpperCamelCase ( self : Any ) -> List[str]:
lowercase__ : Optional[Any] = FlaubertModelTester(self )
lowercase__ : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , emb_dim=37 )
def __UpperCamelCase ( self : Optional[int] ) -> Any:
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : List[str] ) -> int:
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase__ )
def __UpperCamelCase ( self : str ) -> str:
lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase__ )
def __UpperCamelCase ( self : List[Any] ) -> str:
lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase__ )
def __UpperCamelCase ( self : List[Any] ) -> int:
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase__ )
def __UpperCamelCase ( self : Optional[int] ) -> int:
lowercase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase__ )
def __UpperCamelCase ( self : Optional[Any] ) -> Dict:
lowercase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase__ )
def __UpperCamelCase ( self : Union[str, Any] ) -> str:
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase__ )
@slow
def __UpperCamelCase ( self : str ) -> List[Any]:
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Any = FlaubertModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@slow
@require_torch_gpu
def __UpperCamelCase ( self : Tuple ) -> Tuple:
lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
lowercase__ : Any = True
lowercase__ : Optional[int] = model_class(config=lowerCAmelCase__ )
lowercase__ : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ )
lowercase__ : List[Any] = torch.jit.trace(
lowerCAmelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "traced_model.pt" ) )
lowercase__ : Tuple = torch.jit.load(os.path.join(lowerCAmelCase__ , "traced_model.pt" ) , map_location=lowerCAmelCase__ )
loaded(inputs_dict["input_ids"].to(lowerCAmelCase__ ) , inputs_dict["attention_mask"].to(lowerCAmelCase__ ) )
@require_torch
class snake_case_ ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]:
lowercase__ : Optional[int] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" )
lowercase__ : int = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
with torch.no_grad():
lowercase__ : Tuple = model(lowerCAmelCase__ )[0]
lowercase__ : List[str] = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , lowerCAmelCase__ )
lowercase__ : List[Any] = torch.tensor(
[[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
| 366 | import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False):
try:
lowercase__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''')
return _value
UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skip("Test was skipped")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None):
if test_case is None:
return partial(_lowerCamelCase , version=_lowerCamelCase)
return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase)
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase)
class snake_case_ ( unittest.TestCase ):
__A : int = True
@classmethod
def __UpperCamelCase ( cls : str ) -> str:
lowercase__ : str = tempfile.mkdtemp()
@classmethod
def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCamelCase ( self : str ) -> Optional[int]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowercase_ )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str:
lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Optional[int] = tensor[None].clone().to(state.device)
lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu()
lowercase__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowerCamelCase):
return False
return True
class snake_case_ :
def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : int = returncode
lowercase__ : Dict = stdout
lowercase__ : List[Any] = stderr
async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str):
while True:
lowercase__ : int = await stream.readline()
if line:
callback(_lowerCamelCase)
else:
break
async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False):
if echo:
print("\nRunning: " , " ".join(_lowerCamelCase))
lowercase__ : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Tuple = []
lowercase__ : List[Any] = []
def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""):
lowercase__ : Optional[int] = line.decode("utf-8").rstrip()
sink.append(_lowerCamelCase)
if not quiet:
print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))),
] , timeout=_lowerCamelCase , )
return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True):
lowercase__ : Optional[Any] = asyncio.get_event_loop()
lowercase__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase))
lowercase__ : str = " ".join(_lowerCamelCase)
if result.returncode > 0:
lowercase__ : Dict = "\n".join(result.stderr)
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False):
try:
lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowerCamelCase , "decode"):
lowercase__ : Optional[Any] = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 333 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class snake_case_ ( unittest.TestCase ):
def __init__( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int]=7 , lowercase_ : List[Any]=3 , lowercase_ : List[Any]=18 , lowercase_ : int=30 , lowercase_ : List[Any]=4_00 , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=True , lowercase_ : str=False , lowercase_ : Optional[Any]=True , lowercase_ : List[Any]=True , lowercase_ : List[str]=[0.5, 0.5, 0.5] , lowercase_ : Tuple=[0.5, 0.5, 0.5] , ) -> Dict:
lowercase__ : Tuple = parent
lowercase__ : Dict = batch_size
lowercase__ : List[Any] = num_channels
lowercase__ : Optional[int] = image_size
lowercase__ : List[str] = min_resolution
lowercase__ : List[str] = max_resolution
lowercase__ : str = do_resize
lowercase__ : Dict = size if size is not None else {"height": 18, "width": 20}
lowercase__ : List[Any] = do_thumbnail
lowercase__ : List[Any] = do_align_axis
lowercase__ : int = do_pad
lowercase__ : List[Any] = do_normalize
lowercase__ : Dict = image_mean
lowercase__ : int = image_std
def __UpperCamelCase ( self : List[Any] ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class snake_case_ ( UpperCamelCase__ ,unittest.TestCase ):
__A : Union[str, Any] = DonutImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self : Any ) -> Dict:
lowercase__ : int = DonutImageProcessingTester(self )
@property
def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self : Dict ) -> Dict:
lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "size" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_thumbnail" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_align_long_axis" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_pad" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) )
self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) )
def __UpperCamelCase ( self : Optional[Any] ) -> Tuple:
lowercase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 18, "width": 20} )
lowercase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
# Previous config had dimensions in (width, height) order
lowercase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"height": 84, "width": 42} )
def __UpperCamelCase ( self : Union[str, Any] ) -> Any:
pass
@is_flaky()
def __UpperCamelCase ( self : Tuple ) -> Tuple:
# Initialize image_processing
lowercase__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , Image.Image )
# Test not batched input
lowercase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
lowercase__ : List[str] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
@is_flaky()
def __UpperCamelCase ( self : int ) -> List[Any]:
# Initialize image_processing
lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , np.ndarray )
# Test not batched input
lowercase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
lowercase__ : Tuple = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
@is_flaky()
def __UpperCamelCase ( self : Dict ) -> int:
# Initialize image_processing
lowercase__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowercase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
# Test not batched input
lowercase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
lowercase__ : Any = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
| 367 | from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[Any] = ["flax"]
def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[int] = ["flax"]
def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[str] = ["flax"]
def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
| 333 | 0 |
"""simple docstring"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class snake_case_ ( A_ ):
__A : List[str] = 42
__A : Any = None
def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any]=0.999 , _lowerCamelCase : Optional[Any]="cosine" , ):
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowerCamelCase : Dict):
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowerCamelCase : int):
return math.exp(t * -12.0)
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''')
lowercase__ : List[Any] = []
for i in range(__lowerCamelCase):
lowercase__ : int = i / num_diffusion_timesteps
lowercase__ : Optional[int] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__lowerCamelCase) / alpha_bar_fn(__lowerCamelCase) , __lowerCamelCase))
return torch.tensor(__lowerCamelCase , dtype=torch.floataa)
class snake_case_ ( A_ ,A_ ):
@register_to_config
def __init__( self : List[Any] , lowercase_ : int = 10_00 , lowercase_ : str = "fixed_small_log" , lowercase_ : bool = True , lowercase_ : Optional[float] = 1.0 , lowercase_ : str = "epsilon" , lowercase_ : str = "squaredcos_cap_v2" , ) -> int:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'" )
lowercase__ : int = betas_for_alpha_bar(_lowerCamelCase )
lowercase__ : Union[str, Any] = 1.0 - self.betas
lowercase__ : str = torch.cumprod(self.alphas , dim=0 )
lowercase__ : List[Any] = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
lowercase__ : Union[str, Any] = 1.0
# setable values
lowercase__ : int = None
lowercase__ : Optional[int] = torch.from_numpy(np.arange(0 , _lowerCamelCase )[::-1].copy() )
lowercase__ : Union[str, Any] = variance_type
def __UpperCamelCase ( self : List[Any] , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None ) -> Tuple:
return sample
def __UpperCamelCase ( self : Tuple , lowercase_ : int , lowercase_ : Union[str, torch.device] = None ) -> Any:
lowercase__ : int = num_inference_steps
lowercase__ : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
lowercase__ : Any = (np.arange(0 , _lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
lowercase__ : str = torch.from_numpy(_lowerCamelCase ).to(_lowerCamelCase )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[int]=None ) -> Any:
if prev_timestep is None:
lowercase__ : Optional[Any] = t - 1
lowercase__ : Union[str, Any] = self.alphas_cumprod[t]
lowercase__ : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowercase__ : Optional[int] = 1 - alpha_prod_t
lowercase__ : List[Any] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowercase__ : List[Any] = self.betas[t]
else:
lowercase__ : Tuple = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
lowercase__ : Optional[int] = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
lowercase__ : Tuple = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
lowercase__ : List[Any] = torch.log(torch.clamp(_lowerCamelCase , min=1E-20 ) )
lowercase__ : Optional[int] = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
lowercase__ : str = variance.log()
lowercase__ : Tuple = beta.log()
lowercase__ : str = (predicted_variance + 1) / 2
lowercase__ : Any = frac * max_log + (1 - frac) * min_log
return variance
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None , lowercase_ : Any=None , lowercase_ : bool = True , ) -> List[str]:
lowercase__ : Optional[Any] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
lowercase__ , lowercase__ : Dict = torch.split(_lowerCamelCase , sample.shape[1] , dim=1 )
else:
lowercase__ : List[Any] = None
# 1. compute alphas, betas
if prev_timestep is None:
lowercase__ : Union[str, Any] = t - 1
lowercase__ : Union[str, Any] = self.alphas_cumprod[t]
lowercase__ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowercase__ : Any = 1 - alpha_prod_t
lowercase__ : Dict = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowercase__ : int = self.betas[t]
lowercase__ : int = self.alphas[t]
else:
lowercase__ : Any = 1 - alpha_prod_t / alpha_prod_t_prev
lowercase__ : Dict = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
lowercase__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
lowercase__ : Optional[Any] = model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
lowercase__ : List[Any] = torch.clamp(
_lowerCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowercase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
lowercase__ : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowercase__ : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
lowercase__ : Optional[Any] = 0
if t > 0:
lowercase__ : Union[str, Any] = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=_lowerCamelCase , device=model_output.device )
lowercase__ : List[str] = self._get_variance(
_lowerCamelCase , predicted_variance=_lowerCamelCase , prev_timestep=_lowerCamelCase , )
if self.variance_type == "fixed_small_log":
lowercase__ : Union[str, Any] = variance
elif self.variance_type == "learned_range":
lowercase__ : Optional[Any] = (0.5 * variance).exp()
else:
raise ValueError(
F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
lowercase__ : Any = variance * variance_noise
lowercase__ : int = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=_lowerCamelCase , pred_original_sample=_lowerCamelCase )
def __UpperCamelCase ( self : List[str] , lowercase_ : torch.FloatTensor , lowercase_ : torch.FloatTensor , lowercase_ : torch.IntTensor , ) -> Dict:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
lowercase__ : Optional[int] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
lowercase__ : Dict = timesteps.to(original_samples.device )
lowercase__ : str = alphas_cumprod[timesteps] ** 0.5
lowercase__ : int = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
lowercase__ : List[str] = sqrt_alpha_prod.unsqueeze(-1 )
lowercase__ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
lowercase__ : Tuple = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
lowercase__ : List[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
lowercase__ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 368 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class snake_case_ ( __A ):
__A : List[str] = "vit_mae"
def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]:
super().__init__(**lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Any = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Any = num_channels
lowercase__ : str = qkv_bias
lowercase__ : Optional[Any] = decoder_num_attention_heads
lowercase__ : Any = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : Union[str, Any] = decoder_intermediate_size
lowercase__ : int = mask_ratio
lowercase__ : Tuple = norm_pix_loss
| 333 | 0 |
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class snake_case_ :
def __init__( self : Any , lowercase_ : int , lowercase_ : int=13 , lowercase_ : Optional[int]=30 , lowercase_ : str=2 , lowercase_ : Optional[Any]=3 , lowercase_ : str=True , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=32 , lowercase_ : Optional[Any]=2 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[Any]=37 , lowercase_ : Optional[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[str]=10 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Dict=None , ) -> Tuple:
lowercase__ : int = parent
lowercase__ : Any = batch_size
lowercase__ : Tuple = image_size
lowercase__ : str = patch_size
lowercase__ : Tuple = num_channels
lowercase__ : List[Any] = is_training
lowercase__ : Any = use_labels
lowercase__ : int = hidden_size
lowercase__ : Union[str, Any] = num_hidden_layers
lowercase__ : int = num_attention_heads
lowercase__ : Tuple = intermediate_size
lowercase__ : Dict = hidden_act
lowercase__ : Union[str, Any] = hidden_dropout_prob
lowercase__ : List[Any] = attention_probs_dropout_prob
lowercase__ : List[str] = type_sequence_label_size
lowercase__ : Any = initializer_range
lowercase__ : Tuple = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase__ : Dict = (image_size // patch_size) ** 2
lowercase__ : Optional[Any] = num_patches + 1
def __UpperCamelCase ( self : Tuple ) -> Any:
lowercase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ : List[str] = None
if self.use_labels:
lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase__ : Optional[int] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self : Tuple ) -> Dict:
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self : Tuple , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ) -> int:
lowercase__ : Optional[int] = TFViTModel(config=_a )
lowercase__ : Union[str, Any] = model(_a , training=_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
lowercase__ : Optional[Any] = self.image_size // 2
lowercase__ : Dict = pixel_values[:, :, :image_size, :image_size]
lowercase__ : Tuple = model(_a , interpolate_pos_encoding=_a , training=_a )
lowercase__ : str = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Any ) -> Any:
lowercase__ : str = self.type_sequence_label_size
lowercase__ : int = TFViTForImageClassification(_a )
lowercase__ : Optional[Any] = model(_a , labels=_a , training=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
lowercase__ : Optional[Any] = self.image_size // 2
lowercase__ : Dict = pixel_values[:, :, :image_size, :image_size]
lowercase__ : List[Any] = model(_a , interpolate_pos_encoding=_a , training=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowercase__ : Tuple = 1
lowercase__ : Tuple = TFViTForImageClassification(_a )
lowercase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase__ : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
lowercase__ : Tuple = self.prepare_config_and_inputs()
lowercase__ : Any = config_and_inputs
lowercase__ : Union[str, Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class snake_case_ ( __A ,__A ,unittest.TestCase ):
__A : Any = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
__A : Any = (
{"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification}
if is_tf_available()
else {}
)
__A : List[str] = False
__A : List[Any] = False
__A : Optional[int] = False
def __UpperCamelCase ( self : Optional[int] ) -> int:
lowercase__ : str = TFViTModelTester(self )
lowercase__ : Optional[int] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def __UpperCamelCase ( self : Optional[Any] ) -> Any:
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def __UpperCamelCase ( self : int ) -> str:
pass
@unittest.skip(reason="ViT does not use inputs_embeds" )
def __UpperCamelCase ( self : Any ) -> Optional[Any]:
pass
def __UpperCamelCase ( self : Optional[Any] ) -> int:
lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Union[str, Any] = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowercase__ : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , tf.keras.layers.Layer ) )
def __UpperCamelCase ( self : List[Any] ) -> Any:
lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : str = model_class(_a )
lowercase__ : Union[str, Any] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : Optional[Any] = [*signature.parameters.keys()]
lowercase__ : Union[str, Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _a )
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __UpperCamelCase ( self : Union[str, Any] ) -> int:
lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def __UpperCamelCase ( self : Optional[Any] ) -> int:
lowercase__ : Optional[Any] = TFViTModel.from_pretrained("google/vit-base-patch16-224" )
self.assertIsNotNone(_a )
def lowercase_ ( ):
lowercase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
@require_vision
class snake_case_ ( unittest.TestCase ):
@cached_property
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None
@slow
def __UpperCamelCase ( self : List[str] ) -> Dict:
lowercase__ : Any = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" )
lowercase__ : List[Any] = self.default_image_processor
lowercase__ : Union[str, Any] = prepare_img()
lowercase__ : Any = image_processor(images=_a , return_tensors="tf" )
# forward pass
lowercase__ : Optional[int] = model(**_a )
# verify the logits
lowercase__ : Optional[Any] = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , _a )
lowercase__ : List[str] = tf.constant([-0.27_44, 0.82_15, -0.08_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , _a , atol=1E-4 )
| 369 | def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while a != 0:
lowercase__ , lowercase__ : Dict = b % a, a
return b
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if gcd(_lowerCamelCase , _lowerCamelCase) != 1:
lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m
while va != 0:
lowercase__ : Tuple = ua // va
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 333 | 0 |
"""simple docstring"""
def lowercase_ ( _lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ):
lowercase__ : Tuple = set()
# Replace all the whitespace in our sentence
lowercase__ : Optional[int] = input_str.replace(" " , "")
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower())
return len(_lowerCamelCase) == 26
def lowercase_ ( _lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ):
lowercase__ : Any = [False] * 26
for char in input_str:
if char.islower():
lowercase__ : Union[str, Any] = True
elif char.isupper():
lowercase__ : Optional[int] = True
return all(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str = "The quick brown fox jumps over the lazy dog" , ):
return len({char for char in input_str.lower() if char.isalpha()}) == 26
def lowercase_ ( ):
from timeit import timeit
lowercase__ : Optional[Any] = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest"
print(timeit("is_pangram()" , setup=_lowerCamelCase))
print(timeit("is_pangram_faster()" , setup=_lowerCamelCase))
print(timeit("is_pangram_fastest()" , setup=_lowerCamelCase))
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 370 | import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 0 |
"""simple docstring"""
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
UpperCamelCase = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif''']
class snake_case_ ( _a ):
def __init__( self : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : str=None , lowercase_ : Optional[int]=1 ) -> Optional[Any]:
lowercase__ : int = tokenizer
lowercase__ : Dict = dataset
lowercase__ : Optional[int] = len(snake_case_ ) if n_tasks is None else n_tasks
lowercase__ : List[str] = n_copies
def __iter__( self : Union[str, Any] ) -> Tuple:
lowercase__ : Optional[int] = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() )
lowercase__ : Optional[int] = self.tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class snake_case_ ( _a ):
def __init__( self : List[str] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[str] ) -> Optional[int]:
lowercase__ : Dict = start_length
lowercase__ : Optional[Any] = eof_strings
lowercase__ : List[str] = tokenizer
def __call__( self : List[str] , lowercase_ : Tuple , lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ) -> Tuple:
lowercase__ : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
lowercase__ : Optional[int] = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(snake_case_ )
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
lowercase__ : List[Any] = re.split("(%s)" % "|".join(_lowerCAmelCase) , _lowerCAmelCase)
# last string should be ""
return "".join(string_list[:-2])
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Tuple=20 , **_lowerCamelCase : Union[str, Any]):
lowercase__ : Optional[Any] = defaultdict(_lowerCAmelCase) # dict of list of generated tokens
for step, batch in tqdm(enumerate(_lowerCAmelCase)):
with torch.no_grad():
lowercase__ : Optional[int] = batch["""ids"""].shape[-1]
lowercase__ : List[Any] = accelerator.unwrap_model(_lowerCAmelCase).generate(
input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase)
# each task is generated batch_size times
lowercase__ : Optional[int] = batch["""task_id"""].repeat(_lowerCAmelCase)
lowercase__ : List[Any] = accelerator.pad_across_processes(
_lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id)
lowercase__ : Optional[Any] = accelerator.gather((generated_tokens, generated_tasks))
lowercase__ : Optional[Any] = generated_tokens.cpu().numpy()
lowercase__ : Optional[int] = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase):
gen_token_dict[task].append(_lowerCAmelCase)
lowercase__ : Optional[Any] = [[] for _ in range(_lowerCAmelCase)]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
lowercase__ : int = tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase)
code_gens[task].append(remove_last_block(_lowerCAmelCase))
return code_gens
def lowercase_ ( ):
# Setup configuration
lowercase__ : List[str] = HfArgumentParser(_lowerCAmelCase)
lowercase__ : Optional[int] = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
lowercase__ : Union[str, Any] = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
lowercase__ : Union[str, Any] = """false"""
if args.num_workers is None:
lowercase__ : int = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
lowercase__ : int = Accelerator()
set_seed(args.seed , device_specific=_lowerCAmelCase)
# Load model and tokenizer
lowercase__ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt)
lowercase__ : Dict = tokenizer.eos_token
lowercase__ : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
# Generation settings
lowercase__ : Any = {
"""do_sample""": args.do_sample,
"""temperature""": args.temperature,
"""max_new_tokens""": args.max_new_tokens,
"""top_p""": args.top_p,
"""top_k""": args.top_k,
"""stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase)]),
}
# Load evaluation dataset and metric
lowercase__ : Optional[int] = load_dataset("openai_humaneval")
lowercase__ : List[Any] = load_metric("code_eval")
lowercase__ : Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["test"])
lowercase__ : Dict = args.n_samples // args.batch_size
lowercase__ : int = TokenizedDataset(_lowerCAmelCase , human_eval["test"] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase)
# do not confuse args.batch_size, which is actually the num_return_sequences
lowercase__ : Optional[Any] = DataLoader(_lowerCAmelCase , batch_size=1)
# Run a quick test to see if code evaluation is enabled
try:
lowercase__ : List[Any] = code_eval_metric.compute(references=[""] , predictions=[[""]])
except ValueError as exception:
print(
"Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"
" flag to enable code evaluation.")
raise exception
lowercase__ : Dict = accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase)
lowercase__ : str = complete_code(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , )
if accelerator.is_main_process:
lowercase__ : str = []
for task in tqdm(range(_lowerCAmelCase)):
lowercase__ : Any = human_eval["""test"""][task]["""test"""]
lowercase__ : int = f'''check({human_eval["test"][task]["entry_point"]})'''
references.append("\n" + test_func + "\n" + entry_point)
# Evaluate completions with "code_eval" metric
lowercase__ : Optional[Any] = code_eval_metric.compute(
references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers)
print(f'''Results: {pass_at_k}''')
# Save results to json file
with open(args.output_file , "w") as fp:
json.dump(_lowerCAmelCase , _lowerCAmelCase)
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 371 | import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 | 0 |
"""simple docstring"""
def lowercase_ ( _lowerCamelCase : Optional[int]):
if not all(x.isalpha() for x in string):
raise ValueError("String must only contain alphabetic characters.")
lowercase__ : str = sorted(string.lower())
return len(__lowerCAmelCase) == len(set(__lowerCAmelCase))
if __name__ == "__main__":
UpperCamelCase = input('''Enter a string ''').strip()
UpperCamelCase = is_isogram(input_str)
print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
| 350 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
UpperCamelCase = None
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
UpperCamelCase = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""",
},
}
UpperCamelCase = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
UpperCamelCase = """▁"""
class snake_case_ ( __UpperCamelCase ):
__A : List[Any] = VOCAB_FILES_NAMES
__A : str = PRETRAINED_VOCAB_FILES_MAP
__A : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : List[Any] = AlbertTokenizer
def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=None , lowercase_ : List[Any]=None , lowercase_ : Tuple=True , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : Dict="[CLS]" , lowercase_ : List[Any]="[SEP]" , lowercase_ : str="<unk>" , lowercase_ : Any="[SEP]" , lowercase_ : List[str]="<pad>" , lowercase_ : Union[str, Any]="[CLS]" , lowercase_ : int="[MASK]" , **lowercase_ : Tuple , ) -> Union[str, Any]:
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
lowercase__ : Optional[int] = (
AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ )
if isinstance(lowercase_ , lowercase_ )
else mask_token
)
super().__init__(
lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , )
lowercase__ : Dict = do_lower_case
lowercase__ : Any = remove_space
lowercase__ : str = keep_accents
lowercase__ : Any = vocab_file
lowercase__ : str = False if not self.vocab_file else True
def __UpperCamelCase ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]:
lowercase__ : Tuple = [self.sep_token_id]
lowercase__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __UpperCamelCase ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]:
lowercase__ : Optional[int] = [self.sep_token_id]
lowercase__ : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCamelCase ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(lowercase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ : Tuple = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ):
copyfile(self.vocab_file , lowercase_ )
return (out_vocab_file,)
| 351 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class snake_case_ ( __A ):
__A : List[str] = "unispeech"
def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : Any = feat_extract_norm
lowercase__ : Optional[Any] = feat_extract_activation
lowercase__ : Dict = list(lowercase_ )
lowercase__ : Union[str, Any] = list(lowercase_ )
lowercase__ : List[str] = list(lowercase_ )
lowercase__ : List[str] = conv_bias
lowercase__ : Any = num_conv_pos_embeddings
lowercase__ : Dict = num_conv_pos_embedding_groups
lowercase__ : int = len(self.conv_dim )
lowercase__ : str = num_hidden_layers
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : Any = attention_dropout
lowercase__ : Union[str, Any] = activation_dropout
lowercase__ : Any = feat_proj_dropout
lowercase__ : str = final_dropout
lowercase__ : int = layerdrop
lowercase__ : Optional[int] = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = num_ctc_classes
lowercase__ : int = vocab_size
lowercase__ : str = do_stable_layer_norm
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : List[Any] = apply_spec_augment
lowercase__ : Dict = mask_time_prob
lowercase__ : Tuple = mask_time_length
lowercase__ : str = mask_time_min_masks
lowercase__ : List[Any] = mask_feature_prob
lowercase__ : int = mask_feature_length
lowercase__ : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__ : Optional[int] = num_codevectors_per_group
lowercase__ : List[str] = num_codevector_groups
lowercase__ : Dict = contrastive_logits_temperature
lowercase__ : Tuple = feat_quantizer_dropout
lowercase__ : Any = num_negatives
lowercase__ : Dict = codevector_dim
lowercase__ : Tuple = proj_codevector_dim
lowercase__ : List[str] = diversity_loss_weight
# ctc loss
lowercase__ : Tuple = ctc_loss_reduction
lowercase__ : Dict = ctc_zero_infinity
# pretraining loss
lowercase__ : Optional[Any] = replace_prob
@property
def __UpperCamelCase ( self : Dict ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 333 | 0 |
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : List[Any]):
# Initialise PyTorch model
lowercase__ : Optional[int] = BertConfig.from_json_file(_lowerCamelCase)
print(f'''Building PyTorch model from configuration: {config}''')
lowercase__ : List[str] = BertForPreTraining(_lowerCamelCase)
# Load weights from tf checkpoint
load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''')
torch.save(model.state_dict() , _lowerCamelCase)
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained BERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
UpperCamelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 352 | def lowercase_ ( _lowerCamelCase : list):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : int = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j]
lowercase__ : List[str] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 333 | 0 |
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class snake_case_ :
@staticmethod
def __UpperCamelCase ( *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Optional[int]:
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class snake_case_ ( unittest.TestCase ):
__A : str = MODEL_FOR_OBJECT_DETECTION_MAPPING
def __UpperCamelCase ( self : List[Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : Any ) -> Any:
lowercase__ : List[str] = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] ) -> List[Any]:
lowercase__ : Optional[int] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 )
self.assertGreater(len(lowercase_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowercase_ , {
"score": ANY(lowercase_ ),
"label": ANY(lowercase_ ),
"box": {"xmin": ANY(lowercase_ ), "ymin": ANY(lowercase_ ), "xmax": ANY(lowercase_ ), "ymax": ANY(lowercase_ )},
} , )
import datasets
lowercase__ : Optional[int] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" )
lowercase__ : List[str] = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
lowercase__ : List[str] = object_detector(lowercase_ , threshold=0.0 )
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for outputs in batch_outputs:
self.assertGreater(len(lowercase_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowercase_ , {
"score": ANY(lowercase_ ),
"label": ANY(lowercase_ ),
"box": {"xmin": ANY(lowercase_ ), "ymin": ANY(lowercase_ ), "xmax": ANY(lowercase_ ), "ymax": ANY(lowercase_ )},
} , )
@require_tf
@unittest.skip("Object detection not implemented in TF" )
def __UpperCamelCase ( self : Dict ) -> Union[str, Any]:
pass
@require_torch
def __UpperCamelCase ( self : int ) -> Dict:
lowercase__ : str = "hf-internal-testing/tiny-detr-mobilenetsv3"
lowercase__ : int = AutoModelForObjectDetection.from_pretrained(lowercase_ )
lowercase__ : Optional[int] = AutoFeatureExtractor.from_pretrained(lowercase_ )
lowercase__ : Dict = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ )
lowercase__ : Optional[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
] , )
lowercase__ : Union[str, Any] = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
[
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
],
[
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
],
] , )
@require_torch
@slow
def __UpperCamelCase ( self : Any ) -> Optional[int]:
lowercase__ : Any = "facebook/detr-resnet-50"
lowercase__ : List[str] = AutoModelForObjectDetection.from_pretrained(lowercase_ )
lowercase__ : Dict = AutoFeatureExtractor.from_pretrained(lowercase_ )
lowercase__ : Optional[Any] = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ )
lowercase__ : Dict = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
lowercase__ : Dict = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
[
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
[
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
] , )
@require_torch
@slow
def __UpperCamelCase ( self : str ) -> Tuple:
lowercase__ : Tuple = "facebook/detr-resnet-50"
lowercase__ : int = pipeline("object-detection" , model=lowercase_ )
lowercase__ : List[Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
lowercase__ : int = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
[
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
[
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
] , )
@require_torch
@slow
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
lowercase__ : List[Any] = 0.99_85
lowercase__ : Union[str, Any] = "facebook/detr-resnet-50"
lowercase__ : Optional[int] = pipeline("object-detection" , model=lowercase_ )
lowercase__ : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowercase_ )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
@require_torch
@require_pytesseract
@slow
def __UpperCamelCase ( self : int ) -> Dict:
lowercase__ : Any = "Narsil/layoutlmv3-finetuned-funsd"
lowercase__ : Optional[Any] = 0.99_93
lowercase__ : str = pipeline("object-detection" , model=lowercase_ , threshold=lowercase_ )
lowercase__ : Optional[int] = object_detector(
"https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}},
{"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}},
] , )
| 353 | import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class snake_case_ ( __A ):
__A : int = "token-classification"
def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]:
if type(lowercase_ ) == dict:
lowercase__ : Dict = Namespace(**lowercase_ )
lowercase__ : str = import_module("tasks" )
try:
lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type )
lowercase__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels )
lowercase__ : int = CrossEntropyLoss().ignore_index
super().__init__(lowercase_ , len(self.labels ) , self.mode )
def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any:
return self.model(**lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple:
lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : Tuple = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : Optional[int] = self(**lowercase_ )
lowercase__ : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
lowercase__ : Tuple = self.hparams
for mode in ["train", "dev", "test"]:
lowercase__ : Any = self._feature_file(lowercase_ )
if os.path.exists(lowercase_ ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ )
lowercase__ : Dict = self.token_classification_task.convert_examples_to_features(
lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , lowercase_ )
torch.save(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader:
lowercase__ : str = self._feature_file(lowercase_ )
logger.info("Loading features from cached file %s" , lowercase_ )
lowercase__ : str = torch.load(lowercase_ )
lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ )
def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str:
"""Compute validation""" ""
lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
lowercase__ : int = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
lowercase__ : List[Any] = self(**lowercase_ )
lowercase__ , lowercase__ : Any = outputs[:2]
lowercase__ : Optional[Any] = logits.detach().cpu().numpy()
lowercase__ : int = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]:
lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean()
lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 )
lowercase__ : Dict = np.argmax(lowercase_ , axis=2 )
lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 )
lowercase__ : Any = dict(enumerate(self.labels ) )
lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )]
lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
lowercase__ : Any = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(lowercase_ , lowercase_ ),
"precision": precision_score(lowercase_ , lowercase_ ),
"recall": recall_score(lowercase_ , lowercase_ ),
"f1": fa_score(lowercase_ , lowercase_ ),
}
lowercase__ : List[Any] = dict(results.items() )
lowercase__ : List[str] = results
return ret, preds_list, out_label_list
def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict:
# when stable
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
lowercase__ : Any = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int:
# updating to test_epoch_end instead of deprecated test_end
lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
lowercase__ : Optional[int] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple:
# Add NER specific options
BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ )
parser.add_argument(
"--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=1_28 , type=lowercase_ , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
UpperCamelCase = parser.parse_args()
UpperCamelCase = NERTransformer(args)
UpperCamelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
UpperCamelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 333 | 0 |
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def lowercase_ ( _lowerCamelCase : Union[str, Any]=32 , _lowerCamelCase : str=10 , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=1026 , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : List[str]="data/tokenized_stories_train_wikitext103.jbl" , _lowerCamelCase : Tuple="igf_context_pairs.jbl" , ):
set_seed(3)
# generate train_data and objective_set
lowercase__ , lowercase__ : Dict = generate_datasets(
_lowerCAmelCase , _lowerCAmelCase , number=_lowerCAmelCase , min_len=1026 , trim=_lowerCAmelCase)
# keeps model same across runs
set_seed(4)
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
lowercase__ : str = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load pretrained model
lowercase__ : Optional[int] = load_gpta("gpt2").to(_lowerCAmelCase)
print("computing perplexity on objective set")
lowercase__ : Dict = compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase).item()
print("perplexity on objective set:" , _lowerCAmelCase)
# collect igf pairs and save to file demo.jbl
collect_objective_set(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]=15 , _lowerCamelCase : str=128 , _lowerCamelCase : List[str]=100 , _lowerCamelCase : Dict="igf_model.pt" , ):
set_seed(42)
# Load pre-trained model
lowercase__ : str = GPTaLMHeadModel.from_pretrained("gpt2")
# Initialize secondary learner to use embedding weights of model
lowercase__ : Any = SecondaryLearner(_lowerCAmelCase)
# Train secondary learner
lowercase__ : List[str] = train_secondary_learner(
_lowerCAmelCase , _lowerCAmelCase , max_epochs=_lowerCAmelCase , batch_size=_lowerCAmelCase , eval_freq=100 , igf_model_path=_lowerCAmelCase , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Any=32 , _lowerCamelCase : int=1000 , _lowerCamelCase : Tuple=16 , _lowerCamelCase : Any=1.0 , _lowerCamelCase : List[str]=recopy_gpta , _lowerCamelCase : str=None , _lowerCamelCase : int=10 , _lowerCamelCase : int="gpt2_finetuned.pt" , ):
lowercase__ : List[str] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
lowercase__ : Tuple = RandomSampler(_lowerCAmelCase)
lowercase__ : str = DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase)
lowercase__ : int = max_steps // (len(_lowerCAmelCase)) + 1
lowercase__ : str = 0
lowercase__ : Tuple = torch.zeros((1, context_len) , dtype=torch.long , device=_lowerCAmelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = recopy_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
model.train()
if secondary_learner is not None:
secondary_learner.to(_lowerCAmelCase)
secondary_learner.eval()
lowercase__ : Optional[Any] = []
lowercase__ : Union[str, Any] = 0
lowercase__ : Optional[int] = []
lowercase__ : Optional[int] = []
# Compute the performance of the transformer model at the beginning
lowercase__ : Dict = compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
test_perps.append(_lowerCAmelCase)
print("Test perplexity, step" , _lowerCAmelCase , ":" , _lowerCAmelCase)
for epoch in range(int(_lowerCAmelCase)):
for step, example in enumerate(_lowerCAmelCase):
torch.cuda.empty_cache()
lowercase__ : int = random.randint(0 , example.size(2) - context_len - 1)
lowercase__ : Tuple = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
lowercase__ : Optional[int] = model(_lowerCAmelCase , labels=_lowerCAmelCase)
lowercase__ : Dict = True
if secondary_learner is not None:
lowercase__ : Any = secondary_learner.forward(
torch.tensor(_lowerCAmelCase , dtype=torch.long , device=_lowerCAmelCase).unsqueeze(0))[0].item()
observed_qs.append(float(_lowerCAmelCase))
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
lowercase__ : Any = -1
if predicted_q < threshold:
lowercase__ : Dict = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu()))
lowercase__ : Union[str, Any] = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
lowercase__ : List[str] = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
lowercase__ : Optional[Any] = compute_perplexity(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
test_perps.append(_lowerCAmelCase)
print("Test perplexity, step" , _lowerCAmelCase , ":" , _lowerCAmelCase)
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , _lowerCAmelCase)
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def lowercase_ ( ):
lowercase__ : Any = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task")
# Required parameters
parser.add_argument(
"--data_dir" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="The input data dir. Should contain data files for WikiText." , )
parser.add_argument(
"--model_name_or_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , )
parser.add_argument(
"--data_file" , type=_lowerCAmelCase , default=_lowerCAmelCase , help=(
"A jbl file containing tokenized data which can be split as objective dataset, "
"train_dataset and test_dataset."
) , )
parser.add_argument(
"--igf_data_file" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="A jbl file containing the context and information gain pairs to train secondary learner." , )
parser.add_argument(
"--output_dir" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="The output directory where the final fine-tuned model is stored." , )
parser.add_argument(
"--tokenizer_name" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name" , )
parser.add_argument("--seed" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="A seed for reproducible training.")
parser.add_argument(
"--context_len" , default=32 , type=_lowerCAmelCase , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--size_objective_set" , default=100 , type=_lowerCAmelCase , help="number of articles that are long enough to be used as our objective set" , )
parser.add_argument(
"--eval_freq" , default=100 , type=_lowerCAmelCase , help="secondary model evaluation is triggered at eval_freq")
parser.add_argument("--max_steps" , default=1000 , type=_lowerCAmelCase , help="To calculate training epochs")
parser.add_argument(
"--secondary_learner_batch_size" , default=128 , type=_lowerCAmelCase , help="batch size of training data for secondary learner" , )
parser.add_argument(
"--batch_size" , default=16 , type=_lowerCAmelCase , help="batch size of training data of language model(gpt2) ")
parser.add_argument(
"--eval_interval" , default=10 , type=_lowerCAmelCase , help=(
"decay the selectivity of our secondary learner filter from"
"1 standard deviation above average to 1 below average after 10 batches"
) , )
parser.add_argument(
"--number" , default=100 , type=_lowerCAmelCase , help="The number of examples split to be used as objective_set/test_data")
parser.add_argument(
"--min_len" , default=1026 , type=_lowerCAmelCase , help="The minimum length of the article to be used as objective set")
parser.add_argument(
"--secondary_learner_max_epochs" , default=15 , type=_lowerCAmelCase , help="number of epochs to train secondary learner")
parser.add_argument("--trim" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="truncate the example if it exceeds context length")
parser.add_argument(
"--threshold" , default=1.0 , type=_lowerCAmelCase , help=(
"The threshold value used by secondary learner to filter the train_data and allow only"
" informative data as input to the model"
) , )
parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_lowerCAmelCase , help="finetuned_model_name")
parser.add_argument(
"--recopy_model" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_lowerCAmelCase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , )
# Load train data for secondary learner
lowercase__ : Dict = joblib.load("data/IGF_values.jbl")
# Train secondary learner
lowercase__ : Tuple = training_secondary_learner(
_lowerCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , )
# load pretrained gpt2 model
lowercase__ : Optional[Any] = GPTaLMHeadModel.from_pretrained("gpt2")
set_seed(42)
# Generate train and test data to train and evaluate gpt2 model
lowercase__ , lowercase__ : Union[str, Any] = generate_datasets(
context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=_lowerCAmelCase)
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_lowerCAmelCase , secondary_learner=_lowerCAmelCase , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , )
if __name__ == "__main__":
main()
| 354 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mask2former''': [
'''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Mask2FormerConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''Mask2FormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Mask2FormerForUniversalSegmentation''',
'''Mask2FormerModel''',
'''Mask2FormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 333 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCamelCase = {
'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'],
'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'],
'processing_wav2vec2': ['Wav2Vec2Processor'],
'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Wav2Vec2ForAudioFrameClassification',
'Wav2Vec2ForCTC',
'Wav2Vec2ForMaskedLM',
'Wav2Vec2ForPreTraining',
'Wav2Vec2ForSequenceClassification',
'Wav2Vec2ForXVector',
'Wav2Vec2Model',
'Wav2Vec2PreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFWav2Vec2ForCTC',
'TFWav2Vec2Model',
'TFWav2Vec2PreTrainedModel',
'TFWav2Vec2ForSequenceClassification',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'FlaxWav2Vec2ForCTC',
'FlaxWav2Vec2ForPreTraining',
'FlaxWav2Vec2Model',
'FlaxWav2Vec2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 355 | # Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def lowercase_ ( _lowerCamelCase : List[str]):
return 1 / (1 + np.exp(-z))
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean()
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase)))
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000):
lowercase__ : Optional[int] = np.zeros(x.shape[1])
for iterations in range(_lowerCamelCase):
lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Tuple = sigmoid_function(_lowerCamelCase)
lowercase__ : Dict = np.dot(x.T , h - y) / y.size
lowercase__ : int = theta - alpha * gradient # updating the weights
lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase)
lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase)
lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase)
if iterations % 100 == 0:
print(f'''loss: {j} \t''') # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
UpperCamelCase = datasets.load_iris()
UpperCamelCase = iris.data[:, :2]
UpperCamelCase = (iris.target != 0) * 1
UpperCamelCase = 0.1
UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000)
print('''theta: ''', theta) # printing the theta i.e our weights vector
def lowercase_ ( _lowerCamelCase : List[Any]):
return sigmoid_function(
np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''')
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
UpperCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''')
plt.legend()
plt.show()
| 333 | 0 |
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch("socket.socket")
@patch("builtins.open")
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : str):
# ===== initialization =====
lowercase__ : Union[str, Any] = Mock()
lowercase__ : int = conn, Mock()
lowercase__ : Optional[Any] = iter([1, None])
lowercase__ : Dict = lambda _lowerCamelCase: next(_lowerCamelCase)
# ===== invoke =====
send_file(filename="mytext.txt" , testing=_lowerCamelCase)
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 356 | import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__A )
class snake_case_ ( __A ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} )
__A : ClassVar[Features] = Features({"text": Value("string" )} )
__A : ClassVar[Features] = Features({"labels": ClassLabel} )
__A : str = "text"
__A : str = "labels"
def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int:
if self.label_column not in features:
raise ValueError(F'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , lowercase_ ):
raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' )
lowercase__ : Optional[int] = copy.deepcopy(self )
lowercase__ : Tuple = self.label_schema.copy()
lowercase__ : Union[str, Any] = features[self.label_column]
lowercase__ : int = label_schema
return task_template
@property
def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]:
return {
self.text_column: "text",
self.label_column: "labels",
}
| 333 | 0 |
import numpy as np
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]):
lowercase__ : int = int(np.ceil((x_end - xa) / h))
lowercase__ : List[str] = np.zeros((n + 1,))
lowercase__ : List[str] = ya
lowercase__ : Any = xa
for k in range(_lowerCamelCase):
lowercase__ : Optional[int] = f(_lowerCamelCase , y[k])
lowercase__ : Any = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
lowercase__ : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka)
lowercase__ : int = f(x + h , y[k] + h * ka)
lowercase__ : Union[str, Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357 | def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
and isinstance(_lowerCamelCase , _lowerCamelCase)
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)")
return min_val if option else max_val
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
return int((number_a + number_a) / 2)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int):
assert (
isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase)
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)")
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value")
def answer(_lowerCamelCase : int) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started...")
lowercase__ : Optional[int] = lower
lowercase__ : List[Any] = higher
lowercase__ : Dict = []
while True:
lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase)
last_numbers.append(_lowerCamelCase)
if answer(_lowerCamelCase) == "low":
lowercase__ : List[str] = number
elif answer(_lowerCamelCase) == "high":
lowercase__ : Optional[int] = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''')
print(f'''details : {last_numbers!s}''')
def lowercase_ ( ):
lowercase__ : Tuple = int(input("Enter lower value : ").strip())
lowercase__ : Optional[int] = int(input("Enter high value : ").strip())
lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip())
guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
if __name__ == "__main__":
main()
| 333 | 0 |
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class snake_case_ ( lowerCamelCase__ ,lowerCamelCase__ ,unittest.TestCase ):
__A : str = IFInpaintingSuperResolutionPipeline
__A : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'}
__A : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
__A : Dict = PipelineTesterMixin.required_optional_params - {'latents'}
def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]:
return self._get_superresolution_dummy_components()
def __UpperCamelCase ( self : List[Any] , lowercase_ : List[str] , lowercase_ : Dict=0 ) -> Tuple:
if str(lowercase__ ).startswith("mps" ):
lowercase__ : List[Any] = torch.manual_seed(lowercase__ )
else:
lowercase__ : Tuple = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
lowercase__ : str = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase__ ) ).to(lowercase__ )
lowercase__ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ )
lowercase__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ )
lowercase__ : List[str] = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"original_image": original_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __UpperCamelCase ( self : Tuple ) -> Dict:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __UpperCamelCase ( self : int ) -> Union[str, Any]:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __UpperCamelCase ( self : str ) -> Optional[int]:
self._test_save_load_local()
def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 358 | import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCamelCase = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : str ) -> List[str]:
lowercase__ : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) )
lowercase__ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , )
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : Dict = "src/diffusers"
shutil.rmtree(self.diffusers_dir )
def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ )
lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" )
with open(lowercase_ , "w" , newline="\n" ) as f:
f.write(lowercase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowercase_ )
with open(lowercase_ , "r" ) as f:
self.assertTrue(f.read() , lowercase_ )
def __UpperCamelCase ( self : str ) -> Optional[int]:
lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" )
self.assertEqual(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : int ) -> str:
# Base copy consistency
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , )
# With no empty line at the end
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , )
# Copy consistency with a really long name
lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"
self.check_copy_consistency(
F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
| 333 | 0 |
from __future__ import annotations
from typing import Any
class snake_case_ :
def __init__( self : Union[str, Any] , lowercase_ : int = 6 ) -> None:
lowercase__ : Node | None = None
lowercase__ : Node | None = None
self.create_linked_list(lowercase_ )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : int ) -> None:
lowercase__ : str = Node()
lowercase__ : Optional[int] = current_node
lowercase__ : List[Any] = current_node
lowercase__ : Any = current_node
for _ in range(1 , lowercase_ ):
lowercase__ : List[Any] = Node()
lowercase__ : Optional[Any] = current_node
lowercase__ : Dict = previous_node
lowercase__ : str = current_node
lowercase__ : Optional[Any] = self.front
lowercase__ : Optional[int] = previous_node
def __UpperCamelCase ( self : str ) -> bool:
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def __UpperCamelCase ( self : Any ) -> Any | None:
self.check_can_perform_operation()
return self.front.data if self.front else None
def __UpperCamelCase ( self : str , lowercase_ : Any ) -> None:
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowercase__ : Union[str, Any] = self.rear.next
if self.rear:
lowercase__ : Any = data
def __UpperCamelCase ( self : Optional[Any] ) -> Any:
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowercase__ : int = self.front.data
lowercase__ : Optional[Any] = None
return data
lowercase__ : Optional[int] = self.front
lowercase__ : int = old_front.next
lowercase__ : Union[str, Any] = old_front.data
lowercase__ : List[str] = None
return data
def __UpperCamelCase ( self : Dict ) -> None:
if self.is_empty():
raise Exception("Empty Queue" )
def __UpperCamelCase ( self : str ) -> None:
if self.rear and self.rear.next == self.front:
raise Exception("Full Queue" )
class snake_case_ :
def __init__( self : List[str] ) -> None:
lowercase__ : Any | None = None
lowercase__ : Node | None = None
lowercase__ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 | from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple):
for param, grad_param in zip(model_a.parameters() , model_b.parameters()):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True):
model.train()
lowercase__ : Tuple = model(_lowerCamelCase)
lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device))
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False):
set_seed(42)
lowercase__ : Dict = RegressionModel()
lowercase__ : int = deepcopy(_lowerCamelCase)
lowercase__ : str = RegressionDataset(length=80)
lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16)
model.to(accelerator.device)
if sched:
lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3)
lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3)
lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65)
# Make a copy of `model`
if sched:
lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def lowercase_ ( _lowerCamelCase : Tuple):
# Test when on a single CPU or GPU that the context manager does nothing
lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Any):
# Test on distributed setup that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase)
# Use a single batch
lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values()
for iteration in range(3):
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
else:
# Sync grads
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))]
def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False):
lowercase__ : int = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : str = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Do "gradient accumulation" (noop)
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters()):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))]
GradientState._reset_state()
def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False):
lowercase__ : Dict = Accelerator(
split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2)
# Test that context manager behaves properly
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase)
for iteration, batch in enumerate(_lowerCamelCase):
lowercase__ , lowercase__ : Any = batch.values()
# Gather the distributed inputs and targs for the base model
lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target))
lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device)
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(_lowerCamelCase):
step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n'''
lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase))
if accelerator.num_processes > 1:
check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def lowercase_ ( ):
lowercase__ : List[str] = Accelerator()
lowercase__ : List[Any] = RegressionDataset(length=80)
lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ : int = RegressionDataset(length=96)
lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16)
lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase)
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if iteration < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(_lowerCamelCase):
assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase)
if batch_num < len(_lowerCamelCase) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def lowercase_ ( ):
lowercase__ : str = Accelerator()
lowercase__ : Dict = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
test_noop_sync(_lowerCamelCase)
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**")
test_distributed_sync(_lowerCamelCase)
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : int):
if not isinstance(a__ , a__):
raise TypeError("only integers accepted as input")
else:
lowercase__ : str = str(abs(a__))
lowercase__ : Union[str, Any] = [list(a__) for char in range(len(a__))]
for index in range(len(a__)):
num_transpositions[index].pop(a__)
return max(
int("".join(list(a__))) for transposition in num_transpositions)
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 360 | import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str):
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase)
lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase)
lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase)
lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
lowercase__ : Any = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
lowercase__ : int = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Dict = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global].")
# Encoder
for layer_index in range(config.num_layers):
lowercase__ : str = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : Any = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[str] = tax_attention_value
lowercase__ : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Any = tax_global_layer_norm
if split_mlp_wi:
lowercase__ : Tuple = tax_mlp_wi_a
lowercase__ : str = tax_mlp_wi_a
else:
lowercase__ : List[Any] = tax_mlp_wi
lowercase__ : str = tax_mlp_wo
lowercase__ : int = tax_mlp_layer_norm
lowercase__ : List[str] = flax_model_encoder_layer_block
# Only for layer 0:
lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : Optional[int] = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_encoder_global_rel_embedding
# Assigning
lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
lowercase__ : Union[str, Any] = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers):
lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}'''
# Self-Attention
lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"]
lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"]
lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"]
lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"]
lowercase__ : Any = tax_attention_key
lowercase__ : List[Any] = tax_attention_out
lowercase__ : Any = tax_attention_query
lowercase__ : List[Any] = tax_attention_value
lowercase__ : List[str] = tax_pre_attention_layer_norm
lowercase__ : List[Any] = tax_enc_dec_attention_key
lowercase__ : Optional[Any] = tax_enc_dec_attention_out
lowercase__ : str = tax_enc_dec_attention_query
lowercase__ : Union[str, Any] = tax_enc_dec_attention_value
lowercase__ : Tuple = tax_cross_layer_norm
if split_mlp_wi:
lowercase__ : List[str] = tax_mlp_wi_a
lowercase__ : List[Any] = tax_mlp_wi_a
else:
lowercase__ : Tuple = tax_mlp_wi
lowercase__ : Any = tax_mlp_wo
lowercase__ : Tuple = txa_mlp_layer_norm
lowercase__ : int = flax_model_decoder_layer_block
# Decoder Normalization
lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
lowercase__ : List[Any] = txa_decoder_norm
# Only for layer 0:
lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
lowercase__ : str = tax_decoder_rel_embedding
# Token Embeddings
lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"]
lowercase__ : Optional[Any] = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(_lowerCamelCase)
print("T5X Model was sucessfully converted!")
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.'''
)
parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''')
parser.add_argument(
'''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.'''
)
UpperCamelCase = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 333 | 0 |
class snake_case_ :
def __init__( self : List[str] ) -> Union[str, Any]:
lowercase__ : Optional[Any] = 0
lowercase__ : str = 0
lowercase__ : Union[str, Any] = {}
def __UpperCamelCase ( self : Any , lowercase_ : List[Any] ) -> int:
if vertex not in self.adjacency:
lowercase__ : List[str] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[str] ) -> Any:
self.add_vertex(UpperCAmelCase__ )
self.add_vertex(UpperCAmelCase__ )
if head == tail:
return
lowercase__ : Any = weight
lowercase__ : Optional[int] = weight
def __UpperCamelCase ( self : Tuple ) -> int:
lowercase__ : List[str] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Dict = edge
edges.remove((tail, head, weight) )
for i in range(len(UpperCAmelCase__ ) ):
lowercase__ : Optional[int] = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(UpperCAmelCase__ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : List[Any] = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
lowercase__ : List[Any] = weight
lowercase__ : str = weight
def __str__( self : Dict ) -> Optional[int]:
lowercase__ : Optional[int] = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Any = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : str ) -> Tuple:
lowercase__ : int = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Any=None , lowercase_ : Optional[Any]=None ) -> List[str]:
lowercase__ : Optional[Any] = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : Tuple = []
for vertex in vertices:
g.add_vertex(UpperCAmelCase__ )
for edge in edges:
g.add_edge(*UpperCAmelCase__ )
return g
class snake_case_ :
def __init__( self : Optional[Any] ) -> List[str]:
lowercase__ : Any = {}
lowercase__ : Optional[int] = {}
def __len__( self : Dict ) -> Dict:
return len(self.parent )
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] ) -> Optional[int]:
if item in self.parent:
return self.find(UpperCAmelCase__ )
lowercase__ : Optional[int] = item
lowercase__ : Tuple = 0
return item
def __UpperCamelCase ( self : Tuple , lowercase_ : int ) -> int:
if item not in self.parent:
return self.make_set(UpperCAmelCase__ )
if item != self.parent[item]:
lowercase__ : List[Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Any ) -> Optional[int]:
lowercase__ : List[str] = self.find(UpperCAmelCase__ )
lowercase__ : int = self.find(UpperCAmelCase__ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Optional[int] = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : Union[str, Any] = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Optional[Any] ) -> str:
lowercase__ : Tuple = graph.num_vertices
lowercase__ : Tuple = Graph.UnionFind()
lowercase__ : List[str] = []
while num_components > 1:
lowercase__ : Optional[int] = {}
for vertex in graph.get_vertices():
lowercase__ : Union[str, Any] = -1
lowercase__ : Union[str, Any] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[Any] = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = edge
lowercase__ : Tuple = union_find.find(UpperCAmelCase__ )
lowercase__ : Any = union_find.find(UpperCAmelCase__ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Union[str, Any] = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : Tuple = cheap_edge[vertex]
if union_find.find(UpperCAmelCase__ ) != union_find.find(UpperCAmelCase__ ):
union_find.union(UpperCAmelCase__ , UpperCAmelCase__ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : List[Any] = num_components - 1
lowercase__ : int = Graph.build(edges=UpperCAmelCase__ )
return mst
| 361 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''',
'''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''',
'''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''',
'''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''',
'''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''',
'''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''',
}
class snake_case_ ( __A ):
__A : Optional[int] = "rwkv"
__A : List[str] = {"max_position_embeddings": "context_length"}
def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int:
lowercase__ : List[str] = vocab_size
lowercase__ : str = context_length
lowercase__ : List[Any] = hidden_size
lowercase__ : Optional[Any] = num_hidden_layers
lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
lowercase__ : List[Any] = layer_norm_epsilon
lowercase__ : str = rescale_every
lowercase__ : Optional[int] = use_cache
lowercase__ : int = bos_token_id
lowercase__ : Optional[Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
| 333 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
UpperCamelCase = (720, 1280) # Height, Width
UpperCamelCase = (0.4, 0.6) # if height or width lower than this scale, drop it.
UpperCamelCase = 1 / 100
UpperCamelCase = ""
UpperCamelCase = ""
UpperCamelCase = ""
UpperCamelCase = 250
def lowercase_ ( ):
"""simple docstring"""
lowercase__ : Optional[int] = get_dataset(__lowerCAmelCase , __lowerCAmelCase)
for index in range(__lowerCAmelCase):
lowercase__ : int = random.sample(range(len(__lowerCAmelCase)) , 4)
lowercase__ : Any = update_image_and_anno(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , filter_scale=__lowerCAmelCase , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowercase__ : str = random_chars(32)
lowercase__ : Optional[int] = path.split(os.sep)[-1].rsplit("." , 1)[0]
lowercase__ : int = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'''
cva.imwrite(f'''{file_root}.jpg''' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85])
print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''')
lowercase__ : List[str] = []
for anno in new_annos:
lowercase__ : Any = anno[3] - anno[1]
lowercase__ : List[str] = anno[4] - anno[2]
lowercase__ : Dict = anno[1] + width / 2
lowercase__ : Any = anno[2] + height / 2
lowercase__ : Dict = f'''{anno[0]} {x_center} {y_center} {width} {height}'''
annos_list.append(__lowerCAmelCase)
with open(f'''{file_root}.txt''' , "w") as outfile:
outfile.write("\n".join(line for line in annos_list))
def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str]):
"""simple docstring"""
lowercase__ : List[Any] = []
lowercase__ : List[Any] = []
for label_file in glob.glob(os.path.join(__lowerCAmelCase , "*.txt")):
lowercase__ : Any = label_file.split(os.sep)[-1].rsplit("." , 1)[0]
with open(__lowerCAmelCase) as in_file:
lowercase__ : Dict = in_file.readlines()
lowercase__ : Tuple = os.path.join(__lowerCAmelCase , f'''{label_name}.jpg''')
lowercase__ : Any = []
for obj_list in obj_lists:
lowercase__ : Optional[int] = obj_list.rstrip("\n").split(" ")
lowercase__ : Dict = float(obj[1]) - float(obj[3]) / 2
lowercase__ : List[str] = float(obj[2]) - float(obj[4]) / 2
lowercase__ : str = float(obj[1]) + float(obj[3]) / 2
lowercase__ : List[Any] = float(obj[2]) + float(obj[4]) / 2
boxes.append([int(obj[0]), xmin, ymin, xmax, ymax])
if not boxes:
continue
img_paths.append(__lowerCAmelCase)
labels.append(__lowerCAmelCase)
return img_paths, labels
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple = 0.0 , ):
"""simple docstring"""
lowercase__ : str = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta)
lowercase__ : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowercase__ : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowercase__ : Dict = int(scale_x * output_size[1])
lowercase__ : Optional[Any] = int(scale_y * output_size[0])
lowercase__ : str = []
lowercase__ : List[str] = []
for i, index in enumerate(__lowerCAmelCase):
lowercase__ : List[Any] = all_img_list[index]
path_list.append(__lowerCAmelCase)
lowercase__ : Optional[Any] = all_annos[index]
lowercase__ : str = cva.imread(__lowerCAmelCase)
if i == 0: # top-left
lowercase__ : Union[str, Any] = cva.resize(__lowerCAmelCase , (divid_point_x, divid_point_y))
lowercase__ : Optional[Any] = img
for bbox in img_annos:
lowercase__ : Dict = bbox[1] * scale_x
lowercase__ : List[str] = bbox[2] * scale_y
lowercase__ : Union[str, Any] = bbox[3] * scale_x
lowercase__ : Optional[Any] = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax])
elif i == 1: # top-right
lowercase__ : Tuple = cva.resize(__lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y))
lowercase__ : Optional[int] = img
for bbox in img_annos:
lowercase__ : int = scale_x + bbox[1] * (1 - scale_x)
lowercase__ : Union[str, Any] = bbox[2] * scale_y
lowercase__ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x)
lowercase__ : Optional[Any] = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax])
elif i == 2: # bottom-left
lowercase__ : List[str] = cva.resize(__lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y))
lowercase__ : List[Any] = img
for bbox in img_annos:
lowercase__ : Dict = bbox[1] * scale_x
lowercase__ : Any = scale_y + bbox[2] * (1 - scale_y)
lowercase__ : Any = bbox[3] * scale_x
lowercase__ : Tuple = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax])
else: # bottom-right
lowercase__ : Optional[Any] = cva.resize(
__lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y))
lowercase__ : Any = img
for bbox in img_annos:
lowercase__ : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x)
lowercase__ : Any = scale_y + bbox[2] * (1 - scale_y)
lowercase__ : Union[str, Any] = scale_x + bbox[3] * (1 - scale_x)
lowercase__ : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax])
# Remove bounding box small than scale of filter
if filter_scale > 0:
lowercase__ : Optional[int] = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def lowercase_ ( _lowerCamelCase : int):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
lowercase__ : List[str] = ascii_lowercase + digits
return "".join(random.choice(__lowerCAmelCase) for _ in range(__lowerCAmelCase))
if __name__ == "__main__":
main()
print('''DONE ✅''')
| 362 | class snake_case_ :
def __init__( self : int ) -> Optional[int]:
lowercase__ : Optional[int] = 0
lowercase__ : List[str] = 0
lowercase__ : Any = {}
def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]:
if vertex not in self.adjacency:
lowercase__ : List[Any] = {}
self.num_vertices += 1
def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]:
self.add_vertex(lowercase_ )
self.add_vertex(lowercase_ )
if head == tail:
return
lowercase__ : int = weight
lowercase__ : Any = weight
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
lowercase__ : List[Any] = self.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : int = edge
edges.remove((tail, head, weight) )
for i in range(len(lowercase_ ) ):
lowercase__ : Tuple = list(edges[i] )
edges.sort(key=lambda lowercase_ : e[2] )
for i in range(len(lowercase_ ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
lowercase__ : int = edges[i][2] + 1
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge
lowercase__ : Union[str, Any] = weight
lowercase__ : Dict = weight
def __str__( self : str ) -> Any:
lowercase__ : str = ""
for tail in self.adjacency:
for head in self.adjacency[tail]:
lowercase__ : Optional[Any] = self.adjacency[head][tail]
string += F'''{head} -> {tail} == {weight}\n'''
return string.rstrip("\n" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]:
lowercase__ : Any = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def __UpperCamelCase ( self : List[str] ) -> Dict:
return self.adjacency.keys()
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]:
lowercase__ : Any = Graph()
if vertices is None:
lowercase__ : str = []
if edges is None:
lowercase__ : List[Any] = []
for vertex in vertices:
g.add_vertex(lowercase_ )
for edge in edges:
g.add_edge(*lowercase_ )
return g
class snake_case_ :
def __init__( self : int ) -> List[str]:
lowercase__ : Dict = {}
lowercase__ : Tuple = {}
def __len__( self : Union[str, Any] ) -> Union[str, Any]:
return len(self.parent )
def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple:
if item in self.parent:
return self.find(lowercase_ )
lowercase__ : Union[str, Any] = item
lowercase__ : int = 0
return item
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any:
if item not in self.parent:
return self.make_set(lowercase_ )
if item != self.parent[item]:
lowercase__ : Union[str, Any] = self.find(self.parent[item] )
return self.parent[item]
def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]:
lowercase__ : Dict = self.find(lowercase_ )
lowercase__ : Optional[int] = self.find(lowercase_ )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
lowercase__ : Dict = roota
return roota
if self.rank[roota] < self.rank[roota]:
lowercase__ : int = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
lowercase__ : Tuple = roota
return roota
return None
@staticmethod
def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]:
lowercase__ : List[Any] = graph.num_vertices
lowercase__ : Optional[Any] = Graph.UnionFind()
lowercase__ : int = []
while num_components > 1:
lowercase__ : List[Any] = {}
for vertex in graph.get_vertices():
lowercase__ : Any = -1
lowercase__ : List[str] = graph.get_edges()
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : str = edge
edges.remove((tail, head, weight) )
for edge in edges:
lowercase__ , lowercase__ , lowercase__ : List[str] = edge
lowercase__ : List[str] = union_find.find(lowercase_ )
lowercase__ : Union[str, Any] = union_find.find(lowercase_ )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : int = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
lowercase__ : Dict = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex]
if union_find.find(lowercase_ ) != union_find.find(lowercase_ ):
union_find.union(lowercase_ , lowercase_ )
mst_edges.append(cheap_edge[vertex] )
lowercase__ : Optional[Any] = num_components - 1
lowercase__ : List[Any] = Graph.build(edges=lowercase_ )
return mst
| 333 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'facebook/s2t-wav2vec2-large-en-de': (
'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json'
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech2text2
}
class snake_case_ ( _A ):
__A : List[str] = "speech_to_text_2"
__A : List[str] = ["past_key_values"]
__A : int = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Any , lowercase_ : List[str]=1_00_00 , lowercase_ : Dict=6 , lowercase_ : Dict=20_48 , lowercase_ : str=4 , lowercase_ : int=0.0 , lowercase_ : Tuple=True , lowercase_ : List[Any]="relu" , lowercase_ : Union[str, Any]=2_56 , lowercase_ : int=0.1 , lowercase_ : List[str]=0.0 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Tuple=0.02 , lowercase_ : int=2 , lowercase_ : List[Any]=True , lowercase_ : Any=1 , lowercase_ : List[str]=0 , lowercase_ : Optional[Any]=2 , lowercase_ : int=10_24 , **lowercase_ : str , ) -> List[str]:
lowercase__ : Union[str, Any] = vocab_size
lowercase__ : List[Any] = d_model
lowercase__ : Union[str, Any] = decoder_ffn_dim
lowercase__ : Any = decoder_layers
lowercase__ : Tuple = decoder_attention_heads
lowercase__ : List[Any] = dropout
lowercase__ : Dict = attention_dropout
lowercase__ : List[str] = activation_dropout
lowercase__ : Optional[Any] = activation_function
lowercase__ : Tuple = init_std
lowercase__ : Optional[Any] = decoder_layerdrop
lowercase__ : List[str] = use_cache
lowercase__ : List[str] = decoder_layers
lowercase__ : int = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase__ : Any = max_target_positions
super().__init__(
pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , decoder_start_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
| 363 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = DPTConfig()
if "large" in checkpoint_url:
lowercase__ : str = 1024
lowercase__ : List[str] = 4096
lowercase__ : List[Any] = 24
lowercase__ : Dict = 16
lowercase__ : Union[str, Any] = [5, 11, 17, 23]
lowercase__ : Any = [256, 512, 1024, 1024]
lowercase__ : Optional[int] = (1, 384, 384)
if "ade" in checkpoint_url:
lowercase__ : Union[str, Any] = True
lowercase__ : Tuple = 150
lowercase__ : Optional[int] = "huggingface/label-files"
lowercase__ : str = "ade20k-id2label.json"
lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r"))
lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()}
lowercase__ : Optional[Any] = idalabel
lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
lowercase__ : Tuple = [1, 150, 480, 480]
return config, expected_shape
def lowercase_ ( _lowerCamelCase : List[Any]):
lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder")
if "pretrained.model" in name:
lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings")
if "patch_embed" in name:
lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings")
if "pos_embed" in name:
lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings")
if "attn.proj" in name:
lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense")
if "proj" in name and "project" not in name:
lowercase__ : int = name.replace("proj" , "projection")
if "blocks" in name:
lowercase__ : List[str] = name.replace("blocks" , "layer")
if "mlp.fc1" in name:
lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense")
if "mlp.fc2" in name:
lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense")
if "norm1" in name:
lowercase__ : List[str] = name.replace("norm1" , "layernorm_before")
if "norm2" in name:
lowercase__ : Dict = name.replace("norm2" , "layernorm_after")
if "scratch.output_conv" in name:
lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head")
if "scratch" in name:
lowercase__ : str = name.replace("scratch" , "neck")
if "layer1_rn" in name:
lowercase__ : int = name.replace("layer1_rn" , "convs.0")
if "layer2_rn" in name:
lowercase__ : int = name.replace("layer2_rn" , "convs.1")
if "layer3_rn" in name:
lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2")
if "layer4_rn" in name:
lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3")
if "refinenet" in name:
lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1])
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''')
if "out_conv" in name:
lowercase__ : str = name.replace("out_conv" , "projection")
if "resConfUnit1" in name:
lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1")
if "resConfUnit2" in name:
lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2")
if "conv1" in name:
lowercase__ : List[Any] = name.replace("conv1" , "convolution1")
if "conv2" in name:
lowercase__ : Tuple = name.replace("conv2" , "convolution2")
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0")
if "pretrained.act_postprocess2.0.project.0" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0")
if "pretrained.act_postprocess3.0.project.0" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0")
if "pretrained.act_postprocess4.0.project.0" in name:
lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0")
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection")
if "pretrained.act_postprocess1.4" in name:
lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize")
if "pretrained.act_postprocess2.3" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection")
if "pretrained.act_postprocess2.4" in name:
lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize")
if "pretrained.act_postprocess3.3" in name:
lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection")
if "pretrained.act_postprocess4.3" in name:
lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection")
if "pretrained.act_postprocess4.4" in name:
lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize")
if "pretrained" in name:
lowercase__ : Any = name.replace("pretrained" , "dpt")
if "bn" in name:
lowercase__ : str = name.replace("bn" , "batch_norm")
if "head" in name:
lowercase__ : Optional[Any] = name.replace("head" , "head.head")
if "encoder.norm" in name:
lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm")
if "auxlayer" in name:
lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head")
return name
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''')
lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''')
# next, add query, keys and values (in that order) to the state dict
lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :]
lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size]
lowercase__ : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowercase__ : Optional[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowercase__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowercase__ : int = in_proj_bias[-config.hidden_size :]
def lowercase_ ( ):
lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw)
return im
@torch.no_grad()
def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict):
lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase)
# load original state_dict from URL
lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu")
# remove certain keys
remove_ignore_keys_(_lowerCamelCase)
# rename keys
for key in state_dict.copy().keys():
lowercase__ : List[str] = state_dict.pop(_lowerCamelCase)
lowercase__ : List[Any] = val
# read in qkv matrices
read_in_q_k_v(_lowerCamelCase , _lowerCamelCase)
# load HuggingFace model
lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase)
model.load_state_dict(_lowerCamelCase)
model.eval()
# Check outputs on an image
lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384
lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase)
lowercase__ : List[str] = prepare_img()
lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt")
# forward pass
lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth
# Assert logits
lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]])
if "ade" in checkpoint_url:
lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]])
assert outputs.shape == torch.Size(_lowerCamelCase)
assert (
torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4)
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase)
)
Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase)
print(f'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_lowerCamelCase)
print(f'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_lowerCamelCase)
if push_to_hub:
print("Pushing model to hub...")
model.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , )
image_processor.push_to_hub(
repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 333 | 0 |
def lowercase_ ( _lowerCamelCase : Any) -> str:
if number > 0:
raise ValueError("input must be a negative integer")
lowercase__ : Optional[int] = len(bin(__snake_case)[3:])
lowercase__ : int = bin(abs(__snake_case) - (1 << binary_number_length))[3:]
lowercase__ : Tuple = (
(
"1"
+ "0" * (binary_number_length - len(__snake_case))
+ twos_complement_number
)
if number < 0
else "0"
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 364 | def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000):
lowercase__ : Union[str, Any] = 1
lowercase__ : int = 0
for divide_by_number in range(_lowerCamelCase , digit + 1):
lowercase__ : list[int] = []
lowercase__ : Dict = numerator
for _ in range(1 , digit + 1):
if now_divide in has_been_divided:
if longest_list_length < len(_lowerCamelCase):
lowercase__ : Union[str, Any] = len(_lowerCamelCase)
lowercase__ : Optional[int] = divide_by_number
else:
has_been_divided.append(_lowerCamelCase)
lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 333 | 0 |
import os
from pathlib import Path
def lowercase_ ( ):
from torch.utils.cpp_extension import load
lowercase__ : Optional[Any] = Path(_a).resolve().parent.parent.parent / """kernels""" / """deformable_detr"""
lowercase__ : Tuple = [
root / filename
for filename in [
"""vision.cpp""",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp"),
os.path.join("cuda" , "ms_deform_attn_cuda.cu"),
]
]
load(
"MultiScaleDeformableAttention" , _a , with_cuda=_a , extra_include_paths=[str(_a)] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 365 | import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ):
__A : int = StableUnCLIPPipeline
__A : int = TEXT_TO_IMAGE_PARAMS
__A : Any = TEXT_TO_IMAGE_BATCH_PARAMS
__A : int = TEXT_TO_IMAGE_IMAGE_PARAMS
__A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
__A : int = False
def __UpperCamelCase ( self : Optional[int] ) -> List[str]:
lowercase__ : str = 32
lowercase__ : Any = embedder_hidden_size
# prior components
torch.manual_seed(0 )
lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : List[str] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : Any = PriorTransformer(
num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , )
torch.manual_seed(0 )
lowercase__ : Union[str, Any] = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ )
lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
lowercase__ : Tuple = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) )
torch.manual_seed(0 )
lowercase__ : str = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , )
torch.manual_seed(0 )
lowercase__ : Any = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , )
torch.manual_seed(0 )
lowercase__ : List[str] = AutoencoderKL()
lowercase__ : List[Any] = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any:
if str(lowercase_ ).startswith("mps" ):
lowercase__ : Any = torch.manual_seed(lowercase_ )
else:
lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase__ : Optional[Any] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]:
lowercase__ : Union[str, Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ )
def __UpperCamelCase ( self : List[Any] ) -> List[str]:
lowercase__ : str = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowercase_ )
@slow
@require_torch_gpu
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self : int ) -> int:
lowercase__ : Optional[int] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" )
lowercase__ : Optional[int] = output.images[0]
assert image.shape == (7_68, 7_68, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
lowercase__ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
lowercase__ : str = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
lowercase__ : Any = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 333 | 0 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = OrderedDict(
[
('''align''', '''EfficientNetImageProcessor'''),
('''beit''', '''BeitImageProcessor'''),
('''bit''', '''BitImageProcessor'''),
('''blip''', '''BlipImageProcessor'''),
('''blip-2''', '''BlipImageProcessor'''),
('''bridgetower''', '''BridgeTowerImageProcessor'''),
('''chinese_clip''', '''ChineseCLIPImageProcessor'''),
('''clip''', '''CLIPImageProcessor'''),
('''clipseg''', '''ViTImageProcessor'''),
('''conditional_detr''', '''ConditionalDetrImageProcessor'''),
('''convnext''', '''ConvNextImageProcessor'''),
('''convnextv2''', '''ConvNextImageProcessor'''),
('''cvt''', '''ConvNextImageProcessor'''),
('''data2vec-vision''', '''BeitImageProcessor'''),
('''deformable_detr''', '''DeformableDetrImageProcessor'''),
('''deit''', '''DeiTImageProcessor'''),
('''deta''', '''DetaImageProcessor'''),
('''detr''', '''DetrImageProcessor'''),
('''dinat''', '''ViTImageProcessor'''),
('''donut-swin''', '''DonutImageProcessor'''),
('''dpt''', '''DPTImageProcessor'''),
('''efficientformer''', '''EfficientFormerImageProcessor'''),
('''efficientnet''', '''EfficientNetImageProcessor'''),
('''flava''', '''FlavaImageProcessor'''),
('''focalnet''', '''BitImageProcessor'''),
('''git''', '''CLIPImageProcessor'''),
('''glpn''', '''GLPNImageProcessor'''),
('''groupvit''', '''CLIPImageProcessor'''),
('''imagegpt''', '''ImageGPTImageProcessor'''),
('''instructblip''', '''BlipImageProcessor'''),
('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''),
('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''),
('''levit''', '''LevitImageProcessor'''),
('''mask2former''', '''Mask2FormerImageProcessor'''),
('''maskformer''', '''MaskFormerImageProcessor'''),
('''mgp-str''', '''ViTImageProcessor'''),
('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''),
('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevitv2''', '''MobileViTImageProcessor'''),
('''nat''', '''ViTImageProcessor'''),
('''oneformer''', '''OneFormerImageProcessor'''),
('''owlvit''', '''OwlViTImageProcessor'''),
('''perceiver''', '''PerceiverImageProcessor'''),
('''pix2struct''', '''Pix2StructImageProcessor'''),
('''poolformer''', '''PoolFormerImageProcessor'''),
('''regnet''', '''ConvNextImageProcessor'''),
('''resnet''', '''ConvNextImageProcessor'''),
('''sam''', '''SamImageProcessor'''),
('''segformer''', '''SegformerImageProcessor'''),
('''swiftformer''', '''ViTImageProcessor'''),
('''swin''', '''ViTImageProcessor'''),
('''swin2sr''', '''Swin2SRImageProcessor'''),
('''swinv2''', '''ViTImageProcessor'''),
('''table-transformer''', '''DetrImageProcessor'''),
('''timesformer''', '''VideoMAEImageProcessor'''),
('''tvlt''', '''TvltImageProcessor'''),
('''upernet''', '''SegformerImageProcessor'''),
('''van''', '''ConvNextImageProcessor'''),
('''videomae''', '''VideoMAEImageProcessor'''),
('''vilt''', '''ViltImageProcessor'''),
('''vit''', '''ViTImageProcessor'''),
('''vit_hybrid''', '''ViTHybridImageProcessor'''),
('''vit_mae''', '''ViTImageProcessor'''),
('''vit_msn''', '''ViTImageProcessor'''),
('''xclip''', '''CLIPImageProcessor'''),
('''yolos''', '''YolosImageProcessor'''),
]
)
UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def lowercase_ ( _lowerCamelCase : Optional[int]):
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
lowercase__ : str = model_type_to_module_name(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = importlib.import_module(f'''.{module_name}''' , "transformers.models")
try:
return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(SCREAMING_SNAKE_CASE_ , "__name__" , SCREAMING_SNAKE_CASE_) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowercase__ : Optional[int] = importlib.import_module("transformers")
if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
return getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
return None
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[int] = False , _lowerCamelCase : int = False , _lowerCamelCase : str = None , _lowerCamelCase : List[Any] = None , _lowerCamelCase : Any = None , _lowerCamelCase : int = False , **_lowerCamelCase : Union[str, Any] , ):
lowercase__ : Dict = get_file_from_repo(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , )
if resolved_config_file is None:
logger.info(
"Could not locate the image processor configuration file, will try to use the model config instead.")
return {}
with open(SCREAMING_SNAKE_CASE_ , encoding="utf-8") as reader:
return json.load(SCREAMING_SNAKE_CASE_)
class snake_case_ :
def __init__( self : int ) -> List[str]:
raise EnvironmentError(
"AutoImageProcessor is designed to be instantiated "
"using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." )
@classmethod
@replace_list_option_in_docstrings(_lowercase )
def __UpperCamelCase ( cls : Tuple , lowercase_ : Optional[int] , **lowercase_ : Union[str, Any] ) -> Union[str, Any]:
lowercase__ : List[Any] = kwargs.pop("config" , _lowercase )
lowercase__ : Dict = kwargs.pop("trust_remote_code" , _lowercase )
lowercase__ : int = True
lowercase__ , lowercase__ : Optional[Any] = ImageProcessingMixin.get_image_processor_dict(_lowercase , **_lowercase )
lowercase__ : Optional[int] = config_dict.get("image_processor_type" , _lowercase )
lowercase__ : str = None
if "AutoImageProcessor" in config_dict.get("auto_map" , {} ):
lowercase__ : Dict = config_dict["auto_map"]["AutoImageProcessor"]
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
lowercase__ : Optional[Any] = config_dict.pop("feature_extractor_type" , _lowercase )
if feature_extractor_class is not None:
logger.warning(
"Could not find image processor class in the image processor config or the model config. Loading"
" based on pattern matching with the model's feature extractor configuration." )
lowercase__ : int = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" )
if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ):
lowercase__ : List[str] = config_dict["auto_map"]["AutoFeatureExtractor"]
lowercase__ : Union[str, Any] = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" )
logger.warning(
"Could not find image processor auto map in the image processor config or the model config."
" Loading based on pattern matching with the model's feature extractor configuration." )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(_lowercase , _lowercase ):
lowercase__ : str = AutoConfig.from_pretrained(_lowercase , **_lowercase )
# It could be in `config.image_processor_type``
lowercase__ : List[Any] = getattr(_lowercase , "image_processor_type" , _lowercase )
if hasattr(_lowercase , "auto_map" ) and "AutoImageProcessor" in config.auto_map:
lowercase__ : Optional[int] = config.auto_map["AutoImageProcessor"]
if image_processor_class is not None:
lowercase__ : Optional[Any] = image_processor_class_from_name(_lowercase )
lowercase__ : Any = image_processor_auto_map is not None
lowercase__ : List[str] = image_processor_class is not None or type(_lowercase ) in IMAGE_PROCESSOR_MAPPING
lowercase__ : Optional[Any] = resolve_trust_remote_code(
_lowercase , _lowercase , _lowercase , _lowercase )
if has_remote_code and trust_remote_code:
lowercase__ : Optional[Any] = get_class_from_dynamic_module(
_lowercase , _lowercase , **_lowercase )
lowercase__ : Tuple = kwargs.pop("code_revision" , _lowercase )
if os.path.isdir(_lowercase ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(_lowercase , **_lowercase )
elif image_processor_class is not None:
return image_processor_class.from_dict(_lowercase , **_lowercase )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(_lowercase ) in IMAGE_PROCESSOR_MAPPING:
lowercase__ : Tuple = IMAGE_PROCESSOR_MAPPING[type(_lowercase )]
return image_processor_class.from_dict(_lowercase , **_lowercase )
raise ValueError(
F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '''
F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def __UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : Tuple ) -> Union[str, Any]:
IMAGE_PROCESSOR_MAPPING.register(_lowercase , _lowercase )
| 366 | import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False):
try:
lowercase__ : str = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase__ : Union[str, Any] = default
else:
# KEY is set, convert it to True or False.
try:
lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''')
return _value
UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skip("Test was skipped")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Tuple):
return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Dict):
return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Union[str, Any]):
return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None):
if test_case is None:
return partial(_lowerCamelCase , version=_lowerCamelCase)
return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[Any]):
return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int):
return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : List[str]):
return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase)
UpperCamelCase = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def lowercase_ ( _lowerCamelCase : Any):
return unittest.skipUnless(
_atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase)
class snake_case_ ( unittest.TestCase ):
__A : int = True
@classmethod
def __UpperCamelCase ( cls : str ) -> str:
lowercase__ : str = tempfile.mkdtemp()
@classmethod
def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]:
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __UpperCamelCase ( self : str ) -> Optional[int]:
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowercase_ )
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]:
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str:
lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : Tuple = AcceleratorState()
lowercase__ : Optional[int] = tensor[None].clone().to(state.device)
lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu()
lowercase__ : Optional[Any] = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i] , _lowerCamelCase):
return False
return True
class snake_case_ :
def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]:
lowercase__ : int = returncode
lowercase__ : Dict = stdout
lowercase__ : List[Any] = stderr
async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str):
while True:
lowercase__ : int = await stream.readline()
if line:
callback(_lowerCamelCase)
else:
break
async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False):
if echo:
print("\nRunning: " , " ".join(_lowerCamelCase))
lowercase__ : str = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase__ : Tuple = []
lowercase__ : List[Any] = []
def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""):
lowercase__ : Optional[int] = line.decode("utf-8").rstrip()
sink.append(_lowerCamelCase)
if not quiet:
print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))),
] , timeout=_lowerCamelCase , )
return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase)
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True):
lowercase__ : Optional[Any] = asyncio.get_event_loop()
lowercase__ : List[Any] = loop.run_until_complete(
_stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase))
lowercase__ : str = " ".join(_lowerCamelCase)
if result.returncode > 0:
lowercase__ : Dict = "\n".join(result.stderr)
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''')
return result
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False):
try:
lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(_lowerCamelCase , "decode"):
lowercase__ : Optional[Any] = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
| 333 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
UpperCamelCase = None
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase = {
'''vocab_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_file''': {
'''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''',
},
}
UpperCamelCase = {
'''camembert-base''': 512,
}
UpperCamelCase = '''▁'''
class snake_case_ ( lowerCamelCase_ ):
__A : str = VOCAB_FILES_NAMES
__A : Tuple = PRETRAINED_VOCAB_FILES_MAP
__A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A : Optional[int] = ["""input_ids""", """attention_mask"""]
__A : Tuple = CamembertTokenizer
def __init__( self : Any , lowercase_ : str=None , lowercase_ : List[str]=None , lowercase_ : int="<s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : Any="<s>" , lowercase_ : List[str]="<unk>" , lowercase_ : Dict="<pad>" , lowercase_ : str="<mask>" , lowercase_ : Any=["<s>NOTUSED", "</s>NOTUSED"] , **lowercase_ : Optional[int] , ) -> Optional[int]:
lowercase__ : List[str] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
lowercase__ : Tuple = vocab_file
lowercase__ : Tuple = False if not self.vocab_file else True
def __UpperCamelCase ( self : Tuple , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> Any:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase__ : Optional[Any] = [self.cls_token_id]
lowercase__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __UpperCamelCase ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> Optional[int]:
lowercase__ : Union[str, Any] = [self.sep_token_id]
lowercase__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCamelCase ( self : Any , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Union[str, Any]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ : List[Any] = os.path.join(
_UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 367 | from ..utils import DummyObject, requires_backends
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[Any] = ["flax"]
def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Dict = ["flax"]
def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[Any] = ["flax"]
def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : Optional[int] = ["flax"]
def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : int = ["flax"]
def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]:
requires_backends(cls , ["flax"] )
class snake_case_ ( metaclass=__A ):
__A : List[str] = ["flax"]
def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple:
requires_backends(self , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ["flax"] )
@classmethod
def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]:
requires_backends(cls , ["flax"] )
| 333 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
UpperCamelCase = logging.get_logger(__name__)
class snake_case_ ( _a ):
def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : int , lowercase_ : float , **lowercase_ : str ) -> Optional[int]:
lowercase__ : List[str] = feature_size
lowercase__ : str = sampling_rate
lowercase__ : Dict = padding_value
lowercase__ : List[str] = kwargs.pop("padding_side" , "right" )
lowercase__ : List[Any] = kwargs.pop("return_attention_mask" , __lowerCamelCase )
super().__init__(**__lowerCamelCase )
def __UpperCamelCase ( self : int , lowercase_ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , lowercase_ : Union[bool, str, PaddingStrategy] = True , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[str, TensorType]] = None , ) -> Union[str, Any]:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
lowercase__ : Optional[Any] = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
F''' to this method that includes {self.model_input_names[0]}, but you provided'''
F''' {list(processed_features.keys() )}''' )
lowercase__ : Optional[int] = processed_features[self.model_input_names[0]]
lowercase__ : int = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(__lowerCamelCase ) == 0:
if return_attention_mask:
lowercase__ : Any = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
lowercase__ : List[str] = required_input[0]
if isinstance(__lowerCamelCase , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
lowercase__ : Optional[Any] = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(__lowerCamelCase ):
lowercase__ : str = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(__lowerCamelCase ):
lowercase__ : int = """tf"""
elif is_torch_tensor(__lowerCamelCase ):
lowercase__ : Optional[Any] = """pt"""
elif isinstance(__lowerCamelCase , (int, float, list, tuple, np.ndarray) ):
lowercase__ : List[str] = """np"""
else:
raise ValueError(
F'''type of {first_element} unknown: {type(__lowerCamelCase )}. '''
"Should be one of a python, numpy, pytorch or tensorflow object." )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
lowercase__ : str = to_numpy(__lowerCamelCase )
else:
lowercase__ : int = [to_numpy(__lowerCamelCase ) for v in value]
# Convert padding_strategy in PaddingStrategy
lowercase__ : Dict = self._get_padding_strategies(padding=__lowerCamelCase , max_length=__lowerCamelCase )
lowercase__ : str = processed_features[self.model_input_names[0]]
lowercase__ : int = len(__lowerCamelCase )
if not all(len(__lowerCamelCase ) == batch_size for v in processed_features.values() ):
raise ValueError("Some items in the output dictionary have a different batch size than others." )
lowercase__ : Optional[Any] = []
for i in range(__lowerCamelCase ):
lowercase__ : Union[str, Any] = {k: v[i] for k, v in processed_features.items()}
# truncation
lowercase__ : List[str] = self._truncate(
__lowerCamelCase , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , truncation=__lowerCamelCase , )
truncated_inputs.append(__lowerCamelCase )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
lowercase__ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
lowercase__ : Union[str, Any] = PaddingStrategy.MAX_LENGTH
lowercase__ : Dict = {}
for i in range(__lowerCamelCase ):
# padding
lowercase__ : Optional[int] = self._pad(
truncated_inputs[i] , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
for key, value in outputs.items():
if key not in batch_outputs:
lowercase__ : List[str] = []
if value.dtype is np.dtype(np.floataa ):
lowercase__ : List[str] = value.astype(np.floataa )
batch_outputs[key].append(__lowerCamelCase )
return BatchFeature(__lowerCamelCase , tensor_type=__lowerCamelCase )
def __UpperCamelCase ( self : str , lowercase_ : Union[Dict[str, np.ndarray], BatchFeature] , lowercase_ : Optional[int] = None , lowercase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , ) -> int:
lowercase__ : Optional[Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
lowercase__ : List[Any] = len(__lowerCamelCase )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
lowercase__ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
lowercase__ : Union[str, Any] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__lowerCamelCase ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
lowercase__ : Union[str, Any] = np.ones(len(__lowerCamelCase ) , dtype=np.intaa )
if needs_to_be_padded:
lowercase__ : Tuple = max_length - len(__lowerCamelCase )
if self.padding_side == "right":
if return_attention_mask:
lowercase__ : Tuple = np.pad(
processed_features["attention_mask"] , (0, difference) )
lowercase__ : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
lowercase__ : Tuple = np.pad(
__lowerCamelCase , __lowerCamelCase , "constant" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
lowercase__ : Optional[Any] = np.pad(
processed_features["attention_mask"] , (difference, 0) )
lowercase__ : Tuple = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
lowercase__ : Tuple = np.pad(
__lowerCamelCase , __lowerCamelCase , "constant" , constant_values=self.padding_value )
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return processed_features
def __UpperCamelCase ( self : Any , lowercase_ : Union[Dict[str, np.ndarray], BatchFeature] , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , ) -> Tuple:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." )
lowercase__ : Optional[Any] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
lowercase__ : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
lowercase__ : Any = len(__lowerCamelCase ) > max_length
if needs_to_be_truncated:
lowercase__ : str = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
lowercase__ : List[Any] = processed_features["""attention_mask"""][:max_length]
return processed_features
def __UpperCamelCase ( self : str , lowercase_ : Tuple=False , lowercase_ : Optional[int]=None ) -> str:
# Get padding strategy
if padding is not False:
if padding is True:
lowercase__ : List[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(__lowerCamelCase , __lowerCamelCase ):
lowercase__ : Optional[int] = PaddingStrategy(__lowerCamelCase )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
lowercase__ : Any = padding
else:
lowercase__ : Dict = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." )
return padding_strategy
| 368 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class snake_case_ ( __A ):
__A : List[str] = "vit_mae"
def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]:
super().__init__(**lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : str = num_hidden_layers
lowercase__ : Optional[int] = num_attention_heads
lowercase__ : List[Any] = intermediate_size
lowercase__ : str = hidden_act
lowercase__ : List[str] = hidden_dropout_prob
lowercase__ : Optional[Any] = attention_probs_dropout_prob
lowercase__ : Any = initializer_range
lowercase__ : Optional[Any] = layer_norm_eps
lowercase__ : Optional[Any] = image_size
lowercase__ : Optional[int] = patch_size
lowercase__ : Any = num_channels
lowercase__ : str = qkv_bias
lowercase__ : Optional[Any] = decoder_num_attention_heads
lowercase__ : Any = decoder_hidden_size
lowercase__ : Any = decoder_num_hidden_layers
lowercase__ : Union[str, Any] = decoder_intermediate_size
lowercase__ : int = mask_ratio
lowercase__ : Tuple = norm_pix_loss
| 333 | 0 |
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class snake_case_ :
@staticmethod
def __UpperCamelCase ( *lowercase_ : Optional[Any] , **lowercase_ : Dict ) -> Union[str, Any]:
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class snake_case_ ( unittest.TestCase ):
__A : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING
def __UpperCamelCase ( self : Any , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[str] ) -> Any:
lowercase__ : List[Any] = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def __UpperCamelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ) -> Tuple:
lowercase__ : str = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 )
self.assertGreater(len(lowercase_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowercase_ , {
"score": ANY(lowercase_ ),
"label": ANY(lowercase_ ),
"box": {"xmin": ANY(lowercase_ ), "ymin": ANY(lowercase_ ), "xmax": ANY(lowercase_ ), "ymax": ANY(lowercase_ )},
} , )
import datasets
lowercase__ : List[str] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" )
lowercase__ : int = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
lowercase__ : List[Any] = object_detector(lowercase_ , threshold=0.0 )
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for outputs in batch_outputs:
self.assertGreater(len(lowercase_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowercase_ , {
"score": ANY(lowercase_ ),
"label": ANY(lowercase_ ),
"box": {"xmin": ANY(lowercase_ ), "ymin": ANY(lowercase_ ), "xmax": ANY(lowercase_ ), "ymax": ANY(lowercase_ )},
} , )
@require_tf
@unittest.skip("Object detection not implemented in TF" )
def __UpperCamelCase ( self : Tuple ) -> Optional[Any]:
pass
@require_torch
def __UpperCamelCase ( self : List[str] ) -> Any:
lowercase__ : Tuple = "hf-internal-testing/tiny-detr-mobilenetsv3"
lowercase__ : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(lowercase_ )
lowercase__ : List[Any] = AutoFeatureExtractor.from_pretrained(lowercase_ )
lowercase__ : Dict = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ )
lowercase__ : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
] , )
lowercase__ : Dict = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
[
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
],
[
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
{"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}},
],
] , )
@require_torch
@slow
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
lowercase__ : List[Any] = "facebook/detr-resnet-50"
lowercase__ : int = AutoModelForObjectDetection.from_pretrained(lowercase_ )
lowercase__ : str = AutoFeatureExtractor.from_pretrained(lowercase_ )
lowercase__ : List[str] = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ )
lowercase__ : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
lowercase__ : List[str] = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
[
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
[
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
] , )
@require_torch
@slow
def __UpperCamelCase ( self : Dict ) -> Dict:
lowercase__ : List[Any] = "facebook/detr-resnet-50"
lowercase__ : Tuple = pipeline("object-detection" , model=lowercase_ )
lowercase__ : Dict = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
lowercase__ : List[Any] = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
] )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
[
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
[
{"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}},
{"score": 0.99_60, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}},
{"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}},
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
],
] , )
@require_torch
@slow
def __UpperCamelCase ( self : Optional[int] ) -> List[Any]:
lowercase__ : Union[str, Any] = 0.99_85
lowercase__ : int = "facebook/detr-resnet-50"
lowercase__ : Tuple = pipeline("object-detection" , model=lowercase_ )
lowercase__ : Optional[int] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowercase_ )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}},
{"score": 0.99_87, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}},
] , )
@require_torch
@require_pytesseract
@slow
def __UpperCamelCase ( self : List[Any] ) -> Tuple:
lowercase__ : List[str] = "Narsil/layoutlmv3-finetuned-funsd"
lowercase__ : List[Any] = 0.99_93
lowercase__ : Optional[Any] = pipeline("object-detection" , model=lowercase_ , threshold=lowercase_ )
lowercase__ : Optional[Any] = object_detector(
"https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" )
self.assertEqual(
nested_simplify(lowercase_ , decimals=4 ) , [
{"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}},
{"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}},
] , )
| 369 | def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
while a != 0:
lowercase__ , lowercase__ : Dict = b % a, a
return b
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int):
if gcd(_lowerCamelCase , _lowerCamelCase) != 1:
lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist'''
raise ValueError(_lowerCamelCase)
lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a
lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m
while va != 0:
lowercase__ : Tuple = ua // va
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va
return ua % m
| 333 | 0 |
"""simple docstring"""
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[int] = torch.exp(_lowerCamelCase)
lowercase__ : Dict = torch.sum(_lowerCamelCase , dim=1) # sum of exp(x_i)
lowercase__ : List[Any] = torch.sum(x * exp_x , dim=1) # sum of x_i * exp(x_i)
return torch.log(_lowerCamelCase) - B / A
class snake_case_ ( nn.Module ):
def __init__( self : List[str] , lowercase_ : str ) -> Dict:
super().__init__()
lowercase__ : Tuple = config.output_attentions
lowercase__ : List[Any] = config.output_hidden_states
lowercase__ : str = nn.ModuleList([BertLayer(lowercase_ ) for _ in range(config.num_hidden_layers )] )
lowercase__ : Any = nn.ModuleList([BertHighway(lowercase_ ) for _ in range(config.num_hidden_layers )] )
lowercase__ : int = [-1 for _ in range(config.num_hidden_layers )]
def __UpperCamelCase ( self : str , lowercase_ : int ) -> Union[str, Any]:
if (type(lowercase_ ) is float) or (type(lowercase_ ) is int):
for i in range(len(self.early_exit_entropy ) ):
lowercase__ : int = x
else:
lowercase__ : Union[str, Any] = x
def __UpperCamelCase ( self : Optional[int] , lowercase_ : Union[str, Any] ) -> Dict:
lowercase__ : int = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def __UpperCamelCase ( self : int , lowercase_ : Any , lowercase_ : Any=None , lowercase_ : Union[str, Any]=None , lowercase_ : str=None , lowercase_ : str=None , ) -> int:
lowercase__ : str = ()
lowercase__ : List[str] = ()
lowercase__ : Tuple = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
lowercase__ : List[Any] = all_hidden_states + (hidden_states,)
lowercase__ : str = layer_module(
lowercase_ , lowercase_ , head_mask[i] , lowercase_ , lowercase_ )
lowercase__ : str = layer_outputs[0]
if self.output_attentions:
lowercase__ : Dict = all_attentions + (layer_outputs[1],)
lowercase__ : int = (hidden_states,)
if self.output_hidden_states:
lowercase__ : Dict = current_outputs + (all_hidden_states,)
if self.output_attentions:
lowercase__ : Union[str, Any] = current_outputs + (all_attentions,)
lowercase__ : Optional[int] = self.highway[i](lowercase_ )
# logits, pooled_output
if not self.training:
lowercase__ : Dict = highway_exit[0]
lowercase__ : str = entropy(lowercase_ )
lowercase__ : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
lowercase__ : str = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
lowercase__ : Any = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(lowercase_ , i + 1 )
else:
lowercase__ : Optional[Any] = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
lowercase__ : str = all_hidden_states + (hidden_states,)
lowercase__ : Union[str, Any] = (hidden_states,)
if self.output_hidden_states:
lowercase__ : Any = outputs + (all_hidden_states,)
if self.output_attentions:
lowercase__ : Tuple = outputs + (all_attentions,)
lowercase__ : Any = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"The Bert Model transformer with early exiting (DeeBERT). " ,a__ ,)
class snake_case_ ( a__ ):
def __init__( self : int , lowercase_ : Dict ) -> Optional[Any]:
super().__init__(lowercase_ )
lowercase__ : Optional[int] = config
lowercase__ : Dict = BertEmbeddings(lowercase_ )
lowercase__ : Any = DeeBertEncoder(lowercase_ )
lowercase__ : List[Any] = BertPooler(lowercase_ )
self.init_weights()
def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]:
self.encoder.init_highway_pooler(self.pooler )
def __UpperCamelCase ( self : List[str] ) -> List[str]:
return self.embeddings.word_embeddings
def __UpperCamelCase ( self : Dict , lowercase_ : Tuple ) -> Optional[Any]:
lowercase__ : Union[str, Any] = value
def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Any ) -> Any:
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(lowercase_ )
@add_start_docstrings_to_model_forward(lowercase_ )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Any=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : List[str]=None , lowercase_ : List[str]=None , lowercase_ : List[str]=None , lowercase_ : Any=None , lowercase_ : Union[str, Any]=None , ) -> str:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" )
elif input_ids is not None:
lowercase__ : Optional[int] = input_ids.size()
elif inputs_embeds is not None:
lowercase__ : str = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds" )
lowercase__ : Tuple = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
lowercase__ : Optional[Any] = torch.ones(lowercase_ , device=lowercase_ )
if encoder_attention_mask is None:
lowercase__ : Optional[int] = torch.ones(lowercase_ , device=lowercase_ )
if token_type_ids is None:
lowercase__ : Dict = torch.zeros(lowercase_ , dtype=torch.long , device=lowercase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
lowercase__ : torch.Tensor = self.get_extended_attention_mask(lowercase_ , lowercase_ , lowercase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
lowercase__ : Optional[int] = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
lowercase__ : Optional[Any] = encoder_attention_mask[:, None, None, :]
lowercase__ : List[Any] = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
lowercase__ : Dict = (1.0 - encoder_extended_attention_mask) * -1_00_00.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
lowercase__ : int = self.get_head_mask(lowercase_ , self.config.num_hidden_layers )
lowercase__ : str = self.embeddings(
input_ids=lowercase_ , position_ids=lowercase_ , token_type_ids=lowercase_ , inputs_embeds=lowercase_ )
lowercase__ : Optional[Any] = self.encoder(
lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , )
lowercase__ : str = encoder_outputs[0]
lowercase__ : Tuple = self.pooler(lowercase_ )
lowercase__ : Tuple = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class snake_case_ ( a__ ):
def __init__( self : Optional[Any] , lowercase_ : str , lowercase_ : List[str] ) -> int:
lowercase__ : str = message
lowercase__ : Dict = exit_layer # start from 1!
class snake_case_ ( nn.Module ):
def __init__( self : str , lowercase_ : int ) -> Dict:
super().__init__()
lowercase__ : Union[str, Any] = BertPooler(lowercase_ )
lowercase__ : Tuple = nn.Dropout(config.hidden_dropout_prob )
lowercase__ : str = nn.Linear(config.hidden_size , config.num_labels )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Optional[int] ) -> Tuple:
# Pooler
lowercase__ : Optional[Any] = encoder_outputs[0]
lowercase__ : int = self.pooler(lowercase_ )
# "return" pooler_output
# BertModel
lowercase__ : Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
lowercase__ : Union[str, Any] = bmodel_output[1]
lowercase__ : int = self.dropout(lowercase_ )
lowercase__ : Dict = self.classifier(lowercase_ )
return logits, pooled_output
@add_start_docstrings(
"Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " ,a__ ,)
class snake_case_ ( a__ ):
def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] ) -> Optional[Any]:
super().__init__(lowercase_ )
lowercase__ : str = config.num_labels
lowercase__ : List[Any] = config.num_hidden_layers
lowercase__ : Union[str, Any] = DeeBertModel(lowercase_ )
lowercase__ : List[Any] = nn.Dropout(config.hidden_dropout_prob )
lowercase__ : str = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(lowercase_ )
def __UpperCamelCase ( self : List[str] , lowercase_ : int=None , lowercase_ : Union[str, Any]=None , lowercase_ : Any=None , lowercase_ : Optional[Any]=None , lowercase_ : List[str]=None , lowercase_ : Any=None , lowercase_ : Optional[int]=None , lowercase_ : int=-1 , lowercase_ : Optional[int]=False , ) -> int:
lowercase__ : int = self.num_layers
try:
lowercase__ : Optional[Any] = self.bert(
lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
lowercase__ : Any = outputs[1]
lowercase__ : Tuple = self.dropout(lowercase_ )
lowercase__ : Any = self.classifier(lowercase_ )
lowercase__ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
lowercase__ : List[Any] = e.message
lowercase__ : Optional[int] = e.exit_layer
lowercase__ : Tuple = outputs[0]
if not self.training:
lowercase__ : Optional[int] = entropy(lowercase_ )
lowercase__ : Any = []
lowercase__ : Optional[Any] = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
lowercase__ : Union[str, Any] = MSELoss()
lowercase__ : Union[str, Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
lowercase__ : Any = CrossEntropyLoss()
lowercase__ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
lowercase__ : int = []
for highway_exit in outputs[-1]:
lowercase__ : List[Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(lowercase_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
lowercase__ : int = MSELoss()
lowercase__ : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
lowercase__ : Dict = CrossEntropyLoss()
lowercase__ : List[str] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(lowercase_ )
if train_highway:
lowercase__ : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
lowercase__ : Any = (loss,) + outputs
if not self.training:
lowercase__ : Any = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
lowercase__ : int = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 370 | import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "):
lowercase__ : Union[str, Any] = text.split(_lowerCamelCase)
return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)]
def lowercase_ ( _lowerCamelCase : dict):
lowercase__ , lowercase__ : List[str] = [], []
for title, text in zip(documents["title"] , documents["text"]):
if text is not None:
for passage in split_text(_lowerCamelCase):
titles.append(title if title is not None else "")
texts.append(_lowerCamelCase)
return {"title": titles, "text": texts}
def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast):
lowercase__ : Union[str, Any] = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"]
lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowercase__ : str = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"])
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc)
# And compute the embeddings
lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase)
lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
lowercase__ : List[Any] = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space
lowercase__ : List[Any] = dataset.map(
partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , )
# And finally save your dataset
lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset")
dataset.save_to_disk(_lowerCamelCase)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase)
# And save the index
lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(_lowerCamelCase)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class snake_case_ :
__A : str = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,)
__A : Optional[str] = field(
default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,)
__A : str = field(
default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,)
__A : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} ,)
__A : Optional[str] = field(
default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,)
@dataclass
class snake_case_ :
__A : Optional[int] = field(
default=__A ,metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} ,)
__A : int = field(
default=16 ,metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} ,)
@dataclass
class snake_case_ :
__A : int = field(
default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,)
__A : int = field(
default=128 ,metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} ,)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 333 | 0 |
"""simple docstring"""
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
UpperCamelCase , UpperCamelCase , UpperCamelCase = False, False, False
@dataclass
class snake_case_ :
__A : Dict = None
__A : Dict = True
__A : Union[str, Any] = True
__A : Optional[Any] = None
# Automatically constructed
__A : Dict = "dict"
__A : Optional[int] = pa.struct({"bytes": pa.binary(), "path": pa.string()} )
__A : Tuple = field(default="Audio" ,init=__A ,repr=__A )
def __call__( self : str ) -> str:
return self.pa_type
def __UpperCamelCase ( self : Any , lowercase_ : Union[str, Any] ) -> dict:
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("To support encoding audio data, please install \'soundfile\'." ) from err
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return {"bytes": None, "path": value}
elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
lowercase__ : int = BytesIO()
sf.write(_SCREAMING_SNAKE_CASE , value["array"] , value["sampling_rate"] , format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("pcm" ):
# "PCM" only has raw audio bytes
if value.get("sampling_rate" ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("To use PCM files, please specify a \'sampling_rate\' in Audio object" )
if value.get("bytes" ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
lowercase__ : Dict = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67
else:
lowercase__ : Any = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_27_67
lowercase__ : Union[str, Any] = BytesIO(bytes() )
sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , value["sampling_rate"] , format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def __UpperCamelCase ( self : List[str] , lowercase_ : List[str] , lowercase_ : str = None ) -> dict:
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." )
lowercase__ : Optional[int] = (value['''path'''], BytesIO(value["bytes"] )) if value['''bytes'''] is not None else (value['''path'''], None)
if path is None and file is None:
raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("To support decoding audio files, please install \'librosa\' and \'soundfile\'." ) from err
lowercase__ : Union[str, Any] = xsplitext(_SCREAMING_SNAKE_CASE )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
if file is None:
lowercase__ : Optional[Any] = token_per_repo_id or {}
lowercase__ : int = path.split("::" )[-1]
try:
lowercase__ : Tuple = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )['''repo_id''']
lowercase__ : int = token_per_repo_id[repo_id]
except (ValueError, KeyError):
lowercase__ : int = None
with xopen(_SCREAMING_SNAKE_CASE , "rb" , use_auth_token=_SCREAMING_SNAKE_CASE ) as f:
lowercase__ : Any = sf.read(_SCREAMING_SNAKE_CASE )
else:
lowercase__ : Optional[int] = sf.read(_SCREAMING_SNAKE_CASE )
lowercase__ : Optional[int] = array.T
if self.mono:
lowercase__ : int = librosa.to_mono(_SCREAMING_SNAKE_CASE )
if self.sampling_rate and self.sampling_rate != sampling_rate:
lowercase__ : List[Any] = librosa.resample(_SCREAMING_SNAKE_CASE , orig_sr=_SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate )
lowercase__ : List[str] = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def __UpperCamelCase ( self : List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
if self.decode:
raise ValueError("Cannot flatten a decoded Audio feature." )
return {
"bytes": Value("binary" ),
"path": Value("string" ),
}
def __UpperCamelCase ( self : List[str] , lowercase_ : List[Any] ) -> pa.StructArray:
if pa.types.is_string(storage.type ):
lowercase__ : Optional[Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() )
lowercase__ : str = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
lowercase__ : int = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() )
lowercase__ : Optional[Any] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ):
lowercase__ : List[str] = pa.array([Audio().encode_example(_SCREAMING_SNAKE_CASE ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
lowercase__ : List[str] = storage.field("bytes" )
else:
lowercase__ : Optional[int] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
lowercase__ : List[str] = storage.field("path" )
else:
lowercase__ : Optional[int] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() )
lowercase__ : int = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() )
return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type )
def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Optional[Any] ) -> pa.StructArray:
@no_op_if_value_is_null
def path_to_bytes(lowercase_ : Any ):
with xopen(_SCREAMING_SNAKE_CASE , "rb" ) as f:
lowercase__ : str = f.read()
return bytes_
lowercase__ : Dict = pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
lowercase__ : Union[str, Any] = pa.array(
[os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , )
lowercase__ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type )
| 371 | import argparse
import datetime
def lowercase_ ( _lowerCamelCase : str):
lowercase__ : Optional[Any] = {
"0": "Sunday",
"1": "Monday",
"2": "Tuesday",
"3": "Wednesday",
"4": "Thursday",
"5": "Friday",
"6": "Saturday",
}
lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_lowerCamelCase) < 11:
raise ValueError("Must be 10 characters long")
# Get month
lowercase__ : int = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12")
lowercase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get day
lowercase__ : int = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31")
# Get second separator
lowercase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be '-' or '/'")
# Get year
lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?")
# Get datetime obj for validation
lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase))
# Start math
if m <= 2:
lowercase__ : Optional[Any] = y - 1
lowercase__ : int = m + 12
# maths var
lowercase__ : int = int(str(_lowerCamelCase)[:2])
lowercase__ : int = int(str(_lowerCamelCase)[2:])
lowercase__ : int = int(2.6 * m - 5.39)
lowercase__ : int = int(c / 4)
lowercase__ : int = int(k / 4)
lowercase__ : int = int(d + k)
lowercase__ : int = int(t + u + v + x)
lowercase__ : int = int(z - (2 * c))
lowercase__ : int = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer.")
# Response
lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
UpperCamelCase = parser.parse_args()
zeller(args.date_input)
| 333 | 0 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
UpperCamelCase = "hf-internal-testing/tiny-random-bert"
UpperCamelCase = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''')
UpperCamelCase = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6"
class snake_case_ ( unittest.TestCase ):
def __UpperCamelCase ( self : Tuple ) -> Any:
lowercase__ : Union[str, Any] = cached_file(lowercase_ , lowercase_ )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(lowercase_ ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(lowercase_ , lowercase_ ) ) )
with open(os.path.join(lowercase_ , "refs" , "main" ) ) as f:
lowercase__ : str = f.read()
self.assertEqual(lowercase_ , os.path.join(lowercase_ , "snapshots" , lowercase_ , lowercase_ ) )
self.assertTrue(os.path.isfile(lowercase_ ) )
# File is cached at the same place the second time.
lowercase__ : str = cached_file(lowercase_ , lowercase_ )
self.assertEqual(lowercase_ , lowercase_ )
# Using a specific revision to test the full commit hash.
lowercase__ : Optional[Any] = cached_file(lowercase_ , lowercase_ , revision="9b8c223" )
self.assertEqual(lowercase_ , os.path.join(lowercase_ , "snapshots" , lowercase_ , lowercase_ ) )
def __UpperCamelCase ( self : str ) -> List[str]:
with self.assertRaisesRegex(lowercase_ , "is not a valid model identifier" ):
lowercase__ : Optional[int] = cached_file("tiny-random-bert" , lowercase_ )
with self.assertRaisesRegex(lowercase_ , "is not a valid git identifier" ):
lowercase__ : int = cached_file(lowercase_ , lowercase_ , revision="aaaa" )
with self.assertRaisesRegex(lowercase_ , "does not appear to have a file named" ):
lowercase__ : Union[str, Any] = cached_file(lowercase_ , "conf" )
def __UpperCamelCase ( self : Tuple ) -> Tuple:
with self.assertRaisesRegex(lowercase_ , "does not appear to have a file named" ):
lowercase__ : Dict = cached_file(lowercase_ , "conf" )
with open(os.path.join(lowercase_ , "refs" , "main" ) ) as f:
lowercase__ : int = f.read()
self.assertTrue(os.path.isfile(os.path.join(lowercase_ , ".no_exist" , lowercase_ , "conf" ) ) )
lowercase__ : int = cached_file(lowercase_ , "conf" , _raise_exceptions_for_missing_entries=lowercase_ )
self.assertIsNone(lowercase_ )
lowercase__ : Dict = cached_file(lowercase_ , "conf" , local_files_only=lowercase_ , _raise_exceptions_for_missing_entries=lowercase_ )
self.assertIsNone(lowercase_ )
lowercase__ : Union[str, Any] = mock.Mock()
lowercase__ : str = 5_00
lowercase__ : Tuple = {}
lowercase__ : List[Any] = HTTPError
lowercase__ : Any = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=lowercase_ ) as mock_head:
lowercase__ : int = cached_file(lowercase_ , "conf" , _raise_exceptions_for_connection_errors=lowercase_ )
self.assertIsNone(lowercase_ )
# This check we did call the fake head request
mock_head.assert_called()
def __UpperCamelCase ( self : Dict ) -> int:
self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowercase_ ) )
self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowercase_ ) )
self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowercase_ ) )
def __UpperCamelCase ( self : str ) -> Dict:
self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(lowercase_ , "is not a valid model identifier" ):
get_file_from_repo("bert-base-case" , lowercase_ )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(lowercase_ , "is not a valid git identifier" ):
get_file_from_repo("bert-base-cased" , lowercase_ , revision="ahaha" )
lowercase__ : Any = get_file_from_repo("bert-base-cased" , lowercase_ )
# The name is the cached name which is not very easy to test, so instead we load the content.
lowercase__ : int = json.loads(open(lowercase_ , "r" ).read() )
self.assertEqual(config["hidden_size"] , 7_68 )
def __UpperCamelCase ( self : Any ) -> int:
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ : Optional[Any] = Path(lowercase_ ) / "a.txt"
filename.touch()
self.assertEqual(get_file_from_repo(lowercase_ , "a.txt" ) , str(lowercase_ ) )
self.assertIsNone(get_file_from_repo(lowercase_ , "b.txt" ) )
| 350 | import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
UpperCamelCase = 4
UpperCamelCase = 3
class snake_case_ ( __A ):
pass
def lowercase_ ( _lowerCamelCase : List[str]):
for shard in shards:
for i in range(_lowerCamelCase):
yield {"i": i, "shard": shard}
def lowercase_ ( ):
lowercase__ : List[str] = int(os.environ["RANK"])
lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"])
lowercase__ : Union[str, Any] = ArgumentParser()
parser.add_argument("--streaming" , type=_lowerCamelCase)
parser.add_argument("--local_rank" , type=_lowerCamelCase)
parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0)
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]}
lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase)
if not streaming:
lowercase__ : str = Dataset.from_list(list(_lowerCamelCase))
lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase)
lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase)
lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : Any = full_size // world_size
expected_local_size += int(rank < (full_size % world_size))
lowercase__ : List[str] = sum(1 for _ in dataloader)
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''')
if __name__ == "__main__":
main()
| 333 | 0 |
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = '''pytorch_model.bin'''
@dataclasses.dataclass
class snake_case_ :
__A : str = dataclasses.field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} )
__A : Optional[str] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} ,)
@dataclasses.dataclass
class snake_case_ :
__A : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} )
__A : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} )
__A : Optional[str] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE ,metadata={"help": "A csv or a json file containing the validation data."} )
__A : Optional[str] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE ,metadata={"help": "The name of the task to train on."} ,)
__A : Optional[List[str]] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE ,metadata={"help": "The list of labels for the task."} )
@dataclasses.dataclass
class snake_case_ :
__A : str = dataclasses.field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."} )
__A : Optional[str] = dataclasses.field(
default="accuracy" ,metadata={"help": "The evaluation metric used for the task."} )
__A : Optional[str] = dataclasses.field(
default="no" ,metadata={
"help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]"
} ,)
__A : Optional[int] = dataclasses.field(
default=10 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,)
__A : Optional[float] = dataclasses.field(
default=0.0 ,metadata={
"help": "How much the specified evaluation metric must improve to satisfy early stopping conditions."
} ,)
__A : Optional[bool] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} ,)
__A : Optional[bool] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} ,)
__A : Optional[bool] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} ,)
__A : Optional[float] = dataclasses.field(
default=0.0 ,metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} ,)
__A : Optional[int] = dataclasses.field(
default=100 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,)
__A : Optional[int] = dataclasses.field(
default=__SCREAMING_SNAKE_CASE ,metadata={"help": "Random seed for initialization."} ,)
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : Union[str, Any]):
lowercase__ : List[str] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1)
if args.do_filter_by_confidence:
lowercase__ : Optional[Any] = dataset.filter(lambda _lowerCamelCase: example["probability"] > args.confidence_threshold)
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
lowercase__ : Tuple = int(eval_result * len(_SCREAMING_SNAKE_CASE))
print(_SCREAMING_SNAKE_CASE)
lowercase__ : Optional[Any] = dataset.sort("probability" , reverse=_SCREAMING_SNAKE_CASE)
lowercase__ : Dict = dataset.select(range(_SCREAMING_SNAKE_CASE))
lowercase__ : Optional[int] = dataset.remove_columns(["label", "probability"])
lowercase__ : str = dataset.rename_column("prediction" , "label")
lowercase__ : Tuple = dataset.map(lambda _lowerCamelCase: {"label": idalabel[example["label"]]})
lowercase__ : List[Any] = dataset.shuffle(seed=args.seed)
lowercase__ : int = os.path.join(_SCREAMING_SNAKE_CASE , f'''train_pseudo.{args.data_file_extension}''')
if args.data_file_extension == "csv":
dataset.to_csv(_SCREAMING_SNAKE_CASE , index=_SCREAMING_SNAKE_CASE)
else:
dataset.to_json(_SCREAMING_SNAKE_CASE)
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , **_lowerCamelCase : Union[str, Any]):
lowercase__ : Dict = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
lowercase__ : Optional[Any] = STModelArguments(model_name_or_path=_SCREAMING_SNAKE_CASE)
lowercase__ : Optional[int] = STDataArguments(train_file=_SCREAMING_SNAKE_CASE , infer_file=_SCREAMING_SNAKE_CASE)
lowercase__ : Union[str, Any] = STTrainingArguments(output_dir=_SCREAMING_SNAKE_CASE)
lowercase__ : str = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(_SCREAMING_SNAKE_CASE).items():
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
for key, value in kwargs.items():
if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE):
setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
# Sanity checks
lowercase__ : str = {}
lowercase__ : List[str] = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
lowercase__ : Tuple = args.train_file
lowercase__ : List[str] = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
lowercase__ : List[str] = args.eval_file
for key in data_files:
lowercase__ : List[str] = data_files[key].split(".")[-1]
assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.'''
if args.data_file_extension is None:
lowercase__ : List[Any] = extension
else:
assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.'''
assert (
args.eval_metric in datasets.list_metrics()
), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.'''
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
logger.info("Creating the initial data directory for self-training...")
lowercase__ : Optional[int] = f'''{args.output_dir}/self-train_iter-{{}}'''.format
lowercase__ : Any = data_dir_format(0)
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE)
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE)
accelerator.wait_for_everyone()
lowercase__ : int = None
lowercase__ : Any = None
lowercase__ : List[str] = 0
lowercase__ : Optional[Any] = False
# Show the progress bar
lowercase__ : Optional[int] = tqdm(range(args.max_selftrain_iterations) , disable=not accelerator.is_local_main_process)
# Self-train
for iteration in range(0 , int(args.max_selftrain_iterations)):
lowercase__ : List[Any] = data_dir_format(_SCREAMING_SNAKE_CASE)
assert os.path.exists(_SCREAMING_SNAKE_CASE)
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
lowercase__ : str = os.path.join(_SCREAMING_SNAKE_CASE , "stage-1")
lowercase__ : Optional[Any] = {
"accelerator": accelerator,
"model_name_or_path": args.model_name_or_path,
"cache_dir": args.cache_dir,
"do_train": True,
"train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"],
"do_eval": True if args.eval_file is not None else False,
"eval_file": data_files["eval"],
"do_predict": True,
"infer_file": data_files["infer"],
"task_name": args.task_name,
"label_list": args.label_list,
"output_dir": current_output_dir,
"eval_metric": args.eval_metric,
"evaluation_strategy": args.evaluation_strategy,
"early_stopping_patience": args.early_stopping_patience,
"early_stopping_threshold": args.early_stopping_threshold,
"seed": args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE):
arguments_dict.update({key: value})
lowercase__ : str = os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint" , _SCREAMING_SNAKE_CASE)
if os.path.exists(_SCREAMING_SNAKE_CASE):
logger.info(
"Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
else:
logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , _SCREAMING_SNAKE_CASE)
finetune(**_SCREAMING_SNAKE_CASE)
accelerator.wait_for_everyone()
assert os.path.exists(_SCREAMING_SNAKE_CASE)
logger.info("Self-training job completed: iteration: %d, stage: 1." , _SCREAMING_SNAKE_CASE)
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
lowercase__ : Any = os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint")
lowercase__ : List[str] = os.path.join(_SCREAMING_SNAKE_CASE , "stage-2")
# Update arguments_dict
lowercase__ : Optional[int] = model_path
lowercase__ : List[str] = data_files["train"]
lowercase__ : str = current_output_dir
lowercase__ : Tuple = os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint" , _SCREAMING_SNAKE_CASE)
if os.path.exists(_SCREAMING_SNAKE_CASE):
logger.info(
"Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
else:
logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , _SCREAMING_SNAKE_CASE)
finetune(**_SCREAMING_SNAKE_CASE)
accelerator.wait_for_everyone()
assert os.path.exists(_SCREAMING_SNAKE_CASE)
logger.info("Self-training job completed: iteration: %d, stage: 2." , _SCREAMING_SNAKE_CASE)
lowercase__ : int = iteration
lowercase__ : int = data_dir_format(iteration + 1)
lowercase__ : Dict = AutoConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "best-checkpoint"))
lowercase__ : str = config.idalabel
lowercase__ : Dict = os.path.join(_SCREAMING_SNAKE_CASE , "eval_results_best-checkpoint.json")
lowercase__ : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE , "test_results_best-checkpoint.json")
assert os.path.exists(_SCREAMING_SNAKE_CASE)
with open(_SCREAMING_SNAKE_CASE , "r") as f:
lowercase__ : str = float(json.load(_SCREAMING_SNAKE_CASE)[args.eval_metric])
lowercase__ : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , "infer_output_best-checkpoint.csv")
assert os.path.exists(_SCREAMING_SNAKE_CASE)
# Loading the dataset from local csv or json files.
lowercase__ : int = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]})["data"]
lowercase__ : Tuple = load_dataset("csv" , data_files={"data": infer_output_file})["data"]
if accelerator.is_main_process:
os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE)
shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f'''eval_results_iter-{iteration}.json'''))
if os.path.exists(_SCREAMING_SNAKE_CASE):
shutil.copy(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , f'''test_results_iter-{iteration}.json'''))
create_pseudo_labeled_data(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
accelerator.wait_for_everyone()
lowercase__ : Dict = os.path.join(_SCREAMING_SNAKE_CASE , f'''train_pseudo.{args.data_file_extension}''')
if args.evaluation_strategy != IntervalStrategy.NO.value:
lowercase__ : int = eval_result
if best_iteration is None:
lowercase__ : Any = new_iteration
lowercase__ : Union[str, Any] = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
lowercase__ : Optional[int] = new_iteration
lowercase__ : str = new_eval_result
lowercase__ : str = 0
else:
if new_eval_result == best_eval_result:
lowercase__ : Union[str, Any] = new_iteration
lowercase__ : List[Any] = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
lowercase__ : Any = True
progress_bar.update(1)
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info("Best iteration: %d" , _SCREAMING_SNAKE_CASE)
logger.info("Best evaluation result: %s = %f" , args.eval_metric , _SCREAMING_SNAKE_CASE)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_SCREAMING_SNAKE_CASE , f'''eval_results_iter-{iteration}.json''') , os.path.join(_SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json") , )
else:
# Assume that the last iteration is the best
logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1)
logger.info("Best evaluation result: %s = %f" , args.eval_metric , _SCREAMING_SNAKE_CASE)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(_SCREAMING_SNAKE_CASE , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''') , os.path.join(_SCREAMING_SNAKE_CASE , "eval_results_best-iteration.json") , )
| 351 | import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class snake_case_ ( __A ):
__A : List[str] = "unispeech"
def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any:
super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ )
lowercase__ : List[str] = hidden_size
lowercase__ : Any = feat_extract_norm
lowercase__ : Optional[Any] = feat_extract_activation
lowercase__ : Dict = list(lowercase_ )
lowercase__ : Union[str, Any] = list(lowercase_ )
lowercase__ : List[str] = list(lowercase_ )
lowercase__ : List[str] = conv_bias
lowercase__ : Any = num_conv_pos_embeddings
lowercase__ : Dict = num_conv_pos_embedding_groups
lowercase__ : int = len(self.conv_dim )
lowercase__ : str = num_hidden_layers
lowercase__ : Any = intermediate_size
lowercase__ : Optional[int] = hidden_act
lowercase__ : int = num_attention_heads
lowercase__ : Union[str, Any] = hidden_dropout
lowercase__ : Any = attention_dropout
lowercase__ : Union[str, Any] = activation_dropout
lowercase__ : Any = feat_proj_dropout
lowercase__ : str = final_dropout
lowercase__ : int = layerdrop
lowercase__ : Optional[int] = layer_norm_eps
lowercase__ : List[Any] = initializer_range
lowercase__ : Any = num_ctc_classes
lowercase__ : int = vocab_size
lowercase__ : str = do_stable_layer_norm
lowercase__ : Any = use_weighted_layer_sum
lowercase__ : Dict = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase__ : List[Any] = apply_spec_augment
lowercase__ : Dict = mask_time_prob
lowercase__ : Tuple = mask_time_length
lowercase__ : str = mask_time_min_masks
lowercase__ : List[Any] = mask_feature_prob
lowercase__ : int = mask_feature_length
lowercase__ : Optional[int] = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowercase__ : Optional[int] = num_codevectors_per_group
lowercase__ : List[str] = num_codevector_groups
lowercase__ : Dict = contrastive_logits_temperature
lowercase__ : Tuple = feat_quantizer_dropout
lowercase__ : Any = num_negatives
lowercase__ : Dict = codevector_dim
lowercase__ : Tuple = proj_codevector_dim
lowercase__ : List[str] = diversity_loss_weight
# ctc loss
lowercase__ : Tuple = ctc_loss_reduction
lowercase__ : Dict = ctc_zero_infinity
# pretraining loss
lowercase__ : Optional[Any] = replace_prob
@property
def __UpperCamelCase ( self : Dict ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 333 | 0 |
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 352 | def lowercase_ ( _lowerCamelCase : list):
for i in range(len(_lowerCamelCase) - 1 , 0 , -1):
lowercase__ : int = False
for j in range(_lowerCamelCase , 0 , -1):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j]
lowercase__ : List[str] = True
for j in range(_lowerCamelCase):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip()
UpperCamelCase = [int(item) for item in user_input.split(''',''')]
print(f"{cocktail_shaker_sort(unsorted) = }")
| 333 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.