code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os def lowercase_ ( _lowerCamelCase : str = "matrix.txt"): with open(os.path.join(os.path.dirname(UpperCAmelCase_) , UpperCAmelCase_)) as in_file: lowercase__ : Optional[Any] = in_file.read() lowercase__ : Optional[Any] = [[int(UpperCAmelCase_) for cell in row.split(",")] for row in data.strip().splitlines()] lowercase__ : Dict = [[0 for cell in row] for row in grid] lowercase__ : Tuple = len(grid[0]) lowercase__ : List[Any] = [[0 for i in range(UpperCAmelCase_)] for j in range(UpperCAmelCase_)] lowercase__ : int = grid[0][0] for i in range(1 , UpperCAmelCase_): lowercase__ : List[Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , UpperCAmelCase_): lowercase__ : Optional[int] = grid[i][0] + dp[i - 1][0] for i in range(1 , UpperCAmelCase_): for j in range(1 , UpperCAmelCase_): lowercase__ : List[Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1]) return dp[-1][-1] if __name__ == "__main__": print(f"{solution() = }")
353
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( lowerCamelCase__ ,unittest.TestCase ): __A : Dict = GPTaTokenizer __A : int = GPTaTokenizerFast __A : Union[str, Any] = True __A : List[str] = {"add_prefix_space": True} __A : Union[str, Any] = False def __UpperCamelCase ( self : List[Any] ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowercase__ : Optional[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : Tuple = {"unk_token": "<unk>"} lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def __UpperCamelCase ( self : Optional[int] , **lowercase_ : int ) -> Any: kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : Any , **lowercase_ : Tuple ) -> Tuple: kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : int ) -> int: lowercase__ : Optional[Any] = "lower newer" lowercase__ : Any = "lower newer" return input_text, output_text def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: lowercase__ : str = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Union[str, Any] = "lower newer" lowercase__ : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowercase__ : str = tokenizer.tokenize(lowercase_ , add_prefix_space=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) lowercase__ : List[str] = tokens + [tokenizer.unk_token] lowercase__ : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Dict: if not self.test_rust_tokenizer: return lowercase__ : str = self.get_tokenizer() lowercase__ : str = self.get_rust_tokenizer(add_prefix_space=lowercase_ ) lowercase__ : Tuple = "lower newer" # Testing tokenization lowercase__ : Optional[Any] = tokenizer.tokenize(lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : List[str] = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids without special tokens lowercase__ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : Optional[Any] = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids with special tokens lowercase__ : str = self.get_rust_tokenizer(add_prefix_space=lowercase_ ) lowercase__ : List[Any] = tokenizer.encode(lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : Any = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing the unknown token lowercase__ : List[str] = tokens + [rust_tokenizer.unk_token] lowercase__ : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , *lowercase_ : Optional[Any] , **lowercase_ : str ) -> Optional[int]: pass def __UpperCamelCase ( self : Dict , lowercase_ : int=15 ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # Simple input lowercase__ : str = "This is a simple input" lowercase__ : List[Any] = ["This is a simple input 1", "This is a simple input 2"] lowercase__ : Tuple = ("This is a simple input", "This is a pair") lowercase__ : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) def __UpperCamelCase ( self : Any ) -> Optional[int]: lowercase__ : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowercase__ : Union[str, Any] = "This is a simple input" lowercase__ : Optional[int] = ["This is a simple input looooooooong", "This is a simple input"] lowercase__ : Optional[Any] = ("This is a simple input", "This is a pair") lowercase__ : Dict = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowercase__ : int = tokenizer.pad_token_id lowercase__ : List[str] = tokenizer(lowercase_ , padding="max_length" , max_length=30 , return_tensors="np" ) lowercase__ : int = tokenizer(lowercase_ , padding=lowercase_ , truncate=lowercase_ , return_tensors="np" ) lowercase__ : Any = tokenizer(*lowercase_ , padding="max_length" , max_length=60 , return_tensors="np" ) lowercase__ : List[Any] = tokenizer(lowercase_ , padding=lowercase_ , truncate=lowercase_ , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __UpperCamelCase ( self : Optional[Any] ) -> int: lowercase__ : Optional[Any] = "$$$" lowercase__ : Optional[int] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowercase_ , add_bos_token=lowercase_ ) lowercase__ : List[str] = "This is a simple input" lowercase__ : str = ["This is a simple input 1", "This is a simple input 2"] lowercase__ : Optional[Any] = tokenizer.bos_token_id lowercase__ : List[Any] = tokenizer(lowercase_ ) lowercase__ : List[Any] = tokenizer(lowercase_ ) self.assertEqual(out_s.input_ids[0] , lowercase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowercase__ : List[Any] = tokenizer.decode(out_s.input_ids ) lowercase__ : Any = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowercase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __UpperCamelCase ( self : Any ) -> Optional[Any]: pass def __UpperCamelCase ( self : Tuple ) -> Dict: lowercase__ : List[str] = [self.get_tokenizer(do_lower_case=lowercase_ , add_bos_token=lowercase_ )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ : str = "Encode this." lowercase__ : Optional[Any] = "This one too please." lowercase__ : int = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) encoded_sequence += tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowercase__ : Union[str, Any] = tokenizer.encode_plus( lowercase_ , lowercase_ , add_special_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , ) lowercase__ : Union[str, Any] = encoded_sequence_dict["input_ids"] lowercase__ : Optional[int] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) lowercase__ : List[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowercase_ ) ] lowercase__ : int = [x for x in filtered_sequence if x is not None] self.assertEqual(lowercase_ , lowercase_ ) @require_tokenizers class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: lowercase__ : List[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowercase_ ) lowercase__ : Union[str, Any] = "A photo of a cat" lowercase__ : Dict = tokenizer.encode( lowercase_ , ) self.assertEqual(lowercase_ , [2, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("test_opt" ) lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained("./test_opt" ) lowercase__ : str = tokenizer.encode( lowercase_ , ) self.assertEqual(lowercase_ , [2, 2_50, 13_45, 9, 10, 47_58] ) def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=lowercase_ ) lowercase__ : Optional[Any] = "A photo of a cat" lowercase__ : Union[str, Any] = tokenizer.encode( lowercase_ , ) # Same as above self.assertEqual(lowercase_ , [2, 2_50, 13_45, 9, 10, 47_58] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __UpperCamelCase ( self : int ) -> Dict: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowercase_ ) lowercase__ : Any = "bos" lowercase__ : Tuple = tokenizer.get_vocab()["bos"] lowercase__ : Optional[int] = "A photo of a cat" lowercase__ : Any = tokenizer.encode( lowercase_ , ) # We changed the bos token self.assertEqual(lowercase_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("./tok" ) lowercase__ : Tuple = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) lowercase__ : Optional[Any] = tokenizer.encode( lowercase_ , ) self.assertEqual(lowercase_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
0
from manim import * class snake_case_ ( __A ): def __UpperCamelCase ( self : str ) -> Union[str, Any]: lowercase__ : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) lowercase__ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase__ : Tuple = [mem.copy() for i in range(6 )] lowercase__ : List[Any] = [mem.copy() for i in range(6 )] lowercase__ : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowercase__ : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowercase__ : Optional[int] = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowercase__ : Dict = Text("CPU" , font_size=24 ) lowercase__ : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) lowercase__ : str = [mem.copy() for i in range(1 )] lowercase__ : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowercase__ : Tuple = Text("GPU" , font_size=24 ) lowercase__ : Optional[int] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.align_to(lowerCamelCase_ , lowerCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase_ ) lowercase__ : Tuple = [mem.copy() for i in range(6 )] lowercase__ : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowercase__ : Any = Text("Model" , font_size=24 ) lowercase__ : List[Any] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) , ) lowercase__ : Optional[int] = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) lowercase__ : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ : str = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=2.5 ) , Write(lowerCamelCase_ ) , Write(lowerCamelCase_ ) ) self.add(lowerCamelCase_ ) lowercase__ : Dict = [] lowercase__ : List[Any] = [] lowercase__ : List[str] = [] for i, rect in enumerate(lowerCamelCase_ ): lowercase__ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase_ ) cpu_target.generate_target() lowercase__ : Tuple = 0.46 / 4 lowercase__ : Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase_ , buff=0.0 ) cpu_targs.append(lowerCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase_ ) ) second_animations.append(MoveToTarget(lowerCamelCase_ , run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
355
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
0
from math import isqrt, loga def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : Optional[Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , __UpperCAmelCase , __UpperCAmelCase): lowercase__ : List[str] = False return [i for i in range(2 , __UpperCAmelCase) if is_prime[i]] def lowercase_ ( _lowerCamelCase : Union[str, Any] = 80_0800 , _lowerCamelCase : List[str] = 80_0800): lowercase__ : Any = degree * loga(__UpperCAmelCase) lowercase__ : List[str] = int(__UpperCAmelCase) lowercase__ : Optional[Any] = calculate_prime_numbers(__UpperCAmelCase) lowercase__ : Optional[Any] = 0 lowercase__ : List[str] = 0 lowercase__ : Optional[Any] = len(__UpperCAmelCase) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left]) + prime_numbers[left] * loga(prime_numbers[right]) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"{solution() = }")
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class snake_case_ ( A__ ): __A : int = 'conditional_detr' __A : Any = ['past_key_values'] __A : List[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , lowercase_ : Any=True , lowercase_ : str=None , lowercase_ : List[str]=3 , lowercase_ : Optional[Any]=3_00 , lowercase_ : Optional[int]=6 , lowercase_ : Tuple=20_48 , lowercase_ : Optional[Any]=8 , lowercase_ : Dict=6 , lowercase_ : List[str]=20_48 , lowercase_ : Optional[Any]=8 , lowercase_ : str=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : Tuple=True , lowercase_ : Any="relu" , lowercase_ : Tuple=2_56 , lowercase_ : Optional[int]=0.1 , lowercase_ : int=0.0 , lowercase_ : Any=0.0 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1.0 , lowercase_ : Optional[Any]=False , lowercase_ : int="sine" , lowercase_ : Tuple="resnet50" , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=False , lowercase_ : Optional[int]=2 , lowercase_ : str=5 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[Any]=1 , lowercase_ : List[str]=1 , lowercase_ : int=2 , lowercase_ : Optional[int]=5 , lowercase_ : List[str]=2 , lowercase_ : Dict=0.25 , **lowercase_ : List[str] , ) -> Tuple: if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowercase__ : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : int = backbone_config.get("model_type" ) lowercase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : Any = config_class.from_dict(lowerCamelCase__ ) lowercase__ : Optional[int] = use_timm_backbone lowercase__ : Union[str, Any] = backbone_config lowercase__ : Tuple = num_channels lowercase__ : int = num_queries lowercase__ : List[Any] = d_model lowercase__ : List[Any] = encoder_ffn_dim lowercase__ : Dict = encoder_layers lowercase__ : Optional[Any] = encoder_attention_heads lowercase__ : Union[str, Any] = decoder_ffn_dim lowercase__ : str = decoder_layers lowercase__ : Dict = decoder_attention_heads lowercase__ : Any = dropout lowercase__ : str = attention_dropout lowercase__ : int = activation_dropout lowercase__ : List[Any] = activation_function lowercase__ : List[str] = init_std lowercase__ : str = init_xavier_std lowercase__ : Union[str, Any] = encoder_layerdrop lowercase__ : List[str] = decoder_layerdrop lowercase__ : int = encoder_layers lowercase__ : List[str] = auxiliary_loss lowercase__ : int = position_embedding_type lowercase__ : Tuple = backbone lowercase__ : int = use_pretrained_backbone lowercase__ : Optional[Any] = dilation # Hungarian matcher lowercase__ : List[Any] = class_cost lowercase__ : Any = bbox_cost lowercase__ : Tuple = giou_cost # Loss coefficients lowercase__ : Dict = mask_loss_coefficient lowercase__ : List[Any] = dice_loss_coefficient lowercase__ : Optional[int] = cls_loss_coefficient lowercase__ : Tuple = bbox_loss_coefficient lowercase__ : Optional[Any] = giou_loss_coefficient lowercase__ : Any = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def __UpperCamelCase ( self : int ) -> Any: return self.encoder_attention_heads @property def __UpperCamelCase ( self : str ) -> Tuple: return self.d_model def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase__ : Optional[int] = self.backbone_config.to_dict() lowercase__ : int = self.__class__.model_type return output class snake_case_ ( A__ ): __A : Union[str, Any] = version.parse("1.11" ) @property def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return 1E-5 @property def __UpperCamelCase ( self : List[str] ) -> int: return 12
357
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case_ : def __init__( self : Any , lowercase_ : Collection[float] | None = None ) -> Tuple: if components is None: lowercase__ : Any = [] lowercase__ : Any = list(lowercase_ ) def __len__( self : List[Any] ) -> List[Any]: return len(self.__components ) def __str__( self : List[Any] ) -> List[str]: return "(" + ",".join(map(lowercase_ , self.__components ) ) + ")" def __add__( self : Union[str, Any] , lowercase_ : Vector ) -> Tuple: lowercase__ : Any = len(self ) if size == len(lowercase_ ): lowercase__ : Union[str, Any] = [self.__components[i] + other.component(lowercase_ ) for i in range(lowercase_ )] return Vector(lowercase_ ) else: raise Exception("must have the same size" ) def __sub__( self : Optional[Any] , lowercase_ : Vector ) -> int: lowercase__ : List[str] = len(self ) if size == len(lowercase_ ): lowercase__ : List[Any] = [self.__components[i] - other.component(lowercase_ ) for i in range(lowercase_ )] return Vector(lowercase_ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : Any , lowercase_ : float ) -> str: ... @overload def __mul__( self : str , lowercase_ : Vector ) -> Any: ... def __mul__( self : int , lowercase_ : float | Vector ) -> Any: if isinstance(lowercase_ , (float, int) ): lowercase__ : int = [c * other for c in self.__components] return Vector(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ) and len(self ) == len(lowercase_ ): lowercase__ : Optional[int] = len(self ) lowercase__ : int = [self.__components[i] * other.component(lowercase_ ) for i in range(lowercase_ )] return sum(lowercase_ ) else: # error case raise Exception("invalid operand!" ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: return Vector(self.__components ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int ) -> str: if isinstance(lowercase_ , lowercase_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def __UpperCamelCase ( self : List[Any] , lowercase_ : int , lowercase_ : float ) -> Any: assert -len(self.__components ) <= pos < len(self.__components ) lowercase__ : Tuple = value def __UpperCamelCase ( self : Dict ) -> Any: if len(self.__components ) == 0: raise Exception("Vector is empty" ) lowercase__ : List[str] = [c**2 for c in self.__components] return math.sqrt(sum(lowercase_ ) ) def __UpperCamelCase ( self : List[Any] , lowercase_ : Vector , lowercase_ : bool = False ) -> List[str]: lowercase__ : Dict = self * other lowercase__ : int = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def lowercase_ ( _lowerCamelCase : Tuple): assert isinstance(A_ , A_) return Vector([0] * dimension) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Dict): assert isinstance(A_ , A_) and (isinstance(A_ , A_)) lowercase__ : Any = [0] * dimension lowercase__ : str = 1 return Vector(A_) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]): assert ( isinstance(A_ , A_) and isinstance(A_ , A_) and (isinstance(A_ , (int, float))) ) return x * scalar + y def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : str): random.seed(A_) lowercase__ : Optional[int] = [random.randint(A_ , A_) for _ in range(A_)] return Vector(A_) class snake_case_ : def __init__( self : Tuple , lowercase_ : list[list[float]] , lowercase_ : int , lowercase_ : int ) -> str: lowercase__ : Any = matrix lowercase__ : Dict = w lowercase__ : Dict = h def __str__( self : str ) -> Dict: lowercase__ : List[Any] = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , lowercase_ : Matrix ) -> Dict: if self.__width == other.width() and self.__height == other.height(): lowercase__ : List[Any] = [] for i in range(self.__height ): lowercase__ : Tuple = [ self.__matrix[i][j] + other.component(lowercase_ , lowercase_ ) for j in range(self.__width ) ] matrix.append(lowercase_ ) return Matrix(lowercase_ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[int] , lowercase_ : Matrix ) -> int: if self.__width == other.width() and self.__height == other.height(): lowercase__ : int = [] for i in range(self.__height ): lowercase__ : int = [ self.__matrix[i][j] - other.component(lowercase_ , lowercase_ ) for j in range(self.__width ) ] matrix.append(lowercase_ ) return Matrix(lowercase_ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Dict , lowercase_ : float ) -> Optional[int]: ... @overload def __mul__( self : Optional[Any] , lowercase_ : Vector ) -> Dict: ... def __mul__( self : Tuple , lowercase_ : float | Vector ) -> Union[str, Any]: if isinstance(lowercase_ , lowercase_ ): # matrix-vector if len(lowercase_ ) == self.__width: lowercase__ : List[Any] = zero_vector(self.__height ) for i in range(self.__height ): lowercase__ : List[str] = [ self.__matrix[i][j] * other.component(lowercase_ ) for j in range(self.__width ) ] ans.change_component(lowercase_ , sum(lowercase_ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(lowercase_ , (int, float) ): # matrix-scalar lowercase__ : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowercase_ , self.__width , self.__height ) return None def __UpperCamelCase ( self : int ) -> Tuple: return self.__height def __UpperCamelCase ( self : str ) -> List[Any]: return self.__width def __UpperCamelCase ( self : Tuple , lowercase_ : int , lowercase_ : int ) -> str: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : int , lowercase_ : int , lowercase_ : float ) -> int: if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ : Optional[int] = value else: raise Exception("change_component: indices out of bounds" ) def __UpperCamelCase ( self : Any , lowercase_ : int , lowercase_ : int ) -> List[Any]: if self.__height != self.__width: raise Exception("Matrix is not square" ) lowercase__ : Tuple = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowercase_ ) ): lowercase__ : str = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowercase_ , self.__width - 1 , self.__height - 1 ).determinant() def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int , lowercase_ : int ) -> List[str]: if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowercase_ , lowercase_ ) else: raise Exception("Indices out of bounds" ) def __UpperCamelCase ( self : Tuple ) -> Tuple: if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowercase_ ) for y in range(self.__width ) ] return sum(lowercase_ ) def lowercase_ ( _lowerCamelCase : Tuple): lowercase__ : list[list[float]] = [[0] * n for _ in range(A_)] return Matrix(A_ , A_ , A_) def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): random.seed(A_) lowercase__ : list[list[float]] = [ [random.randint(A_ , A_) for _ in range(A_)] for _ in range(A_) ] return Matrix(A_ , A_ , A_)
358
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel UpperCamelCase = logging.getLogger(__name__) def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict): if os.path.exists(_lowercase): if os.path.exists(os.path.join(_lowercase , "config.json")) and os.path.isfile( os.path.join(_lowercase , "config.json")): os.remove(os.path.join(_lowercase , "config.json")) if os.path.exists(os.path.join(_lowercase , "pytorch_model.bin")) and os.path.isfile( os.path.join(_lowercase , "pytorch_model.bin")): os.remove(os.path.join(_lowercase , "pytorch_model.bin")) else: os.makedirs(_lowercase) model.save_pretrained(_lowercase) def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=False): lowercase__ : Union[str, Any] = 2 if unlogit: lowercase__ : Dict = torch.pow(_lowercase , _lowercase) lowercase__ : int = p * torch.log(_lowercase) lowercase__ : Tuple = 0 return -plogp.sum(dim=-1) def lowercase_ ( _lowerCamelCase : int): logger.info("lv, h >\t" + "\t".join(f'''{x + 1}''' for x in range(len(_lowercase)))) for row in range(len(_lowercase)): if tensor.dtype != torch.long: logger.info(f'''layer {row + 1}:\t''' + "\t".join(f'''{x:.5f}''' for x in tensor[row].cpu().data)) else: logger.info(f'''layer {row + 1}:\t''' + "\t".join(f'''{x:d}''' for x in tensor[row].cpu().data)) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : int=None , _lowerCamelCase : List[str]=False): lowercase__ , lowercase__ : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads lowercase__ : Any = torch.zeros(_lowercase , _lowercase).to(args.device) lowercase__ : Union[str, Any] = torch.zeros(_lowercase , _lowercase).to(args.device) if head_mask is None: lowercase__ : Dict = torch.ones(_lowercase , _lowercase).to(args.device) head_mask.requires_grad_(requires_grad=_lowercase) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase__ : Optional[Any] = None lowercase__ : Optional[int] = 0.0 lowercase__ : Optional[Any] = 0.0 for step, inputs in enumerate(tqdm(_lowercase , desc="Iteration" , disable=args.local_rank not in [-1, 0])): lowercase__ : Optional[int] = tuple(t.to(args.device) for t in inputs) ((lowercase__) , ) : Tuple = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase__ : Tuple = model(_lowercase , labels=_lowercase , head_mask=_lowercase) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase__ , lowercase__ , lowercase__ : List[Any] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowercase): lowercase__ : str = entropy(attn.detach() , _lowercase) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowercase).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase__ : Optional[Any] = 2 lowercase__ : str = torch.pow(torch.pow(_lowercase , _lowercase).sum(-1) , 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1E-20 if not args.dont_normalize_global_importance: lowercase__ : str = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies") print_ad_tensor(_lowercase) if compute_importance: logger.info("Head importance scores") print_ad_tensor(_lowercase) logger.info("Head ranked by importance scores") lowercase__ : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device) lowercase__ : Dict = torch.arange( head_importance.numel() , device=args.device) lowercase__ : Tuple = head_ranks.view_as(_lowercase) print_ad_tensor(_lowercase) return attn_entropy, head_importance, total_loss def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : str): lowercase__ , lowercase__ , lowercase__ : Dict = compute_heads_importance(_lowercase , _lowercase , _lowercase , compute_entropy=_lowercase) lowercase__ : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , _lowercase , original_score * args.masking_threshold) lowercase__ : List[Any] = torch.ones_like(_lowercase) lowercase__ : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount)) lowercase__ : List[Any] = original_score while current_score >= original_score * args.masking_threshold: lowercase__ : Optional[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase__ : Optional[Any] = float("Inf") lowercase__ : List[str] = head_importance.view(-1).sort()[1] if len(_lowercase) <= num_to_mask: print("BREAK BY num_to_mask") break # mask heads lowercase__ : Any = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist())) lowercase__ : str = new_head_mask.view(-1) lowercase__ : Tuple = 0.0 lowercase__ : Tuple = new_head_mask.view_as(_lowercase) lowercase__ : Dict = new_head_mask.clone().detach() print_ad_tensor(_lowercase) # Compute metric and head importance again lowercase__ , lowercase__ , lowercase__ : Optional[int] = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , head_mask=_lowercase) lowercase__ : str = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , _lowercase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask") print_ad_tensor(_lowercase) np.save(os.path.join(args.output_dir , "head_mask.npy") , head_mask.detach().cpu().numpy()) return head_mask def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : int): lowercase__ : List[str] = datetime.now() lowercase__ , lowercase__ , lowercase__ : List[str] = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase) lowercase__ : List[Any] = 1 / loss lowercase__ : Any = datetime.now() - before_time lowercase__ : Any = sum(p.numel() for p in model.parameters()) lowercase__ : Any = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowercase)) } for k, v in heads_to_prune.items(): if isinstance(_lowercase , _lowercase): lowercase__ : int = [ v, ] assert sum(len(_lowercase) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowercase) lowercase__ : Tuple = sum(p.numel() for p in model.parameters()) lowercase__ : Optional[int] = datetime.now() lowercase__ , lowercase__ , lowercase__ : List[Any] = compute_heads_importance( _lowercase , _lowercase , _lowercase , compute_entropy=_lowercase , compute_importance=_lowercase , head_mask=_lowercase , actually_pruned=_lowercase , ) lowercase__ : Optional[Any] = 1 / loss lowercase__ : str = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , _lowercase , _lowercase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , _lowercase , _lowercase) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100) save_model(_lowercase , args.output_dir) def lowercase_ ( ): lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=_lowercase , type=_lowercase , required=_lowercase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=_lowercase , type=_lowercase , required=_lowercase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=_lowercase , type=_lowercase , required=_lowercase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=_lowercase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=_lowercase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=_lowercase , type=_lowercase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=_lowercase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances.") parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory") parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets") parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don\'t normalize importance score by layers") parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don\'t normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy.") parser.add_argument( "--masking_threshold" , default=0.9 , type=_lowercase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=_lowercase , help="Amount to heads to masking at each masking step.") parser.add_argument("--metric_name" , default="acc" , type=_lowercase , help="Metric to use for head masking.") parser.add_argument( "--max_seq_length" , default=128 , type=_lowercase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=_lowercase , help="Batch size.") parser.add_argument("--seed" , type=_lowercase , default=42) parser.add_argument("--local_rank" , type=_lowercase , default=-1 , help="local_rank for distributed training on gpus") parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available") parser.add_argument("--server_ip" , type=_lowercase , default="" , help="Can be used for distant debugging.") parser.add_argument("--server_port" , type=_lowercase , default="" , help="Can be used for distant debugging.") lowercase__ : Tuple = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowercase) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase__ : List[str] = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") lowercase__ : Tuple = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) lowercase__ : int = torch.device("cuda" , args.local_rank) lowercase__ : Union[str, Any] = 1 torch.distributed.init_process_group(backend="nccl") # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1))) lowercase__ : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: lowercase__ : List[Any] = nn.parallel.DistributedDataParallel( _lowercase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowercase) elif args.n_gpu > 1: lowercase__ : Any = nn.DataParallel(_lowercase) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowercase) torch.save(_lowercase , os.path.join(args.output_dir , "run_args.bin")) logger.info("Training/evaluation parameters %s" , _lowercase) # Prepare dataset lowercase__ : List[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa), ]) lowercase__ : Dict = (torch.from_numpy(_lowercase),) lowercase__ : Tuple = TensorDataset(*_lowercase) lowercase__ : Optional[Any] = RandomSampler(_lowercase) lowercase__ : Tuple = DataLoader(_lowercase , sampler=_lowercase , batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(_lowercase , _lowercase , _lowercase) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase__ : int = mask_heads(_lowercase , _lowercase , _lowercase) prune_heads(_lowercase , _lowercase , _lowercase , _lowercase) if __name__ == "__main__": main()
359
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
from functools import lru_cache def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = 2 lowercase__ : Dict = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_lowerCamelCase) if n > 1: factors.add(_lowerCamelCase) return factors @lru_cache def lowercase_ ( _lowerCamelCase : int): return len(unique_prime_factors(_lowerCamelCase)) def lowercase_ ( _lowerCamelCase : list): return len(set(_lowerCamelCase)) in (0, 1) def lowercase_ ( _lowerCamelCase : int): lowercase__ : str = 2 while True: # Increment each value of a generated range lowercase__ : Union[str, Any] = [base + i for i in range(_lowerCamelCase)] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ : Union[str, Any] = [upf_len(_lowerCamelCase) for x in group] checker.append(_lowerCamelCase) # If all numbers in the list are equal, return the group variable. if equality(_lowerCamelCase): return group # Increment our base variable by 1 base += 1 def lowercase_ ( _lowerCamelCase : int = 4): lowercase__ : Union[str, Any] = run(_lowerCamelCase) return results[0] if len(_lowerCamelCase) else None if __name__ == "__main__": print(solution())
360
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
0
UpperCamelCase = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCamelCase = concatenate_datasets UpperCamelCase = DownloadConfig UpperCamelCase = DownloadManager UpperCamelCase = DownloadMode UpperCamelCase = DownloadConfig UpperCamelCase = DownloadMode UpperCamelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
0
def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict): """simple docstring""" return round(float(moles / volume) * nfactor) def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (volume))) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (pressure))) def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str): """simple docstring""" return round(float((pressure * volume) / (0.0821 * moles))) if __name__ == "__main__": import doctest doctest.testmod()
362
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
0
from __future__ import annotations def lowercase_ ( _lowerCamelCase : list[list[int]]): for i in range(1 , len(matrix[0])): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(_lowercase)): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(_lowercase)): for j in range(1 , len(matrix[0])): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1]) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
0
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase = {ord(char) for char in VALID_CHARS} UpperCamelCase = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase_ ( _lowerCamelCase : list[int] , _lowerCamelCase : tuple[int, ...]) -> str | None: lowercase__ : int = "" lowercase__ : Optional[int] = 42 lowercase__ : Optional[int] = 42 lowercase__ : Optional[int] = 42 for keychar, cipherchar in zip(cycle(_lowerCamelCase) , _lowerCamelCase): lowercase__ : Optional[int] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(_lowerCamelCase) return decoded def lowercase_ ( _lowerCamelCase : list[int]) -> list[str]: lowercase__ : List[Any] = [] for key in product(_lowerCamelCase , repeat=3): lowercase__ : Tuple = try_key(_lowerCamelCase , _lowerCamelCase) if encoded is not None: possibles.append(_lowerCamelCase) return possibles def lowercase_ ( _lowerCamelCase : list[str] , _lowerCamelCase : str) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def lowercase_ ( _lowerCamelCase : str = "p059_cipher.txt") -> int: lowercase__ : Optional[Any] = 42 lowercase__ : List[Any] = 42 lowercase__ : Optional[Any] = 42 lowercase__ : List[str] = 42 lowercase__ : Tuple = Path(_lowerCamelCase).parent.joinpath(_lowerCamelCase).read_text(encoding="utf-8") lowercase__ : int = [int(_lowerCamelCase) for number in data.strip().split(",")] lowercase__ : Union[str, Any] = filter_valid_chars(_lowerCamelCase) for common_word in COMMON_WORDS: lowercase__ : Optional[Any] = filter_common_word(_lowerCamelCase , _lowerCamelCase) if len(_lowerCamelCase) == 1: break lowercase__ : List[Any] = possibles[0] return sum(ord(_lowerCamelCase) for char in decoded_text) if __name__ == "__main__": print(f"{solution() = }")
364
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
0
import numpy as np def lowercase_ ( _lowerCamelCase : np.array): return (2 / (1 + np.exp(-2 * vector))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
365
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case_ ( _lowerCAmelCase ,unittest.TestCase ): __A : Optional[int] = DanceDiffusionPipeline __A : Dict = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __A : List[str] = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } __A : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __A : Any = False __A : Optional[Any] = False def __UpperCamelCase ( self : Dict ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : Dict = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=SCREAMING_SNAKE_CASE_ , use_timestep_embedding=SCREAMING_SNAKE_CASE_ , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) lowercase__ : Any = IPNDMScheduler() lowercase__ : List[str] = { """unet""": unet, """scheduler""": scheduler, } return components def __UpperCamelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Any=0 ) -> List[str]: if str(SCREAMING_SNAKE_CASE_ ).startswith("mps" ): lowercase__ : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowercase__ : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def __UpperCamelCase ( self : str ) -> Dict: lowercase__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : List[str] = DanceDiffusionPipeline(**SCREAMING_SNAKE_CASE_ ) lowercase__ : List[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase__ : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) lowercase__ : Optional[Any] = pipe(**SCREAMING_SNAKE_CASE_ ) lowercase__ : int = output.audios lowercase__ : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowercase__ : List[Any] = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __UpperCamelCase ( self : Tuple ) -> Any: return super().test_save_load_local() @skip_mps def __UpperCamelCase ( self : List[str] ) -> Any: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: return super().test_save_load_optional_components() @skip_mps def __UpperCamelCase ( self : Optional[Any] ) -> Dict: return super().test_attention_slicing_forward_pass() def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[str] ) -> List[Any]: lowercase__ : Any = torch_device lowercase__ : Tuple = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) lowercase__ : int = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Union[str, Any] = pipe(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=1_00 , audio_length_in_s=4.0_96 ) lowercase__ : Optional[Any] = output.audios lowercase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase__ : Optional[Any] = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: lowercase__ : Dict = torch_device lowercase__ : Optional[Any] = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) lowercase__ : Dict = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : int = pipe(generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=1_00 , audio_length_in_s=4.0_96 ) lowercase__ : int = output.audios lowercase__ : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase__ : Dict = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
366
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
0
print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
367
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCamelCase = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, '''r''', encoding='''utf-8''') as f: UpperCamelCase = json.load(f) @require_torch class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str , lowercase_ : List[Any] ) -> Dict: return FSMTTokenizer.from_pretrained(lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Any: lowercase__ : Dict = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def __UpperCamelCase ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ) -> str: lowercase__ : int = F'''facebook/wmt19-{pair}''' lowercase__ : Optional[int] = self.get_tokenizer(lowercase_ ) lowercase__ : Any = self.get_model(lowercase_ ) lowercase__ : List[Any] = bleu_data[pair]['src'] lowercase__ : Optional[Any] = bleu_data[pair]['tgt'] lowercase__ : int = tokenizer(lowercase_ , return_tensors="pt" , truncation=lowercase_ , padding="longest" ).to(lowercase_ ) lowercase__ : int = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowercase__ : Any = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) lowercase__ : Optional[int] = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores["bleu"] , lowercase_ )
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase : int = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class snake_case_ : def __init__( self : Dict , lowercase_ : Any , lowercase_ : Union[str, Any]=13 , lowercase_ : Optional[int]=7 , lowercase_ : Union[str, Any]=True , lowercase_ : str=True , lowercase_ : str=True , lowercase_ : Union[str, Any]=True , lowercase_ : Any=99 , lowercase_ : Dict=32 , lowercase_ : Tuple=2 , lowercase_ : str=4 , lowercase_ : str=37 , lowercase_ : Any="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : int=5_12 , lowercase_ : Tuple=16 , lowercase_ : str=2 , lowercase_ : List[str]=0.02 , lowercase_ : List[str]=3 , lowercase_ : Optional[int]=4 , lowercase_ : List[Any]=None , ) -> int: lowercase__ : List[str] = parent lowercase__ : List[str] = 13 lowercase__ : List[str] = 7 lowercase__ : List[Any] = True lowercase__ : Union[str, Any] = True lowercase__ : int = True lowercase__ : str = True lowercase__ : Dict = 99 lowercase__ : int = 3_84 lowercase__ : int = 2 lowercase__ : Dict = 4 lowercase__ : str = 37 lowercase__ : Optional[int] = "gelu" lowercase__ : List[str] = 0.1 lowercase__ : Optional[int] = 0.1 lowercase__ : str = 5_12 lowercase__ : Optional[Any] = 16 lowercase__ : Dict = 2 lowercase__ : Tuple = 0.02 lowercase__ : Any = 3 lowercase__ : str = 4 lowercase__ : Union[str, Any] = 1_28 lowercase__ : str = 2 lowercase__ : Any = 9 lowercase__ : Tuple = 1 lowercase__ : Dict = None def __UpperCamelCase ( self : Optional[int] ) -> int: lowercase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : int = None if self.use_input_mask: lowercase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : str = None if self.use_token_type_ids: lowercase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ : Optional[int] = None lowercase__ : int = None lowercase__ : int = None if self.use_labels: lowercase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_lowercase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : str , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : List[str] ) -> Dict: lowercase__ : Dict = TFConvBertModel(config=_lowercase ) lowercase__ : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase__ : Any = [input_ids, input_mask] lowercase__ : List[Any] = model(_lowercase ) lowercase__ : str = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[str] ) -> Tuple: lowercase__ : Dict = TFConvBertForMaskedLM(config=_lowercase ) lowercase__ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : Any = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Any , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : List[Any] ) -> Optional[Any]: lowercase__ : Tuple = self.num_labels lowercase__ : int = TFConvBertForSequenceClassification(config=_lowercase ) lowercase__ : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : Optional[int] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str , lowercase_ : int , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : List[str] ) -> Union[str, Any]: lowercase__ : Tuple = self.num_choices lowercase__ : Tuple = TFConvBertForMultipleChoice(config=_lowercase ) lowercase__ : Any = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : List[Any] = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Any = tf.tile(tf.expand_dims(_lowercase , 1 ) , (1, self.num_choices, 1) ) lowercase__ : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowercase__ : Union[str, Any] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] ) -> str: lowercase__ : Tuple = self.num_labels lowercase__ : Tuple = TFConvBertForTokenClassification(config=_lowercase ) lowercase__ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : List[str] = model(_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Tuple ) -> Union[str, Any]: lowercase__ : int = TFConvBertForQuestionAnswering(config=_lowercase ) lowercase__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowercase__ : str = model(_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: lowercase__ : List[str] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Union[str, Any] = config_and_inputs lowercase__ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case_ ( _lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ): __A : Optional[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __A : str = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __A : Dict = False __A : List[Any] = False __A : str = False def __UpperCamelCase ( self : Optional[int] ) -> int: lowercase__ : Optional[int] = TFConvBertModelTester(self ) lowercase__ : List[str] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __UpperCamelCase ( self : Optional[int] ) -> Any: self.config_tester.run_common_tests() def __UpperCamelCase ( self : Dict ) -> List[Any]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __UpperCamelCase ( self : Dict ) -> Dict: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def __UpperCamelCase ( self : Any ) -> int: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def __UpperCamelCase ( self : str ) -> List[Any]: lowercase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def __UpperCamelCase ( self : int ) -> List[str]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def __UpperCamelCase ( self : Dict ) -> Any: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = True lowercase__ : List[Any] = True if hasattr(_lowercase , "use_cache" ): lowercase__ : Any = True lowercase__ : Any = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase__ : Optional[Any] = getattr(self.model_tester , "key_length" , _lowercase ) for model_class in self.all_model_classes: lowercase__ : Any = self._prepare_for_class(_lowercase , _lowercase ) lowercase__ : Any = model_class(_lowercase ) lowercase__ : Union[str, Any] = len(model(_lowercase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase , saved_model=_lowercase ) lowercase__ : Dict = os.path.join(_lowercase , "saved_model" , "1" ) lowercase__ : Any = tf.keras.models.load_model(_lowercase ) lowercase__ : int = model(_lowercase ) if self.is_encoder_decoder: lowercase__ : Optional[Any] = outputs["encoder_hidden_states"] lowercase__ : Optional[Any] = outputs["encoder_attentions"] else: lowercase__ : Any = outputs["hidden_states"] lowercase__ : Tuple = outputs["attentions"] self.assertEqual(len(_lowercase ) , _lowercase ) lowercase__ : Dict = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __UpperCamelCase ( self : str ) -> str: lowercase__ : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_lowercase ) def __UpperCamelCase ( self : Dict ) -> List[str]: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = True lowercase__ : Tuple = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) lowercase__ : Union[str, Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowercase__ : Tuple = getattr(self.model_tester , "key_length" , _lowercase ) lowercase__ : List[Any] = getattr(self.model_tester , "key_length" , _lowercase ) def check_decoder_attentions_output(lowercase_ : Union[str, Any] ): lowercase__ : Optional[Any] = len(_lowercase ) self.assertEqual(out_len % 2 , 0 ) lowercase__ : List[str] = outputs.decoder_attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowercase_ : int ): lowercase__ : int = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase__ : int = True lowercase__ : Dict = False lowercase__ : int = model_class(_lowercase ) lowercase__ : Any = model(self._prepare_for_class(_lowercase , _lowercase ) ) lowercase__ : Tuple = len(_lowercase ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) if self.is_encoder_decoder: lowercase__ : int = model_class(_lowercase ) lowercase__ : List[Any] = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_decoder_attentions_output(_lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase__ : Tuple = True lowercase__ : List[Any] = model_class(_lowercase ) lowercase__ : str = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) # Check attention is always last and order is fine lowercase__ : int = True lowercase__ : Optional[Any] = True lowercase__ : int = model_class(_lowercase ) lowercase__ : Optional[Any] = model(self._prepare_for_class(_lowercase , _lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowercase ) ) self.assertEqual(model.config.output_hidden_states , _lowercase ) check_encoder_attentions_output(_lowercase ) @require_tf class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : Dict = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowercase__ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ : Optional[Any] = model(_lowercase )[0] lowercase__ : int = [1, 6, 7_68] self.assertEqual(output.shape , _lowercase ) lowercase__ : Optional[int] = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowercase , atol=1E-4 )
370
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase = pd.read_csv('''sample_data.csv''', header=None) UpperCamelCase = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase = df.iloc[:, 1:2] UpperCamelCase = actual_data.values.reshape(len_data, 1) UpperCamelCase = MinMaxScaler().fit_transform(actual_data) UpperCamelCase = 10 UpperCamelCase = 5 UpperCamelCase = 20 UpperCamelCase = len_data - periods * look_back UpperCamelCase = actual_data[:division] UpperCamelCase = actual_data[division - look_back :] UpperCamelCase , UpperCamelCase = [], [] UpperCamelCase , UpperCamelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase = np.array(train_x) UpperCamelCase = np.array(test_x) UpperCamelCase = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') UpperCamelCase = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase = model.predict(x_test)
371
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
0
"""simple docstring""" import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def lowercase_ ( _lowerCamelCase : List[Any]): # fetching a list of articles in json format lowercase__ : List[Any] = requests.get(_NEWS_API + bbc_news_api_key).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1): print(f'''{i}.) {article["title"]}''') if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[int] = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function") lowercase__ : Any = hex_num[0] == """-""" if is_negative: lowercase__ : Any = hex_num[1:] try: lowercase__ : int = int(A__ , 16) except ValueError: raise ValueError("Invalid value was passed to the function") lowercase__ : List[Any] = """""" while int_num > 0: lowercase__ : List[Any] = str(int_num % 2) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str) if __name__ == "__main__": import doctest doctest.testmod()
351
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Any): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): lowercase__ : Union[str, Any] = np.full((len(lowerCAmelCase__), sequence_length, 2) , lowerCAmelCase__) else: lowercase__ : str = np.full((len(lowerCAmelCase__), sequence_length) , lowerCAmelCase__) for i, tensor in enumerate(lowerCAmelCase__): if padding_side == "right": if isinstance(lowerCAmelCase__ , lowerCAmelCase__): lowercase__ : Any = tensor[:sequence_length] else: lowercase__ : List[Any] = tensor[:sequence_length] else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__): lowercase__ : Dict = tensor[:sequence_length] else: lowercase__ : int = tensor[:sequence_length] return out_tensor.tolist() def lowercase_ ( _lowerCamelCase : Optional[Any]): lowercase__ : str = ord(lowerCAmelCase__) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True lowercase__ : List[str] = unicodedata.category(lowerCAmelCase__) if cat.startswith("P"): return True return False @dataclass class snake_case_ ( __lowercase ): __A : PreTrainedTokenizerBase __A : Union[bool, str, PaddingStrategy] = True __A : Optional[int] = None __A : Optional[int] = None __A : int = -100 __A : str = "pt" def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> Any: import torch lowercase__ : Union[str, Any] = '''label''' if '''label''' in features[0].keys() else '''labels''' lowercase__ : Tuple = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ : Union[str, Any] = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch lowercase__ : List[str] = torch.tensor(batch["entity_ids"] ).shape[1] lowercase__ : Tuple = self.tokenizer.padding_side if padding_side == "right": lowercase__ : Union[str, Any] = [ list(snake_case_ ) + [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) for label in labels ] else: lowercase__ : Dict = [ [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) + list(snake_case_ ) for label in labels ] lowercase__ : Dict = [feature['''ner_tags'''] for feature in features] lowercase__ : Optional[Any] = padding_tensor(snake_case_ , -1 , snake_case_ , snake_case_ ) lowercase__ : Union[str, Any] = [feature['''original_entity_spans'''] for feature in features] lowercase__ : Optional[int] = padding_tensor(snake_case_ , (-1, -1) , snake_case_ , snake_case_ ) lowercase__ : List[str] = {k: torch.tensor(snake_case_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
352
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( __A ): __A : List[Any] = ["image_processor", "tokenizer"] __A : Tuple = "ViTImageProcessor" __A : int = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] , lowercase_ : Tuple=None , lowercase_ : List[str]=None , **lowercase_ : Optional[int] ) -> Tuple: lowercase__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) lowercase__ : Union[str, Any] = kwargs.pop("feature_extractor" ) lowercase__ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self : int , lowercase_ : Dict=None , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : int=None , **lowercase_ : Tuple ) -> Optional[int]: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowercase__ : str = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if visual_prompt is not None: lowercase__ : List[str] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: lowercase__ : Optional[int] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if visual_prompt is not None and images is not None: lowercase__ : Any = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowercase__ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowercase__ : int = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def __UpperCamelCase ( self : Optional[int] , *lowercase_ : List[str] , **lowercase_ : Dict ) -> Tuple: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : List[Any] , *lowercase_ : str , **lowercase_ : List[Any] ) -> Optional[Any]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : Any ) -> Optional[int]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : str ) -> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
353
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
0
from __future__ import annotations UpperCamelCase = 1.60_21E-19 # units = C def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , ): if (conductivity, electron_conc, mobility).count(0) != 1: raise ValueError("You cannot supply more or less than 2 values") elif conductivity < 0: raise ValueError("Conductivity cannot be negative") elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative") elif mobility < 0: raise ValueError("mobility cannot be negative") elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
0
import logging from transformers import PretrainedConfig UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class snake_case_ ( UpperCamelCase__ ): __A : List[Any] = '''bertabs''' def __init__( self : List[str] , lowercase_ : Dict=3_05_22 , lowercase_ : Union[str, Any]=5_12 , lowercase_ : Optional[int]=6 , lowercase_ : int=5_12 , lowercase_ : Optional[int]=8 , lowercase_ : List[Any]=5_12 , lowercase_ : Tuple=0.2 , lowercase_ : List[Any]=6 , lowercase_ : Tuple=7_68 , lowercase_ : List[Any]=8 , lowercase_ : Union[str, Any]=20_48 , lowercase_ : str=0.2 , **lowercase_ : Any , ) -> List[str]: super().__init__(**UpperCamelCase_ ) lowercase__ : Tuple = vocab_size lowercase__ : Optional[int] = max_pos lowercase__ : List[str] = enc_layers lowercase__ : List[Any] = enc_hidden_size lowercase__ : Tuple = enc_heads lowercase__ : Any = enc_ff_size lowercase__ : Dict = enc_dropout lowercase__ : List[str] = dec_layers lowercase__ : List[str] = dec_hidden_size lowercase__ : List[str] = dec_heads lowercase__ : Optional[Any] = dec_ff_size lowercase__ : int = dec_dropout
355
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCamelCase = 'Create a default config file for Accelerate with only a few flags set.' def lowercase_ ( _lowerCamelCase : Optional[int]="no" , _lowerCamelCase : str = default_json_config_file , _lowerCamelCase : bool = False): lowercase__ : List[str] = Path(lowerCamelCase_) path.parent.mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_) if path.exists(): print( f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''') return False lowercase__ : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''') lowercase__ : Union[str, Any] = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): lowercase__ : Optional[int] = torch.cuda.device_count() lowercase__ : Tuple = num_gpus lowercase__ : List[Any] = False if num_gpus > 1: lowercase__ : Any = '''MULTI_GPU''' else: lowercase__ : Optional[int] = '''NO''' elif is_xpu_available() and use_xpu: lowercase__ : Any = torch.xpu.device_count() lowercase__ : str = num_xpus lowercase__ : Union[str, Any] = False if num_xpus > 1: lowercase__ : Optional[int] = '''MULTI_XPU''' else: lowercase__ : List[str] = '''NO''' elif is_npu_available(): lowercase__ : List[str] = torch.npu.device_count() lowercase__ : Optional[int] = num_npus lowercase__ : Union[str, Any] = False if num_npus > 1: lowercase__ : Tuple = '''MULTI_NPU''' else: lowercase__ : Any = '''NO''' else: lowercase__ : Dict = 0 lowercase__ : Dict = True lowercase__ : Tuple = 1 lowercase__ : int = '''NO''' lowercase__ : List[str] = ClusterConfig(**lowerCamelCase_) config.to_json_file(lowerCamelCase_) return path def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any]): lowercase__ : Any = parser.add_parser("default" , parents=lowerCamelCase_ , help=lowerCamelCase_ , formatter_class=lowerCamelCase_) parser.add_argument( "--config_file" , default=lowerCamelCase_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have " "such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed " "with \'huggingface\'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=lowerCamelCase_ , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=lowerCamelCase_) return parser def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : Optional[Any] = write_basic_config(args.mixed_precision , args.save_location) if config_file: print(f'''accelerate configuration saved at {config_file}''')
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
import os from distutils.util import strtobool def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]): for e in env_keys: lowercase__ : int = int(os.environ.get(UpperCAmelCase_ , -1)) if val >= 0: return val return default def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int=False): lowercase__ : Dict = os.environ.get(UpperCAmelCase_ , str(UpperCAmelCase_)) return strtobool(UpperCAmelCase_) == 1 # As its name indicates `strtobool` actually returns an int... def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple="no"): lowercase__ : Optional[Any] = os.environ.get(UpperCAmelCase_ , str(UpperCAmelCase_)) return value
357
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( lowerCamelCase__ ,unittest.TestCase ): __A : Union[str, Any] = CodeGenTokenizer __A : Tuple = CodeGenTokenizerFast __A : Any = True __A : Any = {"add_prefix_space": True} __A : List[str] = False def __UpperCamelCase ( self : Optional[int] ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] lowercase__ : Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowercase__ : int = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase__ : Tuple = {'unk_token': '<unk>'} lowercase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__snake_case ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__snake_case ) ) def __UpperCamelCase ( self : str , **lowercase_ : str ) -> List[str]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __UpperCamelCase ( self : List[Any] , **lowercase_ : str ) -> Tuple: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def __UpperCamelCase ( self : Dict , lowercase_ : List[str] ) -> List[str]: lowercase__ : Any = 'lower newer' lowercase__ : Any = 'lower newer' return input_text, output_text def __UpperCamelCase ( self : Tuple ) -> int: lowercase__ : Optional[int] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : str = 'lower newer' lowercase__ : Optional[int] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowercase__ : str = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowercase__ : Optional[int] = tokens + [tokenizer.unk_token] lowercase__ : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __UpperCamelCase ( self : Dict ) -> Optional[Any]: if not self.test_rust_tokenizer: return lowercase__ : int = self.get_tokenizer() lowercase__ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__snake_case ) lowercase__ : List[Any] = 'lower newer' # Testing tokenization lowercase__ : List[Any] = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) lowercase__ : Union[str, Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids without special tokens lowercase__ : List[str] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) lowercase__ : Dict = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids with special tokens lowercase__ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=__snake_case ) lowercase__ : str = tokenizer.encode(__snake_case , add_prefix_space=__snake_case ) lowercase__ : int = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing the unknown token lowercase__ : Optional[int] = tokens + [rust_tokenizer.unk_token] lowercase__ : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __UpperCamelCase ( self : int , *lowercase_ : Dict , **lowercase_ : List[str] ) -> Tuple: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any]=15 ) -> int: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) # Simple input lowercase__ : int = 'This is a simple input' lowercase__ : Dict = ['This is a simple input 1', 'This is a simple input 2'] lowercase__ : Optional[Any] = ('This is a simple input', 'This is a pair') lowercase__ : List[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="max_length" ) # Simple input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="max_length" ) # Simple input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="max_length" , ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding="max_length" ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding="max_length" ) # Pair input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding="max_length" , ) def __UpperCamelCase ( self : int ) -> Optional[int]: lowercase__ : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowercase__ : Dict = 'This is a simple input' lowercase__ : Optional[Any] = ['This is a simple input looooooooong', 'This is a simple input'] lowercase__ : Dict = ('This is a simple input', 'This is a pair') lowercase__ : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] lowercase__ : Union[str, Any] = tokenizer.pad_token_id lowercase__ : Dict = tokenizer(__snake_case , padding="max_length" , max_length=30 , return_tensors="np" ) lowercase__ : int = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors="np" ) lowercase__ : Dict = tokenizer(*__snake_case , padding="max_length" , max_length=60 , return_tensors="np" ) lowercase__ : List[Any] = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __UpperCamelCase ( self : int ) -> Dict: lowercase__ : int = '$$$' lowercase__ : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__snake_case , add_bos_token=__snake_case ) lowercase__ : Optional[int] = 'This is a simple input' lowercase__ : Optional[Any] = ['This is a simple input 1', 'This is a simple input 2'] lowercase__ : Tuple = tokenizer.bos_token_id lowercase__ : int = tokenizer(__snake_case ) lowercase__ : Any = tokenizer(__snake_case ) self.assertEqual(out_s.input_ids[0] , __snake_case ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowercase__ : Optional[Any] = tokenizer.decode(out_s.input_ids ) lowercase__ : str = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __snake_case ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowercase__ : Optional[Any] = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowercase__ : str = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' lowercase__ : Optional[int] = '\nif len_a > len_b: result = a\nelse: result = b' lowercase__ : Dict = tokenizer.encode(__snake_case ) lowercase__ : Optional[int] = ['^#', re.escape("<|endoftext|>" ), '^\'\'\'', '^"""', '\n\n\n'] lowercase__ : Any = tokenizer.decode(__snake_case , truncate_before_pattern=__snake_case ) self.assertEqual(__snake_case , __snake_case ) def __UpperCamelCase ( self : List[str] ) -> int: pass
358
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
0
def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple): return x if y == 0 else greatest_common_divisor(lowerCAmelCase__ , x % y) def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : int): return (x * y) // greatest_common_divisor(lowerCAmelCase__ , lowerCAmelCase__) def lowercase_ ( _lowerCamelCase : Union[str, Any] = 20): lowercase__ : List[Any] = 1 for i in range(1 , n + 1): lowercase__ : Dict = lcm(lowerCAmelCase__ , lowerCAmelCase__) return g if __name__ == "__main__": print(f"{solution() = }")
359
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
from pathlib import Path import fire from tqdm import tqdm def lowercase_ ( _lowerCamelCase : Tuple="ro" , _lowerCamelCase : Optional[int]="en" , _lowerCamelCase : Any="wmt16" , _lowerCamelCase : Tuple=None): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets") lowercase__ : Optional[int] = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''') lowercase__ : Optional[Any] = datasets.load_dataset(_lowerCamelCase , _lowerCamelCase) if save_dir is None: lowercase__ : Union[str, Any] = f'''{dataset}-{pair}''' lowercase__ : Union[str, Any] = Path(_lowerCamelCase) save_dir.mkdir(exist_ok=_lowerCamelCase) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''') # to save to val.source, val.target like summary datasets lowercase__ : Tuple = "val" if split == "validation" else split lowercase__ : List[str] = save_dir.joinpath(f'''{fn}.source''') lowercase__ : Union[str, Any] = save_dir.joinpath(f'''{fn}.target''') lowercase__ : Optional[int] = src_path.open("w+") lowercase__ : Optional[Any] = tgt_path.open("w+") # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split]): lowercase__ : Union[str, Any] = x["translation"] src_fp.write(ex[src_lang] + "\n") tgt_fp.write(ex[tgt_lang] + "\n") print(f'''Saved {dataset} dataset to {save_dir}''') if __name__ == "__main__": fire.Fire(download_wmt_dataset)
360
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC UpperCamelCase = parse(importlib.metadata.version('''torch''')) def lowercase_ ( _lowerCamelCase : Union[str, Version] , _lowerCamelCase : str , _lowerCamelCase : str): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}''') lowercase__ : Any = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowerCamelCase , _lowerCamelCase): lowercase__ : Union[str, Any] = parse(importlib.metadata.version(_lowerCamelCase)) return operation(_lowerCamelCase , parse(_lowerCamelCase)) def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str): return compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''spiece.model'''} UpperCamelCase = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } UpperCamelCase = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class snake_case_ ( __A ): __A : Union[str, Any] = VOCAB_FILES_NAMES __A : str = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : int = ["input_ids", "attention_mask"] __A : Dict = [] def __init__( self : List[str] , lowercase_ : Dict , lowercase_ : Tuple="<unk>" , lowercase_ : Dict="<s>" , lowercase_ : int="</s>" , lowercase_ : Dict="<pad>" , lowercase_ : Union[str, Any]="[SEP]" , lowercase_ : Optional[int]="[MASK]" , lowercase_ : Union[str, Any]="[CLS]" , lowercase_ : List[Any] = None , **lowercase_ : Tuple , ) -> None: lowercase__ : Optional[int] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token lowercase__ : str = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token lowercase__ : List[Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token lowercase__ : Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token lowercase__ : List[Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token lowercase__ : Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token lowercase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , sep_token=__a , mask_token=__a , cls_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) lowercase__ : Union[str, Any] = vocab_file lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: return self.sp_model.get_piece_size() def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Any = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> List[str]: lowercase__ : List[str] = self.__dict__.copy() lowercase__ : Union[str, Any] = None return state def __setstate__( self : Union[str, Any] , lowercase_ : Optional[Any] ) -> Union[str, Any]: lowercase__ : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase__ : Optional[Any] = {} lowercase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Optional[int] ) -> List[str]: return self.sp_model.encode(__a , out_type=__a ) def __UpperCamelCase ( self : Tuple , lowercase_ : str ) -> Union[str, Any]: return self.sp_model.piece_to_id(__a ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : List[str] ) -> List[Any]: lowercase__ : Optional[int] = self.sp_model.IdToPiece(__a ) return token def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] ) -> Dict: lowercase__ : List[str] = [] lowercase__ : Union[str, Any] = "" lowercase__ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token lowercase__ : Optional[Any] = True lowercase__ : int = [] else: current_sub_tokens.append(__a ) lowercase__ : List[str] = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Any , lowercase_ : Any = False , lowercase_ : Any = None , lowercase_ : str = True , **lowercase_ : str , ) -> str: lowercase__ : Dict = kwargs.pop("use_source_tokenizer" , __a ) lowercase__ : Optional[int] = self.convert_ids_to_tokens(__a , skip_special_tokens=__a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase__ : Tuple = [] lowercase__ : Tuple = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__a ) ) lowercase__ : Union[str, Any] = [] sub_texts.append(__a ) else: current_sub_text.append(__a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowercase__ : Optional[int] = re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(__a ) ) else: lowercase__ : Optional[Any] = "".join(__a ) lowercase__ : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase__ : Any = self.clean_up_tokenization(__a ) return clean_text else: return text def __UpperCamelCase ( self : str , lowercase_ : int , lowercase_ : List[Any] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : Any = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: lowercase__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def __UpperCamelCase ( self : Tuple , lowercase_ : Dict , lowercase_ : Any = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ : int = [self.cls_token_id] lowercase__ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self : str , lowercase_ : Tuple , lowercase_ : List[Any] = None , lowercase_ : Dict = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Union[str, Any] = None ) -> List[int]: lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
362
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''PoolFormerFeatureExtractor'''] UpperCamelCase = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
0
import warnings from functools import wraps from typing import Callable def lowercase_ ( _lowerCamelCase : Callable) -> List[Any]: @wraps(SCREAMING_SNAKE_CASE_) def _inner_fn(*_lowerCamelCase : int , **_lowerCamelCase : str): warnings.warn( (f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , SCREAMING_SNAKE_CASE_ , ) return fn(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) return _inner_fn
364
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any]): # load base model lowercase__ : Tuple = StableDiffusionPipeline.from_pretrained(snake_case__ , torch_dtype=torch.floataa) # load LoRA weight from .safetensors lowercase__ : Union[str, Any] = load_file(snake_case__) lowercase__ : int = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowercase__ : Optional[Any] = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") lowercase__ : Optional[Any] = pipeline.text_encoder else: lowercase__ : Tuple = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") lowercase__ : List[str] = pipeline.unet # find the target layer lowercase__ : Optional[Any] = layer_infos.pop(0) while len(snake_case__) > -1: try: lowercase__ : Dict = curr_layer.__getattr__(snake_case__) if len(snake_case__) > 0: lowercase__ : Dict = layer_infos.pop(0) elif len(snake_case__) == 0: break except Exception: if len(snake_case__) > 0: temp_name += "_" + layer_infos.pop(0) else: lowercase__ : Tuple = layer_infos.pop(0) lowercase__ : List[Any] = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up")) pair_keys.append(snake_case__) else: pair_keys.append(snake_case__) pair_keys.append(key.replace("lora_up" , "lora_down")) # update weight if len(state_dict[pair_keys[0]].shape) == 4: lowercase__ : Dict = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.floataa) lowercase__ : Union[str, Any] = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(snake_case__ , snake_case__).unsqueeze(2).unsqueeze(3) else: lowercase__ : Dict = state_dict[pair_keys[0]].to(torch.floataa) lowercase__ : List[Any] = state_dict[pair_keys[1]].to(torch.floataa) curr_layer.weight.data += alpha * torch.mm(snake_case__ , snake_case__) # update visited list for item in pair_keys: visited.append(snake_case__) return pipeline if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') UpperCamelCase = parser.parse_args() UpperCamelCase = args.base_model_path UpperCamelCase = args.checkpoint_path UpperCamelCase = args.dump_path UpperCamelCase = args.lora_prefix_unet UpperCamelCase = args.lora_prefix_text_encoder UpperCamelCase = args.alpha UpperCamelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCamelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
365
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
0
from __future__ import annotations from math import ceil, floor, sqrt def lowercase_ ( _lowerCamelCase : int = 200_0000): lowercase__ : list[int] = [0] lowercase__ : int for idx in range(1 , ceil(sqrt(target * 2) * 1.1)): triangle_numbers.append(triangle_numbers[-1] + idx) # we want this to be as close as possible to target lowercase__ : int = 0 # the area corresponding to the grid that gives the product closest to target lowercase__ : int = 0 # an estimate of b, using the quadratic formula lowercase__ : float # the largest integer less than b_estimate lowercase__ : int # the largest integer less than b_estimate lowercase__ : int # the triangle number corresponding to b_floor lowercase__ : int # the triangle number corresponding to b_ceil lowercase__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1): lowercase__ : Optional[Any] = (-1 + sqrt(1 + 8 * target / triangle_a)) / 2 lowercase__ : Optional[int] = floor(_lowerCamelCase) lowercase__ : Optional[int] = ceil(_lowerCamelCase) lowercase__ : Tuple = triangle_numbers[b_floor] lowercase__ : str = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a) < abs( target - best_product): lowercase__ : List[Any] = triangle_b_first_guess * triangle_a lowercase__ : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a) < abs( target - best_product): lowercase__ : List[Any] = triangle_b_second_guess * triangle_a lowercase__ : List[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(f"{solution() = }")
367
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCamelCase = logging.get_logger(__name__) class snake_case_ : __A : str __A : str = None @staticmethod def __UpperCamelCase ( ) -> Tuple: raise NotImplementedError def __UpperCamelCase ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : str , **lowercase_ : int ) -> List[Any]: raise NotImplementedError def __UpperCamelCase ( self : Tuple , lowercase_ : List[Any] ) -> Tuple: raise NotImplementedError def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def __UpperCamelCase ( cls : Any ) -> List[str]: return F'''`pip install {cls.pip_package or cls.name}`''' class snake_case_ ( UpperCamelCase__ ): __A : int = """optuna""" @staticmethod def __UpperCamelCase ( ) -> List[str]: return is_optuna_available() def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : int , lowercase_ : str , **lowercase_ : Tuple ) -> List[str]: return run_hp_search_optuna(__a , __a , __a , **__a ) def __UpperCamelCase ( self : List[str] , lowercase_ : Union[str, Any] ) -> List[str]: return default_hp_space_optuna(__a ) class snake_case_ ( UpperCamelCase__ ): __A : Dict = """ray""" __A : str = """'ray[tune]'""" @staticmethod def __UpperCamelCase ( ) -> Any: return is_ray_available() def __UpperCamelCase ( self : List[str] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : str , **lowercase_ : Optional[int] ) -> Tuple: return run_hp_search_ray(__a , __a , __a , **__a ) def __UpperCamelCase ( self : List[Any] , lowercase_ : List[str] ) -> List[Any]: return default_hp_space_ray(__a ) class snake_case_ ( UpperCamelCase__ ): __A : List[Any] = """sigopt""" @staticmethod def __UpperCamelCase ( ) -> int: return is_sigopt_available() def __UpperCamelCase ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : str , **lowercase_ : Optional[Any] ) -> Dict: return run_hp_search_sigopt(__a , __a , __a , **__a ) def __UpperCamelCase ( self : List[str] , lowercase_ : Tuple ) -> int: return default_hp_space_sigopt(__a ) class snake_case_ ( UpperCamelCase__ ): __A : List[Any] = """wandb""" @staticmethod def __UpperCamelCase ( ) -> Tuple: return is_wandb_available() def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : str , **lowercase_ : Tuple ) -> Any: return run_hp_search_wandb(__a , __a , __a , **__a ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : int ) -> Tuple: return default_hp_space_wandb(__a ) UpperCamelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowercase_ ( ): lowercase__ : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case_) > 0: lowercase__ : str = available_backends[0].name if len(snake_case_) > 1: logger.info( f'''{len(snake_case_)} hyperparameter search backends available. Using {name} as the default.''') return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()))
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
from __future__ import annotations class snake_case_ : def __init__( self : Union[str, Any] , lowercase_ : int ) -> Dict: lowercase__ : Any = data lowercase__ : Node | None = None lowercase__ : Node | None = None def lowercase_ ( _lowerCamelCase : Dict): # In Order traversal of the tree if tree: display(tree.left) print(tree.data) display(tree.right) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return 1 + max(depth_of_tree(tree.left) , depth_of_tree(tree.right)) if tree else 0 def lowercase_ ( _lowerCamelCase : str): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right) else: return not tree.left and not tree.right def lowercase_ ( ): # Main function for testing. lowercase__ : Optional[int] = Node(1) lowercase__ : str = Node(2) lowercase__ : int = Node(3) lowercase__ : Optional[int] = Node(4) lowercase__ : Any = Node(5) lowercase__ : Tuple = Node(6) lowercase__ : List[Any] = Node(7) lowercase__ : Any = Node(8) lowercase__ : str = Node(9) print(is_full_binary_tree(lowerCAmelCase_)) print(depth_of_tree(lowerCAmelCase_)) print("Tree is: ") display(lowerCAmelCase_) if __name__ == "__main__": main()
369
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''LayoutLMv2FeatureExtractor'''] UpperCamelCase = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class snake_case_ ( lowerCamelCase_ ): __A : List[Any] = '''xmod''' def __init__( self : List[Any] , lowercase_ : Dict=3_05_22 , lowercase_ : List[str]=7_68 , lowercase_ : Optional[Any]=12 , lowercase_ : Tuple=12 , lowercase_ : List[Any]=30_72 , lowercase_ : Optional[int]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : List[str]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-12 , lowercase_ : Optional[Any]=1 , lowercase_ : Union[str, Any]=0 , lowercase_ : List[Any]=2 , lowercase_ : List[str]="absolute" , lowercase_ : Optional[Any]=True , lowercase_ : str=None , lowercase_ : Optional[int]=False , lowercase_ : List[str]=2 , lowercase_ : int=False , lowercase_ : List[Any]=True , lowercase_ : Tuple=True , lowercase_ : List[Any]=("en_XX",) , lowercase_ : str=None , **lowercase_ : str , ) -> Dict: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) lowercase__ : Dict = vocab_size lowercase__ : Union[str, Any] = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : int = hidden_act lowercase__ : List[Any] = intermediate_size lowercase__ : Union[str, Any] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Union[str, Any] = type_vocab_size lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : Any = position_embedding_type lowercase__ : Dict = use_cache lowercase__ : Tuple = classifier_dropout lowercase__ : Tuple = pre_norm lowercase__ : Optional[int] = adapter_reduction_factor lowercase__ : Any = adapter_layer_norm lowercase__ : Any = adapter_reuse_layer_norm lowercase__ : int = ln_before_adapter lowercase__ : Dict = list(__snake_case ) lowercase__ : Tuple = default_language class snake_case_ ( lowerCamelCase_ ): @property def __UpperCamelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
371
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
0
"""simple docstring""" from __future__ import annotations UpperCamelCase = 10 def lowercase_ ( _lowerCamelCase : list[int]): lowercase__ : List[Any] = 1 lowercase__ : int = max(_lowerCamelCase) while placement <= max_digit: # declare and initialize empty buckets lowercase__ : list[list] = [[] for _ in range(_lowerCamelCase)] # split list_of_ints between the buckets for i in list_of_ints: lowercase__ : List[Any] = int((i / placement) % RADIX) buckets[tmp].append(_lowerCamelCase) # put each buckets' contents into list_of_ints lowercase__ : Optional[int] = 0 for b in range(_lowerCamelCase): for i in buckets[b]: lowercase__ : str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( ): # Get the sagemaker specific mp parameters from smp_options variable. lowercase__ : Dict = os.getenv("SM_HP_MP_PARAMETERS" , "{}") try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowercase__ : Optional[Any] = json.loads(_lowerCamelCase) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowercase__ : List[str] = os.getenv("SM_FRAMEWORK_PARAMS" , "{}") try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowercase__ : List[Any] = json.loads(_lowerCamelCase) if not mpi_options.get("sagemaker_mpi_enabled" , _lowerCamelCase): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed") is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class snake_case_ ( __A ): __A : str = field( default="" ,metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} ,) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , lowercase_ , ) @cached_property def __UpperCamelCase ( self : Dict ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: lowercase__ : List[Any] = torch.device("cpu" ) lowercase__ : Optional[Any] = 0 elif is_sagemaker_model_parallel_available(): lowercase__ : Tuple = smp.local_rank() lowercase__ : Union[str, Any] = torch.device("cuda" , lowercase_ ) lowercase__ : Dict = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) lowercase__ : List[Any] = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) lowercase__ : Tuple = torch.device("cuda" , self.local_rank ) lowercase__ : Any = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowercase__ : Any = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowercase__ : Optional[int] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) lowercase__ : Dict = torch.device("cuda" , self.local_rank ) lowercase__ : Tuple = 1 if device.type == "cuda": torch.cuda.set_device(lowercase_ ) return device @property def __UpperCamelCase ( self : Tuple ) -> List[str]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __UpperCamelCase ( self : str ) -> str: return not is_sagemaker_model_parallel_available() @property def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: return False
351
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class snake_case_ ( __A ): __A : Tuple = "trajectory_transformer" __A : Tuple = ["past_key_values"] __A : Union[str, Any] = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , lowercase_ : Any=1_00 , lowercase_ : List[Any]=5 , lowercase_ : Tuple=1 , lowercase_ : Dict=1 , lowercase_ : Any=2_49 , lowercase_ : Tuple=6 , lowercase_ : Optional[int]=17 , lowercase_ : Dict=25 , lowercase_ : List[str]=4 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[int]=1_28 , lowercase_ : str=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.00_06 , lowercase_ : Tuple=5_12 , lowercase_ : Any=0.02 , lowercase_ : Any=1E-12 , lowercase_ : int=1 , lowercase_ : List[Any]=True , lowercase_ : int=1 , lowercase_ : Dict=5_02_56 , lowercase_ : Any=5_02_56 , **lowercase_ : Any , ) -> str: lowercase__ : List[str] = vocab_size lowercase__ : List[str] = action_weight lowercase__ : Optional[Any] = reward_weight lowercase__ : Any = value_weight lowercase__ : Tuple = max_position_embeddings lowercase__ : Any = block_size lowercase__ : str = action_dim lowercase__ : int = observation_dim lowercase__ : Any = transition_dim lowercase__ : Optional[int] = learning_rate lowercase__ : Union[str, Any] = n_layer lowercase__ : Optional[Any] = n_head lowercase__ : List[str] = n_embd lowercase__ : Union[str, Any] = embd_pdrop lowercase__ : List[Any] = attn_pdrop lowercase__ : List[str] = resid_pdrop lowercase__ : Union[str, Any] = initializer_range lowercase__ : Union[str, Any] = layer_norm_eps lowercase__ : Optional[int] = kaiming_initializer_range lowercase__ : Any = use_cache super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
352
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase_ ( _lowerCamelCase : Any): lowercase__ : Optional[Any] = image.size lowercase__ : int = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase__ : int = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"]) lowercase__ : Union[str, Any] = np.array(_lowerCamelCase).astype(np.floataa) / 255.0 lowercase__ : Union[str, Any] = image[None].transpose(0 , 3 , 1 , 2) lowercase__ : Dict = torch.from_numpy(_lowerCamelCase) return 2.0 * image - 1.0 class snake_case_ ( __A ): def __init__( self : str , lowercase_ : VQModel , lowercase_ : UNetaDModel , lowercase_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> List[Any]: super().__init__() self.register_modules(vqvae=lowercase_ , unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : Tuple , lowercase_ : Union[torch.Tensor, PIL.Image.Image] = None , lowercase_ : Optional[int] = 1 , lowercase_ : Optional[int] = 1_00 , lowercase_ : Optional[float] = 0.0 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowercase_ , PIL.Image.Image ): lowercase__ : Any = 1 elif isinstance(lowercase_ , torch.Tensor ): lowercase__ : List[Any] = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowercase_ )}''' ) if isinstance(lowercase_ , PIL.Image.Image ): lowercase__ : str = preprocess(lowercase_ ) lowercase__ : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase__ : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase__ : Any = next(self.unet.parameters() ).dtype lowercase__ : Optional[int] = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) lowercase__ : Tuple = image.to(device=self.device , dtype=lowercase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowercase__ : Optional[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase__ : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : Optional[int] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : List[str] = {} if accepts_eta: lowercase__ : int = eta for t in self.progress_bar(lowercase_ ): # concat latents and low resolution image in the channel dimension. lowercase__ : Optional[int] = torch.cat([latents, image] , dim=1 ) lowercase__ : Optional[int] = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual lowercase__ : Tuple = self.unet(lowercase_ , lowercase_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[int] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # decode the image latents with the VQVAE lowercase__ : Union[str, Any] = self.vqvae.decode(lowercase_ ).sample lowercase__ : str = torch.clamp(lowercase_ , -1.0 , 1.0 ) lowercase__ : Any = image / 2 + 0.5 lowercase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : Optional[Any] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
353
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
0
def lowercase_ ( _lowerCamelCase : int): if not isinstance(_lowerCamelCase , _lowerCamelCase): lowercase__ : Dict = f'''Input value of [number={number}] must be an integer''' raise TypeError(_lowerCamelCase) if number < 0: return False lowercase__ : int = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase_ ( _lowerCamelCase : dict): return (data["data"], data["target"]) def lowercase_ ( _lowerCamelCase : np.ndarray , _lowerCamelCase : np.ndarray , _lowerCamelCase : np.ndarray): lowercase__ : Any = XGBRegressor(verbosity=0 , random_state=42) xgb.fit(_lowerCamelCase , _lowerCamelCase) # Predict target for test data lowercase__ : Tuple = xgb.predict(_lowerCamelCase) lowercase__ : Optional[int] = predictions.reshape(len(_lowerCamelCase) , 1) return predictions def lowercase_ ( ): lowercase__ : Tuple = fetch_california_housing() lowercase__ : Optional[Any] = data_handling(_lowerCamelCase) lowercase__ : Tuple = train_test_split( _lowerCamelCase , _lowerCamelCase , test_size=0.25 , random_state=1) lowercase__ : Any = xgboost(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(_lowerCamelCase , _lowerCamelCase)}''') print(f'''Mean Square Error : {mean_squared_error(_lowerCamelCase , _lowerCamelCase)}''') if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
355
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : List[Any] = IFPipeline __A : Dict = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = PipelineTesterMixin.required_optional_params - {"latents"} def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: return self._get_dummy_components() def __UpperCamelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : int=0 ) -> Union[str, Any]: if str(lowercase_ ).startswith("mps" ): lowercase__ : int = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : str = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Dict ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __UpperCamelCase ( self : int ) -> Optional[int]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __UpperCamelCase ( self : str ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __UpperCamelCase ( self : Any ) -> List[str]: self._test_save_load_local() def __UpperCamelCase ( self : List[Any] ) -> str: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ) -> Any: # if lowercase__ : Tuple = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) lowercase__ : Dict = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=lowercase_ , tokenizer=lowercase_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) lowercase__ : Optional[int] = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase__ : Tuple = None lowercase__ : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase__ : Optional[Any] = IFImgaImgPipeline(**pipe_a.components ) lowercase__ : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase__ : Tuple = IFInpaintingPipeline(**pipe_a.components ) lowercase__ : List[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Any ) -> List[str]: # pipeline 1 _start_torch_memory_measurement() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : List[Any] = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , num_inference_steps=2 , generator=lowercase_ , output_type="np" , ) lowercase__ : Any = output.images[0] assert image.shape == (64, 64, 3) lowercase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowercase__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) # pipeline 2 _start_torch_memory_measurement() lowercase__ : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Union[str, Any] = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type="np" , ) lowercase__ : Union[str, Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase__ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Any , lowercase_ : Dict ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() lowercase__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : str = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : str = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , num_inference_steps=2 , generator=lowercase_ , output_type="np" , ) lowercase__ : Tuple = output.images[0] assert image.shape == (64, 64, 3) lowercase__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase__ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) # pipeline 2 _start_torch_memory_measurement() lowercase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : List[str] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Tuple = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , original_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type="np" , ) lowercase__ : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Any ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() lowercase__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(lowercase_ ) lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : List[Any] = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , mask_image=lowercase_ , num_inference_steps=2 , generator=lowercase_ , output_type="np" , ) lowercase__ : str = output.images[0] assert image.shape == (64, 64, 3) lowercase__ : int = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) # pipeline 2 _start_torch_memory_measurement() lowercase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Optional[int] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(lowercase_ ) lowercase__ : Tuple = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(lowercase_ ) lowercase__ : Optional[Any] = pipe_a( prompt_embeds=lowercase_ , negative_prompt_embeds=lowercase_ , image=lowercase_ , mask_image=lowercase_ , original_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def lowercase_ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
357
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
0
from collections.abc import Sequence def lowercase_ ( _lowerCamelCase : Sequence[float] , _lowerCamelCase : bool = False): if not arr: return 0 lowercase__ : Optional[Any] = 0 if allow_empty_subarrays else float("-inf") lowercase__ : Dict = 0.0 for num in arr: lowercase__ : Any = max(0 if allow_empty_subarrays else num , curr_sum + num) lowercase__ : Dict = max(_lowerCamelCase , _lowerCamelCase) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase : Any = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"{max_subarray_sum(nums) = }")
358
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
0
import sys import turtle def lowercase_ ( _lowerCamelCase : tuple[float, float] , _lowerCamelCase : tuple[float, float]): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase_ ( _lowerCamelCase : tuple[float, float] , _lowerCamelCase : tuple[float, float] , _lowerCamelCase : tuple[float, float] , _lowerCamelCase : int , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) if depth == 0: return triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase) , get_mid(_lowerCamelCase , _lowerCamelCase) , depth - 1) triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase) , get_mid(_lowerCamelCase , _lowerCamelCase) , depth - 1) triangle(_lowerCamelCase , get_mid(_lowerCamelCase , _lowerCamelCase) , get_mid(_lowerCamelCase , _lowerCamelCase) , depth - 1) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) UpperCamelCase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') UpperCamelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
359
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
from typing import Union import fire import torch from tqdm import tqdm def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str = "cpu" , _lowerCamelCase : Union[str, None] = None): lowercase__ : Optional[int] = torch.load(_lowerCamelCase , map_location=_lowerCamelCase) for k, v in tqdm(state_dict.items()): if not isinstance(_lowerCamelCase , torch.Tensor): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin") lowercase__ : List[str] = v.half() if save_path is None: # overwrite src_path lowercase__ : Optional[int] = src_path torch.save(_lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": fire.Fire(convert)
360
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
0
# Lint as: python3 import itertools import os import re UpperCamelCase = re.compile(R'''([A-Z]+)([A-Z][a-z])''') UpperCamelCase = re.compile(R'''([a-z\d])([A-Z])''') UpperCamelCase = re.compile(R'''(?<!_)_(?!_)''') UpperCamelCase = re.compile(R'''(_{2,})''') UpperCamelCase = R'''^\w+(\.\w+)*$''' UpperCamelCase = R'''<>:/\|?*''' def lowercase_ ( _lowerCamelCase : List[str]): lowercase__ : Optional[Any] = _uppercase_uppercase_re.sub(R"\1_\2" , _lowerCamelCase) lowercase__ : Union[str, Any] = _lowercase_uppercase_re.sub(R"\1_\2" , _lowerCamelCase) return name.lower() def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : Tuple = _single_underscore_re.split(_lowerCamelCase) lowercase__ : str = [_multiple_underscores_re.split(_lowerCamelCase) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowerCamelCase) if n != "") def lowercase_ ( _lowerCamelCase : Union[str, Any]): if os.path.basename(_lowerCamelCase) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''') return camelcase_to_snakecase(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any]): if os.path.basename(_lowerCamelCase) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''') if not re.match(_split_re , _lowerCamelCase): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''') return f'''{filename_prefix_for_name(_lowerCamelCase)}-{split}''' def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : str=None): lowercase__ : int = filename_prefix_for_split(_lowerCamelCase , _lowerCamelCase) if filetype_suffix: prefix += f'''.{filetype_suffix}''' lowercase__ : Tuple = os.path.join(_lowerCamelCase , _lowerCamelCase) return f'''{filepath}*''' def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : str=None , _lowerCamelCase : Dict=None): lowercase__ : Any = filename_prefix_for_split(_lowerCamelCase , _lowerCamelCase) lowercase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase) if shard_lengths: lowercase__ : int = len(_lowerCamelCase) lowercase__ : Any = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(_lowerCamelCase)] if filetype_suffix: lowercase__ : Optional[Any] = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: lowercase__ : str = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase = logging.get_logger(__name__) class snake_case_ ( __A ,__A ): __A : Optional[Any] = "maskformer-swin" __A : Optional[int] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : int , lowercase_ : Any=2_24 , lowercase_ : Optional[Any]=4 , lowercase_ : Optional[int]=3 , lowercase_ : Dict=96 , lowercase_ : Optional[int]=[2, 2, 6, 2] , lowercase_ : int=[3, 6, 12, 24] , lowercase_ : Optional[Any]=7 , lowercase_ : Any=4.0 , lowercase_ : Tuple=True , lowercase_ : List[Any]=0.0 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Any=False , lowercase_ : List[Any]=0.02 , lowercase_ : Optional[Any]=1E-5 , lowercase_ : str=None , lowercase_ : Dict=None , **lowercase_ : List[Any] , ) -> str: super().__init__(**lowercase_ ) lowercase__ : List[Any] = image_size lowercase__ : List[str] = patch_size lowercase__ : Dict = num_channels lowercase__ : List[Any] = embed_dim lowercase__ : str = depths lowercase__ : List[str] = len(lowercase_ ) lowercase__ : str = num_heads lowercase__ : int = window_size lowercase__ : Optional[Any] = mlp_ratio lowercase__ : Union[str, Any] = qkv_bias lowercase__ : Any = hidden_dropout_prob lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : str = drop_path_rate lowercase__ : Optional[Any] = hidden_act lowercase__ : Tuple = use_absolute_embeddings lowercase__ : Dict = layer_norm_eps lowercase__ : Tuple = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ : str = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowercase__ : Dict = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(lowercase_ ) + 1 )] lowercase__ : List[str] = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
362
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCamelCase = sys.version_info >= (3, 10) def lowercase_ ( _lowerCamelCase : Tuple=None , _lowerCamelCase : int=None): return field(default_factory=lambda: default , metadata=_lowerCamelCase) @dataclass class snake_case_ : __A : int __A : float __A : str __A : bool @dataclass class snake_case_ : __A : int = 42 __A : str = field(default="toto" ,metadata={"help": "help message"} ) @dataclass class snake_case_ : __A : bool = False __A : bool = True __A : Optional[bool] = None class snake_case_ ( __A ): __A : str = "titi" __A : List[str] = "toto" class snake_case_ ( __A ): __A : Optional[int] = "titi" __A : Union[str, Any] = "toto" __A : str = 42 @dataclass class snake_case_ : __A : BasicEnum = "toto" def __UpperCamelCase ( self : int ) -> List[Any]: lowercase__ : str = BasicEnum(self.foo ) @dataclass class snake_case_ : __A : MixedTypeEnum = "toto" def __UpperCamelCase ( self : str ) -> str: lowercase__ : int = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : __A : Optional[int] = None __A : Optional[float] = field(default=__A ,metadata={"help": "help message"} ) __A : Optional[str] = None __A : Optional[List[str]] = list_field(default=[] ) __A : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : __A : List[int] = list_field(default=[] ) __A : List[int] = list_field(default=[1, 2, 3] ) __A : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) __A : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : __A : List[int] = field() __A : str = field() __A : BasicEnum = field() def __UpperCamelCase ( self : Any ) -> int: lowercase__ : int = BasicEnum(self.required_enum ) @dataclass class snake_case_ : __A : int __A : "BasicEnum" = field() __A : "Optional[bool]" = None __A : "str" = field(default="toto" ,metadata={"help": "help message"} ) __A : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : __A : bool = False __A : bool = True __A : bool | None = None @dataclass class snake_case_ : __A : int | None = None __A : float | None = field(default=__A ,metadata={"help": "help message"} ) __A : str | None = None __A : list[str] | None = list_field(default=[] ) __A : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : int , lowercase_ : argparse.ArgumentParser , lowercase_ : argparse.ArgumentParser ) -> Tuple: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase__ : Dict = {k: v for k, v in vars(lowercase_ ).items() if k != "container"} lowercase__ : List[str] = {k: v for k, v in vars(lowercase_ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , lowercase_ ) and yy.get("choices" , lowercase_ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](lowercase_ ) , yy["type"](lowercase_ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> Dict: lowercase__ : Any = HfArgumentParser(lowercase_ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--bar" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--baz" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--flag" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="?" ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] (lowercase__ ) : str = parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_ ) self.assertFalse(example.flag ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Optional[Any] = HfArgumentParser(lowercase_ ) lowercase__ : List[str] = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=lowercase_ ) expected.add_argument("--baz" , default="toto" , type=lowercase_ , help="help message" ) self.argparsersEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Dict: lowercase__ : Tuple = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="?" ) expected.add_argument("--baz" , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=lowercase_ , dest="baz" ) expected.add_argument("--opt" , type=lowercase_ , default=lowercase_ ) lowercase__ : Union[str, Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: lowercase__ : str = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Tuple = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Union[str, Any] = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Dict = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) lowercase__ : Optional[int] = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_ ) ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: lowercase__ : List[Any] = HfArgumentParser(lowercase_ ) lowercase__ : Dict = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowercase__ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase__ : Any = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowercase__ : int = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase__ : Dict = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowercase__ : Dict = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __UpperCamelCase ( self : Tuple ) -> List[str]: @dataclass class snake_case_ : __A : Literal["titi", "toto", 42] = "toto" lowercase__ : Union[str, Any] = HfArgumentParser(lowercase_ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowercase__ : int = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowercase__ : Tuple = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __UpperCamelCase ( self : int ) -> Optional[Any]: lowercase__ : int = HfArgumentParser(lowercase_ ) lowercase__ : Dict = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=lowercase_ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=lowercase_ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=lowercase_ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : Any = parser.parse_args([] ) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase__ : List[Any] = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : Any = argparse.ArgumentParser() expected.add_argument("--foo" , default=lowercase_ , type=lowercase_ ) expected.add_argument("--bar" , default=lowercase_ , type=lowercase_ , help="help message" ) expected.add_argument("--baz" , default=lowercase_ , type=lowercase_ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=lowercase_ ) expected.add_argument("--des" , nargs="+" , default=[] , type=lowercase_ ) lowercase__ : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_ ) for dataclass_type in dataclass_types: lowercase__ : Any = HfArgumentParser(lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[] ) ) lowercase__ : Dict = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: lowercase__ : List[str] = HfArgumentParser(lowercase_ ) lowercase__ : Any = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=lowercase_ , required=lowercase_ ) expected.add_argument("--required_str" , type=lowercase_ , required=lowercase_ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : Optional[int] = HfArgumentParser(lowercase_ ) lowercase__ : Dict = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowercase_ , required=lowercase_ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=lowercase_ , ) expected.add_argument("--opt" , type=lowercase_ , default=lowercase_ ) expected.add_argument("--baz" , default="toto" , type=lowercase_ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=lowercase_ ) self.argparsersEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Dict ) -> str: lowercase__ : str = HfArgumentParser(lowercase_ ) lowercase__ : List[Any] = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowercase__ : Optional[Any] = parser.parse_dict(lowercase_ )[0] lowercase__ : Dict = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : List[Any] = HfArgumentParser(lowercase_ ) lowercase__ : Any = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: lowercase__ : Tuple = HfArgumentParser(lowercase_ ) lowercase__ : int = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Any = os.path.join(lowercase_ , "temp_json" ) os.mkdir(lowercase_ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(lowercase_ , lowercase_ ) lowercase__ : Any = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowercase__ : Optional[Any] = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : str ) -> int: lowercase__ : Tuple = HfArgumentParser(lowercase_ ) lowercase__ : Dict = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[int] = os.path.join(lowercase_ , "temp_yaml" ) os.mkdir(lowercase_ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(lowercase_ , lowercase_ ) lowercase__ : Any = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowercase__ : int = BasicExample(**lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> int: lowercase__ : List[str] = HfArgumentParser(lowercase_ ) self.assertIsNotNone(lowercase_ )
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class snake_case_ : def __init__( self : str , lowercase_ : List[str] , lowercase_ : Optional[int]=3 , lowercase_ : Optional[int]=32 , lowercase_ : Dict=3 , lowercase_ : int=10 , lowercase_ : int=[8, 16, 32, 64] , lowercase_ : Union[str, Any]=[1, 1, 2, 1] , lowercase_ : Optional[Any]=True , lowercase_ : List[str]=True , lowercase_ : str="relu" , lowercase_ : Optional[Any]=3 , lowercase_ : Any=None , lowercase_ : Union[str, Any]=["stage2", "stage3", "stage4"] , lowercase_ : Optional[int]=[2, 3, 4] , lowercase_ : Optional[Any]=1 , ) -> Optional[Any]: lowercase__ : Any = parent lowercase__ : Dict = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Union[str, Any] = num_channels lowercase__ : str = embeddings_size lowercase__ : Any = hidden_sizes lowercase__ : str = depths lowercase__ : List[Any] = is_training lowercase__ : Optional[int] = use_labels lowercase__ : Optional[Any] = hidden_act lowercase__ : List[str] = num_labels lowercase__ : Tuple = scope lowercase__ : Union[str, Any] = len(lowercase_ ) lowercase__ : Any = out_features lowercase__ : Union[str, Any] = out_indices lowercase__ : Optional[Any] = num_groups def __UpperCamelCase ( self : Dict ) -> int: lowercase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Any ) -> List[str]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCamelCase ( self : str , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Dict ) -> Union[str, Any]: lowercase__ : Dict = BitModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : str = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str] ) -> int: lowercase__ : List[str] = self.num_labels lowercase__ : Optional[Any] = BitForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Dict = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : str , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Optional[int] ) -> str: lowercase__ : List[str] = BitBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Union[str, Any] = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ : Tuple = None lowercase__ : List[str] = BitBackbone(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase__ : Any = model(lowercase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() lowercase__ : Optional[Any] = config_and_inputs lowercase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __A ,__A ,unittest.TestCase ): __A : str = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __A : Dict = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) __A : Union[str, Any] = False __A : str = False __A : Dict = False __A : List[Any] = False __A : Union[str, Any] = False def __UpperCamelCase ( self : Dict ) -> Tuple: lowercase__ : Tuple = BitModelTester(self ) lowercase__ : Union[str, Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : Tuple ) -> Optional[int]: return @unittest.skip(reason="Bit does not output attentions" ) def __UpperCamelCase ( self : str ) -> List[str]: pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def __UpperCamelCase ( self : int ) -> Union[str, Any]: pass def __UpperCamelCase ( self : Tuple ) -> Tuple: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(lowercase_ ) lowercase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : List[str] = [*signature.parameters.keys()] lowercase__ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[Any]: lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __UpperCamelCase ( self : Any ) -> Any: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = model_class(config=lowercase_ ) for name, module in model.named_modules(): if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __UpperCamelCase ( self : Any ) -> List[str]: def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : int ): lowercase__ : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : str = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Dict = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : int = layer_type lowercase__ : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Union[str, Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: pass def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) @slow def __UpperCamelCase ( self : str ) -> Any: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[int] = BitModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowercase_ ( ) -> Any: lowercase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Union[str, Any] ) -> int: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : Tuple ) -> Dict: lowercase__ : Any = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ ) lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : Tuple = prepare_img() lowercase__ : int = image_processor(images=lowercase_ , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase__ : str = model(**lowercase_ ) # verify the logits lowercase__ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase__ : Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @require_torch class snake_case_ ( __A ,unittest.TestCase ): __A : List[Any] = (BitBackbone,) if is_torch_available() else () __A : List[str] = BitConfig __A : List[str] = False def __UpperCamelCase ( self : int ) -> Tuple: lowercase__ : Any = BitModelTester(self )
364
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCamelCase = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def lowercase_ ( ): lowercase__ : List[Any] = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowercase__ : int = get_sagemaker_input() else: lowercase__ : List[str] = get_cluster_input() return config def lowercase_ ( _lowerCamelCase : str=None): if subparsers is not None: lowercase__ : int = subparsers.add_parser("config" , description=_lowerCamelCase) else: lowercase__ : Dict = argparse.ArgumentParser("Accelerate config command" , description=_lowerCamelCase) parser.add_argument( "--config_file" , default=_lowerCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase) return parser def lowercase_ ( _lowerCamelCase : str): lowercase__ : str = get_user_input() if args.config_file is not None: lowercase__ : List[str] = args.config_file else: if not os.path.isdir(_lowerCamelCase): os.makedirs(_lowerCamelCase) lowercase__ : Tuple = default_yaml_config_file if config_file.endswith(".json"): config.to_json_file(_lowerCamelCase) else: config.to_yaml_file(_lowerCamelCase) print(f'''accelerate configuration saved at {config_file}''') def lowercase_ ( ): lowercase__ : List[Any] = config_command_parser() lowercase__ : List[Any] = parser.parse_args() config_command(_lowerCamelCase) if __name__ == "__main__": main()
365
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Dict): # Initialise PyTorch model lowercase__ : Dict = MobileBertConfig.from_json_file(_lowerCamelCase) print(f'''Building PyTorch model from configuration: {config}''') lowercase__ : Tuple = MobileBertForPreTraining(_lowerCamelCase) # Load weights from tf checkpoint lowercase__ : Any = load_tf_weights_in_mobilebert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , _lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
366
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
367
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : Optional[Any] = LongformerTokenizer __A : Dict = True __A : Any = LongformerTokenizerFast __A : str = True def __UpperCamelCase ( self : List[Any] ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : List[str] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ : Optional[Any] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ : int = {"unk_token": "<unk>"} lowercase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) def __UpperCamelCase ( self : str , **lowercase_ : List[Any] ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : Tuple , **lowercase_ : List[str] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Optional[Any]: lowercase__ : Tuple = "lower newer" lowercase__ : Union[str, Any] = "lower newer" return input_text, output_text def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: lowercase__ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Dict = "lower newer" lowercase__ : Optional[Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase__ : str = tokenizer.tokenize(lowercase_ ) # , add_prefix_space=True) self.assertListEqual(lowercase_ , lowercase_ ) lowercase__ : int = tokens + [tokenizer.unk_token] lowercase__ : Union[str, Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Any: lowercase__ : List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=lowercase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def __UpperCamelCase ( self : Any ) -> Dict: lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) lowercase__ : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=lowercase_ ) lowercase__ : List[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase_ ) lowercase__ : str = tokenizer.encode( "sequence builders" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : Any = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : int = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase__ : Any = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self : int ) -> int: lowercase__ : Dict = self.get_tokenizer() lowercase__ : str = "Encode this sequence." lowercase__ : List[str] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowercase__ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) lowercase__ : Any = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase_ , lowercase_ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowercase__ : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowercase__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) # Testing spaces after special tokens lowercase__ : str = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ )} ) # mask token has a left space lowercase__ : int = tokenizer.convert_tokens_to_ids(lowercase_ ) lowercase__ : Tuple = "Encode <mask> sequence" lowercase__ : Optional[Any] = "Encode <mask>sequence" lowercase__ : Optional[int] = tokenizer.encode(lowercase_ ) lowercase__ : Union[str, Any] = encoded.index(lowercase_ ) lowercase__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase_ , lowercase_ ) lowercase__ : List[Any] = tokenizer.encode(lowercase_ ) lowercase__ : str = encoded.index(lowercase_ ) lowercase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Any ) -> Any: pass def __UpperCamelCase ( self : Any ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase__ : List[str] = "A, <mask> AllenNLP sentence." lowercase__ : Dict = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase__ : List[str] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase__ : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase__ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase__ : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , lowercase_ ) self.assertEqual(post_processor_state["add_prefix_space"] , lowercase_ ) self.assertEqual(post_processor_state["trim_offsets"] , lowercase_ ) def __UpperCamelCase ( self : int ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : Union[str, Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowercase__ : Tuple = F'''{text_of_1_token} {text_of_1_token}''' lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Tuple = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Tuple = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Optional[int] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : str = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : str = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Any = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase__ : Any = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Optional[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : Any = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : str = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase__ : str = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase__ : Dict = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , )
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: lowercase__ : Union[str, Any] = "ZinengTang/tvlt-base" lowercase__ : List[Any] = tempfile.mkdtemp() def __UpperCamelCase ( self : int , **lowercase_ : Dict ) -> str: return TvltImageProcessor.from_pretrained(self.checkpoint , **lowercase_ ) def __UpperCamelCase ( self : Tuple , **lowercase_ : List[str] ) -> Optional[Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowercase_ ) def __UpperCamelCase ( self : Dict ) -> Any: shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Optional[Any] ) -> str: lowercase__ : List[Any] = self.get_image_processor() lowercase__ : Union[str, Any] = self.get_feature_extractor() lowercase__ : Union[str, Any] = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ ) processor.save_pretrained(self.tmpdirname ) lowercase__ : List[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) self.assertIsInstance(processor.image_processor , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: lowercase__ : Any = self.get_image_processor() lowercase__ : Any = self.get_feature_extractor() lowercase__ : int = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ ) lowercase__ : Dict = np.ones([1_20_00] ) lowercase__ : Tuple = feature_extractor(lowercase_ , return_tensors="np" ) lowercase__ : List[Any] = processor(audio=lowercase_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: lowercase__ : int = self.get_image_processor() lowercase__ : str = self.get_feature_extractor() lowercase__ : Tuple = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ ) lowercase__ : List[Any] = np.ones([3, 2_24, 2_24] ) lowercase__ : Optional[Any] = image_processor(lowercase_ , return_tensors="np" ) lowercase__ : Any = processor(images=lowercase_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : Tuple = self.get_image_processor() lowercase__ : List[Any] = self.get_feature_extractor() lowercase__ : int = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ ) lowercase__ : str = np.ones([1_20_00] ) lowercase__ : Dict = np.ones([3, 2_24, 2_24] ) lowercase__ : str = processor(audio=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def __UpperCamelCase ( self : List[Any] ) -> int: lowercase__ : Optional[int] = self.get_image_processor() lowercase__ : int = self.get_feature_extractor() lowercase__ : Optional[Any] = TvltProcessor(image_processor=lowercase_ , feature_extractor=lowercase_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
369
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
0
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase = 256 class snake_case_ ( __A ): __A : str = ["melgan"] def __init__( self : str , lowercase_ : SpectrogramNotesEncoder , lowercase_ : SpectrogramContEncoder , lowercase_ : TaFilmDecoder , lowercase_ : DDPMScheduler , lowercase_ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN lowercase__ : Dict = math.log(1E-5 ) # Matches MelGAN training. lowercase__ : Dict = 4.0 # Largest value for most examples lowercase__ : str = 1_28 self.register_modules( notes_encoder=lowercase_ , continuous_encoder=lowercase_ , decoder=lowercase_ , scheduler=lowercase_ , melgan=lowercase_ , ) def __UpperCamelCase ( self : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]=(-1.0, 1.0) , lowercase_ : Optional[int]=False ) -> Any: lowercase__ : Dict = output_range if clip: lowercase__ : List[str] = torch.clip(lowercase_ , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase__ : int = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __UpperCamelCase ( self : str , lowercase_ : int , lowercase_ : Union[str, Any]=(-1.0, 1.0) , lowercase_ : Optional[Any]=False ) -> Dict: lowercase__ : Optional[Any] = input_range lowercase__ : str = torch.clip(lowercase_ , lowercase_ , lowercase_ ) if clip else outputs # Scale to [0, 1]. lowercase__ : List[str] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __UpperCamelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str ) -> List[Any]: lowercase__ : List[str] = input_tokens > 0 lowercase__ : Optional[Any] = self.notes_encoder( encoder_input_tokens=lowercase_ , encoder_inputs_mask=lowercase_ ) lowercase__ : List[Any] = self.continuous_encoder( encoder_inputs=lowercase_ , encoder_inputs_mask=lowercase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __UpperCamelCase ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : int ) -> int: lowercase__ : Tuple = noise_time if not torch.is_tensor(lowercase_ ): lowercase__ : str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(lowercase_ ) and len(timesteps.shape ) == 0: lowercase__ : Union[str, Any] = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase__ : List[Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase__ : Dict = self.decoder( encodings_and_masks=lowercase_ , decoder_input_tokens=lowercase_ , decoder_noise_time=lowercase_ ) return logits @torch.no_grad() def __call__( self : Union[str, Any] , lowercase_ : List[List[int]] , lowercase_ : Optional[torch.Generator] = None , lowercase_ : int = 1_00 , lowercase_ : bool = True , lowercase_ : str = "numpy" , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowercase_ )}.''' ) lowercase__ : List[Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase__ : List[str] = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase__ : List[str] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=lowercase_ , device=self.device ) for i, encoder_input_tokens in enumerate(lowercase_ ): if i == 0: lowercase__ : str = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase__ : str = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=lowercase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase__ : Tuple = ones lowercase__ : int = self.scale_features( lowercase_ , output_range=[-1.0, 1.0] , clip=lowercase_ ) lowercase__ : Union[str, Any] = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=lowercase_ , continuous_mask=lowercase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase__ : Union[str, Any] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=lowercase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(lowercase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : int = self.decode( encodings_and_masks=lowercase_ , input_tokens=lowercase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase__ : Any = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ ).prev_sample lowercase__ : str = self.scale_to_features(lowercase_ , input_range=[-1.0, 1.0] ) lowercase__ : List[str] = mel[:1] lowercase__ : List[Any] = mel.cpu().float().numpy() lowercase__ : Any = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ ) logger.info("Generated segment" , lowercase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": lowercase__ : Union[str, Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase__ : int = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=lowercase_ )
370
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position UpperCamelCase = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCamelCase = concatenate_datasets UpperCamelCase = DownloadConfig UpperCamelCase = DownloadManager UpperCamelCase = DownloadMode UpperCamelCase = DownloadConfig UpperCamelCase = DownloadMode UpperCamelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : List[str] ) -> Optional[int]: lowercase__ : Dict = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) lowercase__ : str = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase__ : List[str] = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ : Any = model(lowercase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , lowercase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1E-3 ) ) @slow def __UpperCamelCase ( self : Any ) -> Tuple: lowercase__ : Dict = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) lowercase__ : int = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house lowercase__ : Any = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim lowercase__ : Tuple = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowercase__ : Union[str, Any] = model(lowercase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , lowercase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase_ , atol=1E-3 ) )
351
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowercase_ ( _lowerCamelCase : Optional[int]): lowercase__ : int = model.config lowercase__ : Tuple = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowercase__ : str = MBartConfig( is_decoder=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , add_cross_attention=_lowerCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer) , scale_embedding=_lowerCamelCase , add_final_layer_norm=_lowerCamelCase , ) return encoder_config, decoder_config def lowercase_ ( _lowerCamelCase : Union[str, Any]): if "encoder.model" in name: lowercase__ : Optional[Any] = name.replace("encoder.model" , "encoder") if "decoder.model" in name: lowercase__ : Any = name.replace("decoder.model" , "decoder") if "patch_embed.proj" in name: lowercase__ : Dict = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: lowercase__ : Union[str, Any] = name.replace("patch_embed.norm" , "embeddings.norm") if name.startswith("encoder"): if "layers" in name: lowercase__ : int = "encoder." + name if "attn.proj" in name: lowercase__ : Dict = name.replace("attn.proj" , "attention.output.dense") if "attn" in name and "mask" not in name: lowercase__ : List[str] = name.replace("attn" , "attention.self") if "norm1" in name: lowercase__ : Dict = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Union[str, Any] = name.replace("norm2" , "layernorm_after") if "mlp.fc1" in name: lowercase__ : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : int = name.replace("mlp.fc2" , "output.dense") if name == "encoder.norm.weight": lowercase__ : str = "encoder.layernorm.weight" if name == "encoder.norm.bias": lowercase__ : Union[str, Any] = "encoder.layernorm.bias" return name def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]): for key in orig_state_dict.copy().keys(): lowercase__ : str = orig_state_dict.pop(_lowerCamelCase) if "qkv" in key: lowercase__ : Tuple = key.split(".") lowercase__ : int = int(key_split[3]) lowercase__ : List[Any] = int(key_split[5]) lowercase__ : Tuple = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ : Union[str, Any] = val[:dim, :] lowercase__ : Any = val[dim : dim * 2, :] lowercase__ : str = val[-dim:, :] else: lowercase__ : Tuple = val[:dim] lowercase__ : int = val[dim : dim * 2] lowercase__ : List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase__ : Optional[Any] = val return orig_state_dict def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=False): # load original model lowercase__ : List[Any] = DonutModel.from_pretrained(_lowerCamelCase).eval() # load HuggingFace model lowercase__ : Optional[Any] = get_configs(_lowerCamelCase) lowercase__ : Tuple = DonutSwinModel(_lowerCamelCase) lowercase__ : Optional[int] = MBartForCausalLM(_lowerCamelCase) lowercase__ : List[str] = VisionEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase) model.eval() lowercase__ : Tuple = original_model.state_dict() lowercase__ : int = convert_state_dict(_lowerCamelCase , _lowerCamelCase) model.load_state_dict(_lowerCamelCase) # verify results on scanned document lowercase__ : str = load_dataset("hf-internal-testing/example-documents") lowercase__ : str = dataset["test"][0]["image"].convert("RGB") lowercase__ : Optional[int] = XLMRobertaTokenizerFast.from_pretrained(_lowerCamelCase , from_slow=_lowerCamelCase) lowercase__ : Tuple = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1]) lowercase__ : Optional[Any] = DonutProcessor(_lowerCamelCase , _lowerCamelCase) lowercase__ : Dict = processor(_lowerCamelCase , return_tensors="pt").pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase__ : Optional[int] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" lowercase__ : List[Any] = "When is the coffee break?" lowercase__ : List[Any] = task_prompt.replace("{user_input}" , _lowerCamelCase) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase__ : int = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase__ : Any = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase__ : Optional[Any] = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase__ : Union[str, Any] = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase__ : Any = "hello world" else: raise ValueError("Model name not supported") lowercase__ : Union[str, Any] = original_model.decoder.tokenizer(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors="pt")[ "input_ids" ] lowercase__ : str = original_model.encoder.model.patch_embed(_lowerCamelCase) lowercase__ : Any = model.encoder.embeddings(_lowerCamelCase) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3) # verify encoder hidden states lowercase__ : Dict = original_model.encoder(_lowerCamelCase) lowercase__ : Union[str, Any] = model.encoder(_lowerCamelCase).last_hidden_state assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-2) # verify decoder hidden states lowercase__ : int = original_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase).logits lowercase__ : Tuple = model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase).logits assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) processor.save_pretrained(_lowerCamelCase) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/")[-1] , commit_message="Update model") processor.push_to_hub("nielsr/" + model_name.split("/")[-1] , commit_message="Update model") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) UpperCamelCase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
352
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( __A ): __A : List[Any] = ["image_processor", "tokenizer"] __A : Any = "AutoImageProcessor" __A : Any = "AutoTokenizer" def __init__( self : str , lowercase_ : List[str] , lowercase_ : Dict ) -> Dict: super().__init__(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = self.image_processor def __call__( self : Optional[Any] , lowercase_ : int=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]=None , **lowercase_ : Union[str, Any] ) -> Optional[Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowercase__ : List[str] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: lowercase__ : Tuple = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: lowercase__ : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def __UpperCamelCase ( self : Optional[int] , *lowercase_ : str , **lowercase_ : List[Any] ) -> Dict: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Tuple , *lowercase_ : Dict , **lowercase_ : List[Any] ) -> Any: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : Optional[int] ) -> str: return ["input_ids", "attention_mask", "pixel_values"]
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Optional[int]=None): lowercase__ : int = None if token is not None: lowercase__ : Any = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} lowercase__ : Optional[Any] = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' lowercase__ : int = requests.get(_lowerCamelCase , headers=_lowerCamelCase).json() lowercase__ : str = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]}) lowercase__ : Tuple = math.ceil((result["total_count"] - 100) / 100) for i in range(_lowerCamelCase): lowercase__ : Optional[int] = requests.get(url + f'''&page={i + 2}''' , headers=_lowerCamelCase).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]}) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''') return {} def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any]=None): lowercase__ : Dict = None if token is not None: lowercase__ : Any = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} lowercase__ : Union[str, Any] = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' lowercase__ : str = requests.get(_lowerCamelCase , headers=_lowerCamelCase).json() lowercase__ : List[str] = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]}) lowercase__ : str = math.ceil((result["total_count"] - 100) / 100) for i in range(_lowerCamelCase): lowercase__ : Any = requests.get(url + f'''&page={i + 2}''' , headers=_lowerCamelCase).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]}) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''') return {} def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : Any , _lowerCamelCase : Dict): lowercase__ : Optional[Any] = None if token is not None: lowercase__ : Tuple = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} lowercase__ : Any = requests.get(_lowerCamelCase , headers=_lowerCamelCase , allow_redirects=_lowerCamelCase) lowercase__ : List[Any] = result.headers["Location"] lowercase__ : str = requests.get(_lowerCamelCase , allow_redirects=_lowerCamelCase) lowercase__ : str = os.path.join(_lowerCamelCase , f'''{artifact_name}.zip''') with open(_lowerCamelCase , "wb") as fp: fp.write(response.content) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Dict=None): lowercase__ : str = [] lowercase__ : str = [] lowercase__ : List[str] = None with zipfile.ZipFile(_lowerCamelCase) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_lowerCamelCase) as f: for line in f: lowercase__ : Any = line.decode("UTF-8").strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowercase__ : List[str] = line[: line.index(": ")] lowercase__ : Tuple = line[line.index(": ") + len(": ") :] errors.append([error_line, error]) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED "): # `test` is the test method that failed lowercase__ : Union[str, Any] = line[len("FAILED ") :] failed_tests.append(_lowerCamelCase) elif filename == "job_name.txt": lowercase__ : List[str] = line if len(_lowerCamelCase) != len(_lowerCamelCase): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(_lowerCamelCase)} for `errors` ''' f'''and {len(_lowerCamelCase)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem.") lowercase__ : Any = None if job_name and job_links: lowercase__ : Optional[Any] = job_links.get(_lowerCamelCase , _lowerCamelCase) # A list with elements of the form (line of error, error, failed test) lowercase__ : Any = [x + [y] + [job_link] for x, y in zip(_lowerCamelCase , _lowerCamelCase)] return result def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]=None): lowercase__ : Union[str, Any] = [] lowercase__ : Optional[int] = [os.path.join(_lowerCamelCase , _lowerCamelCase) for p in os.listdir(_lowerCamelCase) if p.endswith(".zip")] for p in paths: errors.extend(get_errors_from_single_artifact(_lowerCamelCase , job_links=_lowerCamelCase)) return errors def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Any=None): lowercase__ : List[str] = Counter() counter.update([x[1] for x in logs]) lowercase__ : Tuple = counter.most_common() lowercase__ : Union[str, Any] = {} for error, count in counts: if error_filter is None or error not in error_filter: lowercase__ : Union[str, Any] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} lowercase__ : Dict = dict(sorted(r.items() , key=lambda _lowerCamelCase: item[1]["count"] , reverse=_lowerCamelCase)) return r def lowercase_ ( _lowerCamelCase : int): lowercase__ : List[Any] = test.split("::")[0] if test.startswith("tests/models/"): lowercase__ : Optional[Any] = test.split("/")[2] else: lowercase__ : List[Any] = None return test def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : Any=None): lowercase__ : Dict = [(x[0], x[1], get_model(x[2])) for x in logs] lowercase__ : Dict = [x for x in logs if x[2] is not None] lowercase__ : Optional[int] = {x[2] for x in logs} lowercase__ : Dict = {} for test in tests: lowercase__ : int = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test]) lowercase__ : str = counter.most_common() lowercase__ : Dict = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowercase__ : Any = sum(error_counts.values()) if n_errors > 0: lowercase__ : str = {"count": n_errors, "errors": error_counts} lowercase__ : Dict = dict(sorted(r.items() , key=lambda _lowerCamelCase: item[1]["count"] , reverse=_lowerCamelCase)) return r def lowercase_ ( _lowerCamelCase : Union[str, Any]): lowercase__ : str = "| no. | error | status |" lowercase__ : List[str] = "|-:|:-|:-|" lowercase__ : Union[str, Any] = [header, sep] for error in reduced_by_error: lowercase__ : Optional[int] = reduced_by_error[error]["count"] lowercase__ : Union[str, Any] = f'''| {count} | {error[:100]} | |''' lines.append(_lowerCamelCase) return "\n".join(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = "| model | no. of errors | major error | count |" lowercase__ : int = "|-:|-:|-:|-:|" lowercase__ : str = [header, sep] for model in reduced_by_model: lowercase__ : List[str] = reduced_by_model[model]["count"] lowercase__ : Dict = list(reduced_by_model[model]["errors"].items())[0] lowercase__ : str = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(_lowerCamelCase) return "\n".join(_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') UpperCamelCase = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) UpperCamelCase = get_job_links(args.workflow_run_id, token=args.token) UpperCamelCase = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: UpperCamelCase = k.find(''' / ''') UpperCamelCase = k[index + len(''' / ''') :] UpperCamelCase = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) UpperCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) UpperCamelCase = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error UpperCamelCase = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors UpperCamelCase = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) UpperCamelCase = reduce_by_error(errors) UpperCamelCase = reduce_by_model(errors) UpperCamelCase = make_github_table(reduced_by_error) UpperCamelCase = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
355
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
0
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive") lowercase__ : Tuple = str(bin(_lowerCamelCase))[2:] # remove the leading "0b" lowercase__ : List[Any] = str(bin(_lowerCamelCase))[2:] lowercase__ : Any = max(len(_lowerCamelCase) , len(_lowerCamelCase)) return "0b" + "".join( str(int("1" in (char_a, char_b))) for char_a, char_b in zip(a_binary.zfill(_lowerCamelCase) , b_binary.zfill(_lowerCamelCase))) if __name__ == "__main__": import doctest doctest.testmod()
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
from math import log from scipy.constants import Boltzmann, physical_constants UpperCamelCase = 300 # TEMPERATURE (unit = K) def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , ): if donor_conc <= 0: raise ValueError("Donor concentration should be positive") elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive") elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive") elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration") elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration") else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
357
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class snake_case_ ( __A ): __A : Dict = (KDPMaDiscreteScheduler,) __A : Optional[int] = 10 def __UpperCamelCase ( self : Tuple , **lowercase_ : Tuple ) -> Union[str, Any]: lowercase__ : str = { "num_train_timesteps": 11_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def __UpperCamelCase ( self : Union[str, Any] ) -> int: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> int: for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_ ) def __UpperCamelCase ( self : Any ) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: lowercase__ : List[str] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config(prediction_type="v_prediction" ) lowercase__ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase__ : Dict = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ : int = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : str = scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase__ : str = model(lowercase_ , lowercase_ ) lowercase__ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = output.prev_sample lowercase__ : List[str] = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : int = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.00_02 ) < 1E-3 def __UpperCamelCase ( self : Dict ) -> Dict: if torch_device == "mps": return lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : Tuple = self.get_scheduler_config() lowercase__ : Any = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase__ : str = self.dummy_model() lowercase__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ : Optional[int] = sample.to(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : List[str] = scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase__ : Any = model(lowercase_ , lowercase_ ) lowercase__ : Tuple = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Dict = output.prev_sample lowercase__ : Dict = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : List[Any] = torch.mean(torch.abs(lowercase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: if torch_device == "mps": return lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : Union[str, Any] = self.get_scheduler_config() lowercase__ : Any = scheduler_class(**lowercase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_ ) lowercase__ : List[Any] = self.dummy_model() lowercase__ : Tuple = self.dummy_sample_deter.to(lowercase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase__ : Any = scheduler.scale_model_input(lowercase_ , lowercase_ ) lowercase__ : Any = model(lowercase_ , lowercase_ ) lowercase__ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Dict = output.prev_sample lowercase__ : Tuple = torch.sum(torch.abs(lowercase_ ) ) lowercase__ : Any = torch.mean(torch.abs(lowercase_ ) ) if str(lowercase_ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1E-2 assert abs(result_mean.item() - 0.02_66 ) < 1E-3
358
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case_ ( __A ,unittest.TestCase ): __A : Dict = UnCLIPImageVariationPipeline __A : Optional[Any] = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} __A : str = IMAGE_VARIATION_BATCH_PARAMS __A : Optional[Any] = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] __A : Optional[Any] = False @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: return 32 @property def __UpperCamelCase ( self : Dict ) -> List[Any]: return 32 @property def __UpperCamelCase ( self : Any ) -> Optional[int]: return self.time_input_dim @property def __UpperCamelCase ( self : str ) -> Any: return self.time_input_dim * 4 @property def __UpperCamelCase ( self : List[str] ) -> Dict: return 1_00 @property def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def __UpperCamelCase ( self : Any ) -> Any: torch.manual_seed(0 ) lowercase__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def __UpperCamelCase ( self : str ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(lowercase_ ) @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: torch.manual_seed(0 ) lowercase__ : Tuple = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } lowercase__ : Any = UnCLIPTextProjModel(**lowercase_ ) return model @property def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: torch.manual_seed(0 ) lowercase__ : int = { "sample_size": 32, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } lowercase__ : List[Any] = UNetaDConditionModel(**lowercase_ ) return model @property def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: torch.manual_seed(0 ) lowercase__ : Optional[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __UpperCamelCase ( self : Any ) -> Optional[Any]: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) lowercase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __UpperCamelCase ( self : Optional[Any] ) -> Dict: lowercase__ : List[str] = self.dummy_decoder lowercase__ : List[Any] = self.dummy_text_proj lowercase__ : Optional[Any] = self.dummy_text_encoder lowercase__ : Union[str, Any] = self.dummy_tokenizer lowercase__ : Dict = self.dummy_super_res_first lowercase__ : Tuple = self.dummy_super_res_last lowercase__ : Dict = UnCLIPScheduler( variance_type="learned_range" , prediction_type="epsilon" , num_train_timesteps=10_00 , ) lowercase__ : Any = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="epsilon" , num_train_timesteps=10_00 , ) lowercase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowercase__ : Union[str, Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Any=0 , lowercase_ : Any=True ) -> Dict: lowercase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith("mps" ): lowercase__ : int = torch.manual_seed(lowercase_ ) else: lowercase__ : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) if pil_image: lowercase__ : List[str] = input_image * 0.5 + 0.5 lowercase__ : Union[str, Any] = input_image.clamp(0 , 1 ) lowercase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(lowercase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __UpperCamelCase ( self : int ) -> Tuple: lowercase__ : Tuple = "cpu" lowercase__ : Tuple = self.get_dummy_components() lowercase__ : Optional[int] = self.pipeline_class(**lowercase_ ) lowercase__ : Optional[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Optional[int] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : Optional[int] = pipe(**lowercase_ ) lowercase__ : int = output.images lowercase__ : Optional[Any] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : List[Any] = pipe( **lowercase_ , return_dict=lowercase_ , )[0] lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : Dict = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : Any ) -> Any: lowercase__ : Tuple = "cpu" lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Union[str, Any] = self.pipeline_class(**lowercase_ ) lowercase__ : Union[str, Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : int = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : Optional[int] = pipe(**lowercase_ ) lowercase__ : Any = output.images lowercase__ : Dict = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : str = pipe( **lowercase_ , return_dict=lowercase_ , )[0] lowercase__ : str = image[0, -3:, -3:, -1] lowercase__ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : Tuple = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : Union[str, Any] ) -> str: lowercase__ : Tuple = "cpu" lowercase__ : Optional[int] = self.get_dummy_components() lowercase__ : Dict = self.pipeline_class(**lowercase_ ) lowercase__ : List[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Dict = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : int = [ pipeline_inputs["image"], pipeline_inputs["image"], ] lowercase__ : Optional[int] = pipe(**lowercase_ ) lowercase__ : List[Any] = output.images lowercase__ : Any = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : List[Any] = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] lowercase__ : Union[str, Any] = pipe( **lowercase_ , return_dict=lowercase_ , )[0] lowercase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowercase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowercase__ : Optional[int] = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: lowercase__ : int = torch.device("cpu" ) class snake_case_ : __A : Optional[int] = 1 lowercase__ : Optional[int] = self.get_dummy_components() lowercase__ : List[Any] = self.pipeline_class(**lowercase_ ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Optional[Any] = torch.Generator(device=lowercase_ ).manual_seed(0 ) lowercase__ : Optional[Any] = pipe.decoder.dtype lowercase__ : List[Any] = 1 lowercase__ : List[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowercase__ : List[Any] = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) lowercase__ : Any = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowercase__ : Optional[int] = pipe.prepare_latents( lowercase_ , dtype=lowercase_ , device=lowercase_ , generator=lowercase_ , latents=lowercase_ , scheduler=DummyScheduler() ) lowercase__ : List[str] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) lowercase__ : List[Any] = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ ).images lowercase__ : List[str] = self.get_dummy_inputs(lowercase_ , pil_image=lowercase_ ) # Don't pass image, instead pass embedding lowercase__ : Tuple = pipeline_inputs.pop("image" ) lowercase__ : Tuple = pipe.image_encoder(lowercase_ ).image_embeds lowercase__ : str = pipe( **lowercase_ , decoder_latents=lowercase_ , super_res_latents=lowercase_ , image_embeddings=lowercase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def __UpperCamelCase ( self : int ) -> Optional[int]: lowercase__ : List[str] = torch_device == "cpu" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowercase__ : List[Any] = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=lowercase_ , expected_max_diff=lowercase_ ) @skip_mps def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: lowercase__ : Optional[int] = torch_device == "cpu" lowercase__ : List[str] = True lowercase__ : Union[str, Any] = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] self._test_inference_batch_single_identical( test_max_difference=lowercase_ , relax_max_difference=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: lowercase__ : Dict = [ "decoder_num_inference_steps", "super_res_num_inference_steps", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowercase__ : List[Any] = [2, 3] self._test_inference_batch_consistent( batch_sizes=lowercase_ , additional_params_copy_to_batched_inputs=lowercase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=lowercase_ ) @skip_mps def __UpperCamelCase ( self : int ) -> Optional[int]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: return super().test_save_load_local() @skip_mps def __UpperCamelCase ( self : Any ) -> Dict: return super().test_save_load_optional_components() @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) lowercase__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) lowercase__ : List[Any] = UnCLIPImageVariationPipeline.from_pretrained( "kakaobrain/karlo-v1-alpha-image-variations" , torch_dtype=torch.floataa ) lowercase__ : List[str] = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) lowercase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : List[Any] = pipeline( lowercase_ , generator=lowercase_ , output_type="np" , ) lowercase__ : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ , 15 )
359
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( __A ): __A : Any = ["image_processor", "tokenizer"] __A : List[Any] = "CLIPImageProcessor" __A : List[Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=None , lowercase_ : Tuple=None , **lowercase_ : Tuple ) -> Any: lowercase__ : Dict = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) lowercase__ : Any = kwargs.pop("feature_extractor" ) lowercase__ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) def __call__( self : int , lowercase_ : List[str]=None , lowercase_ : Tuple=None , lowercase_ : Dict=None , **lowercase_ : Union[str, Any] ) -> Dict: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowercase__ : Optional[int] = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: lowercase__ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if text is not None and images is not None: lowercase__ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def __UpperCamelCase ( self : Tuple , *lowercase_ : Dict , **lowercase_ : Optional[Any] ) -> int: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Any , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Tuple: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : Any ) -> Optional[int]: lowercase__ : Optional[int] = self.tokenizer.model_input_names lowercase__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __UpperCamelCase ( self : Tuple ) -> List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
360
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
0
UpperCamelCase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def lowercase_ ( _lowerCamelCase : float): """simple docstring""" assert type(_lowerCamelCase) in (int, float) and decimal == int(_lowerCamelCase) lowercase__ : Union[str, Any] = int(_lowerCamelCase) lowercase__ : Optional[Any] = "" lowercase__ : Any = False if decimal < 0: lowercase__ : str = True decimal *= -1 while decimal > 0: lowercase__ : Optional[int] = divmod(_lowerCamelCase , 16) lowercase__ : Optional[Any] = values[remainder] + hexadecimal lowercase__ : Tuple = "0x" + hexadecimal if negative: lowercase__ : int = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
362
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class snake_case_ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) lowercase__ : int = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(lowercase_ ) from datasets import load_dataset lowercase__ : str = load_dataset("nielsr/rvlcdip-demo" ) lowercase__ : int = dataset["train"][0]["image"].convert("RGB" ) lowercase__ : Tuple = image_processor(lowercase_ , return_tensors="pt" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase__ : Union[str, Any] = model(**lowercase_ ) lowercase__ : List[Any] = outputs.logits lowercase__ : Tuple = torch.Size((1, 16) ) self.assertEqual(logits.shape , lowercase_ ) lowercase__ : Union[str, Any] = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=lowercase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) )
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
0
import requests from bsa import BeautifulSoup def lowercase_ ( _lowerCamelCase : str = "https://www.worldometers.info/coronavirus") -> str: lowercase__ : str = BeautifulSoup(requests.get(_lowerCamelCase).text , "html.parser") lowercase__ : Union[str, Any] = soup.findAll("h1") lowercase__ : Optional[int] = soup.findAll("div" , {"class": "maincounter-number"}) keys += soup.findAll("span" , {"class": "panel-title"}) values += soup.findAll("div" , {"class": "number-table-main"}) return {key.text.strip(): value.text.strip() for key, value in zip(_lowerCamelCase , _lowerCamelCase)} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f"{key}\n{value}\n")
364
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
0
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __A ,unittest.TestCase ): __A : str = None __A : List[Any] = BloomTokenizerFast __A : Optional[Any] = BloomTokenizerFast __A : Optional[int] = True __A : Any = False __A : List[Any] = "tokenizer_file" __A : str = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def __UpperCamelCase ( self : List[str] ) -> Dict: super().setUp() lowercase__ : Any = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : Optional[Any] , **lowercase_ : Tuple ) -> List[str]: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: lowercase__ : List[Any] = self.get_rust_tokenizer() lowercase__ : Dict = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowercase__ : Optional[Any] = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] lowercase__ : Any = tokenizer.batch_encode_plus(lowercase_ )["input_ids"] self.assertListEqual(lowercase_ , lowercase_ ) lowercase__ : Any = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Tuple=6 ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ : List[Any] = "This is a simple input" lowercase__ : Optional[int] = ["This is a simple input 1", "This is a simple input 2"] lowercase__ : int = ("This is a simple input", "This is a pair") lowercase__ : Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(lowercase_ , max_length=lowercase_ ) tokenizer_r.encode_plus(lowercase_ , max_length=lowercase_ ) tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ ) tokenizer_r.encode(lowercase_ , max_length=lowercase_ ) tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowercase__ : Optional[Any] = None # Hotfixing padding = None self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="max_length" , ) def __UpperCamelCase ( self : Optional[int] ) -> Any: lowercase__ : int = self.get_rust_tokenizer() lowercase__ : Union[str, Any] = load_dataset("xnli" , "all_languages" , split="test" , streaming=lowercase_ ) lowercase__ : Tuple = next(iter(lowercase_ ) )["premise"] # pick up one data lowercase__ : List[str] = list(sample_data.values() ) lowercase__ : Union[str, Any] = list(map(tokenizer.encode , lowercase_ ) ) lowercase__ : Union[str, Any] = [tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) for x in output_tokens] self.assertListEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
365
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class snake_case_ ( __A ,__A ,__A ,unittest.TestCase ): __A : int = StableUnCLIPPipeline __A : int = TEXT_TO_IMAGE_PARAMS __A : Any = TEXT_TO_IMAGE_BATCH_PARAMS __A : int = TEXT_TO_IMAGE_IMAGE_PARAMS __A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A : int = False def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : str = 32 lowercase__ : Any = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=lowercase_ , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowercase_ , num_layers=1 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=lowercase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowercase__ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowercase_ ) lowercase__ : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase__ : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) lowercase__ : str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase_ , layers_per_block=1 , upcast_attention=lowercase_ , use_linear_projection=lowercase_ , ) torch.manual_seed(0 ) lowercase__ : Any = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) torch.manual_seed(0 ) lowercase__ : List[str] = AutoencoderKL() lowercase__ : List[Any] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __UpperCamelCase ( self : Any , lowercase_ : Tuple , lowercase_ : Dict=0 ) -> Any: if str(lowercase_ ).startswith("mps" ): lowercase__ : Any = torch.manual_seed(lowercase_ ) else: lowercase__ : Any = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase__ : Optional[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: lowercase__ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: lowercase__ : str = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowercase_ ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> int: lowercase__ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowercase__ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase__ : Dict = pipe("anime turle" , generator=lowercase_ , output_type="np" ) lowercase__ : Optional[int] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowercase__ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowercase__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
333
0
from scipy.stats import pearsonr import datasets UpperCamelCase = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' UpperCamelCase = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' UpperCamelCase = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): def __UpperCamelCase ( self : List[str] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Tuple=False ) -> Optional[Any]: if return_pvalue: lowercase__ : List[Any] = pearsonr(lowercase_ , lowercase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_ )[0] )}
366
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
333
0
import argparse UpperCamelCase = '''docs/source/_static/js/custom.js''' def lowercase_ ( _lowerCamelCase : Tuple): with open(_lowerCamelCase , encoding="utf-8" , newline="\n") as f: lowercase__ : str = f.readlines() lowercase__ : Dict = 0 # First let's put the right version while not lines[index].startswith("const stableVersion ="): index += 1 lowercase__ : Optional[int] = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {"): index += 1 # We go until the end while not lines[index].startswith("}"): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(_lowerCamelCase , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') UpperCamelCase = parser.parse_args() update_custom_js(args.version)
367
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : List[Any] ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : int , **lowercase_ : List[str] ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[str] , **lowercase_ : Tuple ) -> Any: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Any ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Dict , *lowercase_ : str , **lowercase_ : int ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Tuple ) -> List[str]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Any , **lowercase_ : Optional[int] ) -> List[str]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : Dict , *lowercase_ : Dict , **lowercase_ : Any ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Optional[Any] , **lowercase_ : Any ) -> Tuple: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[str] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Tuple , **lowercase_ : Dict ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : int , *lowercase_ : List[str] , **lowercase_ : List[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Dict: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> int: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[Any] = ["flax"] def __init__( self : int , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : Tuple , **lowercase_ : int ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Dict = ["flax"] def __init__( self : Any , *lowercase_ : int , **lowercase_ : int ) -> Optional[int]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : List[Any] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : Union[str, Any] ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : Union[str, Any] , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[int] , *lowercase_ : Any , **lowercase_ : Optional[Any] ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : List[str] , **lowercase_ : str ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[Any] = ["flax"] def __init__( self : List[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *lowercase_ : Any , **lowercase_ : int ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : Optional[Any] , **lowercase_ : Optional[int] ) -> List[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : Optional[int] = ["flax"] def __init__( self : Any , *lowercase_ : str , **lowercase_ : Dict ) -> int: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : str , *lowercase_ : int , **lowercase_ : Optional[int] ) -> Tuple: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Dict: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : int = ["flax"] def __init__( self : List[str] , *lowercase_ : int , **lowercase_ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : int , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *lowercase_ : Dict , **lowercase_ : int ) -> Optional[Any]: requires_backends(cls , ["flax"] ) class snake_case_ ( metaclass=__A ): __A : List[str] = ["flax"] def __init__( self : Tuple , *lowercase_ : List[Any] , **lowercase_ : Tuple ) -> Tuple: requires_backends(self , ["flax"] ) @classmethod def __UpperCamelCase ( cls : Any , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Union[str, Any]: requires_backends(cls , ["flax"] ) @classmethod def __UpperCamelCase ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : Dict ) -> List[Any]: requires_backends(cls , ["flax"] )
333
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
368
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case_ ( __A ): __A : List[str] = "vit_mae" def __init__( self : List[Any] , lowercase_ : List[Any]=7_68 , lowercase_ : Tuple=12 , lowercase_ : Tuple=12 , lowercase_ : Optional[Any]=30_72 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : int=0.0 , lowercase_ : Dict=0.02 , lowercase_ : int=1E-12 , lowercase_ : Tuple=2_24 , lowercase_ : Any=16 , lowercase_ : Dict=3 , lowercase_ : List[Any]=True , lowercase_ : Dict=16 , lowercase_ : List[str]=5_12 , lowercase_ : Tuple=8 , lowercase_ : Any=20_48 , lowercase_ : int=0.75 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ) -> Optional[Any]: super().__init__(**lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : str = num_hidden_layers lowercase__ : Optional[int] = num_attention_heads lowercase__ : List[Any] = intermediate_size lowercase__ : str = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Optional[Any] = attention_probs_dropout_prob lowercase__ : Any = initializer_range lowercase__ : Optional[Any] = layer_norm_eps lowercase__ : Optional[Any] = image_size lowercase__ : Optional[int] = patch_size lowercase__ : Any = num_channels lowercase__ : str = qkv_bias lowercase__ : Optional[Any] = decoder_num_attention_heads lowercase__ : Any = decoder_hidden_size lowercase__ : Any = decoder_num_hidden_layers lowercase__ : Union[str, Any] = decoder_intermediate_size lowercase__ : int = mask_ratio lowercase__ : Tuple = norm_pix_loss
333
0
def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int): lowercase__ : list[list[str]] = [[] for _ in range(_lowerCamelCase)] lowercase__ : Optional[Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative") if key == 1 or len(_lowerCamelCase) <= key: return input_string for position, character in enumerate(_lowerCamelCase): lowercase__ : Optional[int] = position % (lowest * 2) # puts it in bounds lowercase__ : Optional[int] = min(_lowerCamelCase , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append(_lowerCamelCase) lowercase__ : Dict = ["".join(_lowerCamelCase) for row in temp_grid] lowercase__ : Tuple = "".join(_lowerCamelCase) return output_string def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : int): lowercase__ : Optional[int] = [] lowercase__ : Any = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative") if key == 1: return input_string lowercase__ : list[list[str]] = [[] for _ in range(_lowerCamelCase)] # generates template for position in range(len(_lowerCamelCase)): lowercase__ : Optional[int] = position % (lowest * 2) # puts it in bounds lowercase__ : Optional[int] = min(_lowerCamelCase , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append("*") lowercase__ : Optional[Any] = 0 for row in temp_grid: # fills in the characters lowercase__ : str = input_string[counter : counter + len(_lowerCamelCase)] grid.append(list(_lowerCamelCase)) counter += len(_lowerCamelCase) lowercase__ : Optional[int] = "" # reads as zigzag for position in range(len(_lowerCamelCase)): lowercase__ : int = position % (lowest * 2) # puts it in bounds lowercase__ : List[Any] = min(_lowerCamelCase , lowest * 2 - num) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0) return output_string def lowercase_ ( _lowerCamelCase : str): lowercase__ : Tuple = {} for key_guess in range(1 , len(_lowerCamelCase)): # tries every key lowercase__ : int = decrypt(_lowerCamelCase , _lowerCamelCase) return results if __name__ == "__main__": import doctest doctest.testmod()
369
def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): while a != 0: lowercase__ , lowercase__ : Dict = b % a, a return b def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): if gcd(_lowerCamelCase , _lowerCamelCase) != 1: lowercase__ : Tuple = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase) lowercase__ , lowercase__ , lowercase__ : Optional[int] = 1, 0, a lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = 0, 1, m while va != 0: lowercase__ : Tuple = ua // va lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
333
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class snake_case_ ( __A ): __A : torch.FloatTensor class snake_case_ ( nn.Module ): def __init__( self : Any , lowercase_ : str=3 , lowercase_ : List[str]=3 , lowercase_ : List[Any]=("DownEncoderBlock2D",) , lowercase_ : Optional[int]=(64,) , lowercase_ : int=2 , lowercase_ : Optional[Any]=32 , lowercase_ : str="silu" , lowercase_ : Tuple=True , ) -> Optional[int]: super().__init__() lowercase__ : Tuple = layers_per_block lowercase__ : Any = torch.nn.Convad( lowercase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ : Union[str, Any] = None lowercase__ : Any = nn.ModuleList([] ) # down lowercase__ : Dict = block_out_channels[0] for i, down_block_type in enumerate(lowercase_ ): lowercase__ : List[str] = output_channel lowercase__ : List[Any] = block_out_channels[i] lowercase__ : Optional[int] = i == len(lowercase_ ) - 1 lowercase__ : Optional[int] = get_down_block( lowercase_ , num_layers=self.layers_per_block , in_channels=lowercase_ , out_channels=lowercase_ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=lowercase_ , resnet_groups=lowercase_ , attention_head_dim=lowercase_ , temb_channels=lowercase_ , ) self.down_blocks.append(lowercase_ ) # mid lowercase__ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase_ , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase_ , temb_channels=lowercase_ , ) # out lowercase__ : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase_ , eps=1E-6 ) lowercase__ : str = nn.SiLU() lowercase__ : List[Any] = 2 * out_channels if double_z else out_channels lowercase__ : Optional[int] = nn.Convad(block_out_channels[-1] , lowercase_ , 3 , padding=1 ) lowercase__ : Tuple = False def __UpperCamelCase ( self : Any , lowercase_ : Optional[int] ) -> str: lowercase__ : int = x lowercase__ : Dict = self.conv_in(lowercase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase_ : Tuple ): def custom_forward(*lowercase_ : List[str] ): return module(*lowercase_ ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: lowercase__ : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase_ ) , lowercase_ , use_reentrant=lowercase_ ) # middle lowercase__ : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase_ , use_reentrant=lowercase_ ) else: for down_block in self.down_blocks: lowercase__ : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase_ ) , lowercase_ ) # middle lowercase__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase_ ) else: # down for down_block in self.down_blocks: lowercase__ : Optional[Any] = down_block(lowercase_ ) # middle lowercase__ : List[str] = self.mid_block(lowercase_ ) # post-process lowercase__ : Any = self.conv_norm_out(lowercase_ ) lowercase__ : int = self.conv_act(lowercase_ ) lowercase__ : Tuple = self.conv_out(lowercase_ ) return sample class snake_case_ ( nn.Module ): def __init__( self : int , lowercase_ : Dict=3 , lowercase_ : Any=3 , lowercase_ : Tuple=("UpDecoderBlock2D",) , lowercase_ : List[str]=(64,) , lowercase_ : Optional[Any]=2 , lowercase_ : int=32 , lowercase_ : Optional[Any]="silu" , lowercase_ : Union[str, Any]="group" , ) -> Tuple: super().__init__() lowercase__ : Optional[Any] = layers_per_block lowercase__ : List[Any] = nn.Convad( lowercase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ : Dict = None lowercase__ : str = nn.ModuleList([] ) lowercase__ : Dict = in_channels if norm_type == "spatial" else None # mid lowercase__ : str = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=lowercase_ , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase_ , temb_channels=lowercase_ , ) # up lowercase__ : Any = list(reversed(lowercase_ ) ) lowercase__ : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowercase_ ): lowercase__ : int = output_channel lowercase__ : Tuple = reversed_block_out_channels[i] lowercase__ : Union[str, Any] = i == len(lowercase_ ) - 1 lowercase__ : List[str] = get_up_block( lowercase_ , num_layers=self.layers_per_block + 1 , in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=lowercase_ , resnet_groups=lowercase_ , attention_head_dim=lowercase_ , temb_channels=lowercase_ , resnet_time_scale_shift=lowercase_ , ) self.up_blocks.append(lowercase_ ) lowercase__ : Any = output_channel # out if norm_type == "spatial": lowercase__ : List[str] = SpatialNorm(block_out_channels[0] , lowercase_ ) else: lowercase__ : int = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase_ , eps=1E-6 ) lowercase__ : Any = nn.SiLU() lowercase__ : Any = nn.Convad(block_out_channels[0] , lowercase_ , 3 , padding=1 ) lowercase__ : List[str] = False def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any]=None ) -> List[Any]: lowercase__ : Optional[Any] = z lowercase__ : Union[str, Any] = self.conv_in(lowercase_ ) lowercase__ : str = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowercase_ : List[str] ): def custom_forward(*lowercase_ : Union[str, Any] ): return module(*lowercase_ ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle lowercase__ : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase_ , lowercase_ , use_reentrant=lowercase_ ) lowercase__ : int = sample.to(lowercase_ ) # up for up_block in self.up_blocks: lowercase__ : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(lowercase_ ) , lowercase_ , lowercase_ , use_reentrant=lowercase_ ) else: # middle lowercase__ : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowercase_ , lowercase_ ) lowercase__ : Any = sample.to(lowercase_ ) # up for up_block in self.up_blocks: lowercase__ : List[Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase_ ) , lowercase_ , lowercase_ ) else: # middle lowercase__ : str = self.mid_block(lowercase_ , lowercase_ ) lowercase__ : Dict = sample.to(lowercase_ ) # up for up_block in self.up_blocks: lowercase__ : Union[str, Any] = up_block(lowercase_ , lowercase_ ) # post-process if latent_embeds is None: lowercase__ : Any = self.conv_norm_out(lowercase_ ) else: lowercase__ : List[Any] = self.conv_norm_out(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = self.conv_act(lowercase_ ) lowercase__ : Tuple = self.conv_out(lowercase_ ) return sample class snake_case_ ( nn.Module ): def __init__( self : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : List[str]=None , lowercase_ : str="random" , lowercase_ : Tuple=False , lowercase_ : Dict=True ) -> str: super().__init__() lowercase__ : int = n_e lowercase__ : List[Any] = vq_embed_dim lowercase__ : Optional[Any] = beta lowercase__ : Dict = legacy lowercase__ : int = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowercase__ : List[Any] = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) lowercase__ : Optional[Any] = self.used.shape[0] lowercase__ : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowercase__ : Optional[Any] = self.re_embed lowercase__ : Optional[Any] = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: lowercase__ : List[str] = n_e lowercase__ : Tuple = sane_index_shape def __UpperCamelCase ( self : List[str] , lowercase_ : int ) -> List[str]: lowercase__ : Tuple = inds.shape assert len(lowercase_ ) > 1 lowercase__ : Optional[Any] = inds.reshape(ishape[0] , -1 ) lowercase__ : Optional[Any] = self.used.to(lowercase_ ) lowercase__ : List[str] = (inds[:, :, None] == used[None, None, ...]).long() lowercase__ : Optional[Any] = match.argmax(-1 ) lowercase__ : Optional[Any] = match.sum(2 ) < 1 if self.unknown_index == "random": lowercase__ : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowercase__ : Dict = self.unknown_index return new.reshape(lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : int ) -> Union[str, Any]: lowercase__ : Optional[Any] = inds.shape assert len(lowercase_ ) > 1 lowercase__ : List[Any] = inds.reshape(ishape[0] , -1 ) lowercase__ : Optional[int] = self.used.to(lowercase_ ) if self.re_embed > self.used.shape[0]: # extra token lowercase__ : List[str] = 0 # simply set to zero lowercase__ : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase_ ) return back.reshape(lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : List[str] ) -> int: # reshape z -> (batch, height, width, channel) and flatten lowercase__ : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() lowercase__ : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowercase__ : Tuple = torch.argmin(torch.cdist(lowercase_ , self.embedding.weight ) , dim=1 ) lowercase__ : List[str] = self.embedding(lowercase_ ).view(z.shape ) lowercase__ : Optional[Any] = None lowercase__ : Optional[int] = None # compute loss for embedding if not self.legacy: lowercase__ : int = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowercase__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowercase__ : Dict = z + (z_q - z).detach() # reshape back to match original input shape lowercase__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowercase__ : Union[str, Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowercase__ : Union[str, Any] = self.remap_to_used(lowercase_ ) lowercase__ : Any = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowercase__ : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] ) -> List[str]: # shape specifying (batch, height, width, channel) if self.remap is not None: lowercase__ : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis lowercase__ : Tuple = self.unmap_to_all(lowercase_ ) lowercase__ : List[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowercase__ : Optional[int] = self.embedding(lowercase_ ) if shape is not None: lowercase__ : Any = z_q.view(lowercase_ ) # reshape back to match original input shape lowercase__ : Any = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class snake_case_ ( __A ): def __init__( self : List[str] , lowercase_ : Tuple , lowercase_ : Union[str, Any]=False ) -> int: lowercase__ : Any = parameters lowercase__ : Tuple = torch.chunk(lowercase_ , 2 , dim=1 ) lowercase__ : str = torch.clamp(self.logvar , -30.0 , 20.0 ) lowercase__ : str = deterministic lowercase__ : Any = torch.exp(0.5 * self.logvar ) lowercase__ : List[Any] = torch.exp(self.logvar ) if self.deterministic: lowercase__ : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowercase__ : Tuple = randn_tensor( self.mean.shape , generator=lowercase_ , device=self.parameters.device , dtype=self.parameters.dtype ) lowercase__ : Union[str, Any] = self.mean + self.std * sample return x def __UpperCamelCase ( self : Optional[Any] , lowercase_ : Union[str, Any]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self : Dict , lowercase_ : int , lowercase_ : int=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) lowercase__ : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase_ ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: return self.mean
370
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
0
"""simple docstring""" def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
371
import argparse import datetime def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } lowercase__ : Any = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_lowerCamelCase) < 11: raise ValueError("Must be 10 characters long") # Get month lowercase__ : int = int(date_input[0] + date_input[1]) # Validate if not 0 < m < 13: raise ValueError("Month must be between 1 - 12") lowercase__ : str = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get day lowercase__ : int = int(date_input[3] + date_input[4]) # Validate if not 0 < d < 32: raise ValueError("Date must be between 1 - 31") # Get second separator lowercase__ : str = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'") # Get year lowercase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9]) # Arbitrary year range if not 45 < y < 8500: raise ValueError( "Year out of range. There has to be some sort of limit...right?") # Get datetime obj for validation lowercase__ : Union[str, Any] = datetime.date(int(_lowerCamelCase) , int(_lowerCamelCase) , int(_lowerCamelCase)) # Start math if m <= 2: lowercase__ : Optional[Any] = y - 1 lowercase__ : int = m + 12 # maths var lowercase__ : int = int(str(_lowerCamelCase)[:2]) lowercase__ : int = int(str(_lowerCamelCase)[2:]) lowercase__ : int = int(2.6 * m - 5.39) lowercase__ : int = int(c / 4) lowercase__ : int = int(k / 4) lowercase__ : int = int(d + k) lowercase__ : int = int(t + u + v + x) lowercase__ : int = int(z - (2 * c)) lowercase__ : int = round(w % 7) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer.") # Response lowercase__ : str = f'''Your date {date_input}, is a {days[str(_lowerCamelCase)]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) UpperCamelCase = parser.parse_args() zeller(args.date_input)
333
0
"""simple docstring""" def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : list[float]): if discount_rate < 0: raise ValueError("Discount rate cannot be negative") if not cash_flows: raise ValueError("Cash flows list cannot be empty") lowercase__ : str = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_lowerCamelCase)) return round(_lowerCamelCase , ndigits=2) if __name__ == "__main__": import doctest doctest.testmod()
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : int): lowercase__ : List[Any] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" lowercase__ : Union[str, Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw).convert("RGB") lowercase__ : List[str] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711)), ]) lowercase__ : Optional[int] = transform(_lowerCamelCase).unsqueeze(0).to(_lowerCamelCase) return image def lowercase_ ( _lowerCamelCase : Union[str, Any]): if "visual_encoder" in key: lowercase__ : int = re.sub("visual_encoder*" , "vision_model.encoder" , _lowerCamelCase) if "blocks" in key: lowercase__ : Optional[Any] = re.sub(R"blocks" , "layers" , _lowerCamelCase) if "attn" in key: lowercase__ : Optional[Any] = re.sub(R"attn" , "self_attn" , _lowerCamelCase) if "norm1" in key: lowercase__ : List[Any] = re.sub(R"norm1" , "layer_norm1" , _lowerCamelCase) if "norm2" in key: lowercase__ : int = re.sub(R"norm2" , "layer_norm2" , _lowerCamelCase) if "encoder.norm" in key: lowercase__ : Union[str, Any] = re.sub(R"encoder.norm" , "post_layernorm" , _lowerCamelCase) if "encoder.patch_embed.proj" in key: lowercase__ : Union[str, Any] = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , _lowerCamelCase) if "encoder.pos_embed" in key: lowercase__ : Union[str, Any] = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , _lowerCamelCase) if "encoder.cls_token" in key: lowercase__ : Dict = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , _lowerCamelCase) if "self_attn" in key: lowercase__ : List[Any] = re.sub(R"self_attn.proj" , "self_attn.projection" , _lowerCamelCase) return key @torch.no_grad() def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int]=None): if config_path is not None: lowercase__ : int = BlipConfig.from_pretrained(_lowerCamelCase) else: lowercase__ : Optional[int] = BlipConfig(projection_dim=512 , text_config={} , vision_config={}) lowercase__ : Any = BlipForConditionalGeneration(_lowerCamelCase).eval() lowercase__ : Tuple = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" lowercase__ : Tuple = blip_decoder(pretrained=_lowerCamelCase , image_size=384 , vit="base") lowercase__ : Tuple = pt_model.eval() lowercase__ : Any = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase__ : Any = modified_state_dict.pop(_lowerCamelCase) lowercase__ : List[str] = rename_key(_lowerCamelCase) lowercase__ : str = value hf_model.load_state_dict(_lowerCamelCase) lowercase__ : Optional[int] = 384 lowercase__ : Optional[Any] = load_demo_image(image_size=_lowerCamelCase , device="cpu") lowercase__ : Optional[int] = BertTokenizer.from_pretrained("bert-base-uncased") lowercase__ : Union[str, Any] = tokenizer(["a picture of"]).input_ids lowercase__ : List[str] = hf_model.generate(_lowerCamelCase , _lowerCamelCase) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase__ : List[Any] = hf_model.generate(_lowerCamelCase) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_lowerCamelCase) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase__ : Tuple = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) lowercase__ : int = blip_vqa(pretrained=_lowerCamelCase , image_size=_lowerCamelCase , vit="base") vqa_model.eval() lowercase__ : Optional[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase__ : Dict = modified_state_dict.pop(_lowerCamelCase) lowercase__ : Tuple = rename_key(_lowerCamelCase) lowercase__ : int = value lowercase__ : Any = BlipForQuestionAnswering(_lowerCamelCase) hf_vqa_model.load_state_dict(_lowerCamelCase) lowercase__ : List[Any] = ["How many dogs are in this image?"] lowercase__ : int = tokenizer(_lowerCamelCase , return_tensors="pt").input_ids lowercase__ : int = hf_vqa_model.generate(_lowerCamelCase , _lowerCamelCase) print(tokenizer.decode(answer[0])) assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa") lowercase__ : Union[str, Any] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" lowercase__ : Optional[Any] = blip_itm(pretrained=_lowerCamelCase , image_size=_lowerCamelCase , vit="base") itm_model.eval() lowercase__ : Optional[int] = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase__ : Union[str, Any] = modified_state_dict.pop(_lowerCamelCase) lowercase__ : Any = rename_key(_lowerCamelCase) lowercase__ : int = value lowercase__ : Optional[Any] = BlipForImageTextRetrieval(_lowerCamelCase) lowercase__ : Tuple = ["A picture of a woman with a dog sitting in a beach"] lowercase__ : str = tokenizer( _lowerCamelCase , return_tensors="pt" , padding="max_length" , truncation=_lowerCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_lowerCamelCase) hf_itm_model.eval() lowercase__ : List[str] = hf_itm_model(_lowerCamelCase , _lowerCamelCase , use_itm_head=_lowerCamelCase) lowercase__ : Optional[int] = hf_itm_model(_lowerCamelCase , _lowerCamelCase , use_itm_head=_lowerCamelCase) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1)[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCamelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
351
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case_ ( __A ): __A : List[str] = "unispeech" def __init__( self : List[Any] , lowercase_ : Optional[int]=32 , lowercase_ : Optional[int]=7_68 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=12 , lowercase_ : Union[str, Any]=30_72 , lowercase_ : List[Any]="gelu" , lowercase_ : int=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=1E-5 , lowercase_ : int="group" , lowercase_ : Tuple="gelu" , lowercase_ : Dict=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowercase_ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : int=False , lowercase_ : List[Any]=1_28 , lowercase_ : Optional[Any]=16 , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.05 , lowercase_ : Optional[Any]=10 , lowercase_ : Any=2 , lowercase_ : int=0.0 , lowercase_ : Union[str, Any]=10 , lowercase_ : Optional[Any]=0 , lowercase_ : List[str]=3_20 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.1 , lowercase_ : Tuple=1_00 , lowercase_ : Dict=2_56 , lowercase_ : Optional[Any]=2_56 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Dict=2_56 , lowercase_ : Union[str, Any]=80 , lowercase_ : int=0 , lowercase_ : Union[str, Any]=1 , lowercase_ : Dict=2 , lowercase_ : Optional[int]=0.5 , **lowercase_ : Union[str, Any] , ) -> Any: super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) lowercase__ : List[str] = hidden_size lowercase__ : Any = feat_extract_norm lowercase__ : Optional[Any] = feat_extract_activation lowercase__ : Dict = list(lowercase_ ) lowercase__ : Union[str, Any] = list(lowercase_ ) lowercase__ : List[str] = list(lowercase_ ) lowercase__ : List[str] = conv_bias lowercase__ : Any = num_conv_pos_embeddings lowercase__ : Dict = num_conv_pos_embedding_groups lowercase__ : int = len(self.conv_dim ) lowercase__ : str = num_hidden_layers lowercase__ : Any = intermediate_size lowercase__ : Optional[int] = hidden_act lowercase__ : int = num_attention_heads lowercase__ : Union[str, Any] = hidden_dropout lowercase__ : Any = attention_dropout lowercase__ : Union[str, Any] = activation_dropout lowercase__ : Any = feat_proj_dropout lowercase__ : str = final_dropout lowercase__ : int = layerdrop lowercase__ : Optional[int] = layer_norm_eps lowercase__ : List[Any] = initializer_range lowercase__ : Any = num_ctc_classes lowercase__ : int = vocab_size lowercase__ : str = do_stable_layer_norm lowercase__ : Any = use_weighted_layer_sum lowercase__ : Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ : List[Any] = apply_spec_augment lowercase__ : Dict = mask_time_prob lowercase__ : Tuple = mask_time_length lowercase__ : str = mask_time_min_masks lowercase__ : List[Any] = mask_feature_prob lowercase__ : int = mask_feature_length lowercase__ : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ : Optional[int] = num_codevectors_per_group lowercase__ : List[str] = num_codevector_groups lowercase__ : Dict = contrastive_logits_temperature lowercase__ : Tuple = feat_quantizer_dropout lowercase__ : Any = num_negatives lowercase__ : Dict = codevector_dim lowercase__ : Tuple = proj_codevector_dim lowercase__ : List[str] = diversity_loss_weight # ctc loss lowercase__ : Tuple = ctc_loss_reduction lowercase__ : Dict = ctc_zero_infinity # pretraining loss lowercase__ : Optional[Any] = replace_prob @property def __UpperCamelCase ( self : Dict ) -> Tuple: return functools.reduce(operator.mul , self.conv_stride , 1 )
333
0
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def lowercase_ ( _lowerCamelCase : Optional[int]): if hor == 128: lowercase__ : Dict = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") lowercase__ : Union[str, Any] = (32, 128, 256) lowercase__ : Dict = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: lowercase__ : Tuple = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") lowercase__ : Union[str, Any] = (32, 64, 128, 256) lowercase__ : Union[str, Any] = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") lowercase__ : Union[str, Any] = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''') lowercase__ : Union[str, Any] = model.state_dict() lowercase__ : List[Any] = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_5536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } lowercase__ : Tuple = UNetaDModel(**_lowerCamelCase) print(f'''length of state dict: {len(state_dict.keys())}''') print(f'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') lowercase__ : List[str] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): lowercase__ : Dict = state_dict.pop(_lowerCamelCase) hf_value_function.load_state_dict(_lowerCamelCase) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''') with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( ): lowercase__ : List[str] = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_5536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } lowercase__ : List[str] = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch") lowercase__ : str = model lowercase__ : Optional[int] = UNetaDModel(**_lowerCamelCase) print(f'''length of state dict: {len(state_dict.keys())}''') print(f'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') lowercase__ : Optional[Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): lowercase__ : Any = state_dict.pop(_lowerCamelCase) hf_value_function.load_state_dict(_lowerCamelCase) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin") with open("hub/hopper-medium-v2/value_function/config.json" , "w") as f: json.dump(_lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": unet(32) # unet(128) value_function()
352
def lowercase_ ( _lowerCamelCase : list): for i in range(len(_lowerCamelCase) - 1 , 0 , -1): lowercase__ : int = False for j in range(_lowerCamelCase , 0 , -1): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : int = unsorted[j - 1], unsorted[j] lowercase__ : List[str] = True for j in range(_lowerCamelCase): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : Optional[int] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(f"{cocktail_shaker_sort(unsorted) = }")
333
0
from __future__ import annotations import math class snake_case_ : def __init__( self : List[Any] , lowercase_ : int ) -> None: lowercase__ : Tuple = size # approximate the overall size of segment tree with given value lowercase__ : Union[str, Any] = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowercase__ : List[Any] = [0 for i in range(0 , 4 * size )] lowercase__ : Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Dict , lowercase_ : int ) -> int: return idx * 2 def __UpperCamelCase ( self : Any , lowercase_ : int ) -> int: return idx * 2 + 1 def __UpperCamelCase ( self : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : list[int] ) -> None: if left_element == right_element: lowercase__ : Optional[int] = a[left_element - 1] else: lowercase__ : Union[str, Any] = (left_element + right_element) // 2 self.build(self.left(lowercase_ ) , lowercase_ , lowercase_ , lowercase_ ) self.build(self.right(lowercase_ ) , mid + 1 , lowercase_ , lowercase_ ) lowercase__ : List[str] = max( self.segment_tree[self.left(lowercase_ )] , self.segment_tree[self.right(lowercase_ )] ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> bool: if self.flag[idx] is True: lowercase__ : Dict = self.lazy[idx] lowercase__ : List[Any] = False if left_element != right_element: lowercase__ : List[str] = self.lazy[idx] lowercase__ : Optional[int] = self.lazy[idx] lowercase__ : Optional[int] = True lowercase__ : Optional[int] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowercase__ : Any = val if left_element != right_element: lowercase__ : int = val lowercase__ : List[str] = val lowercase__ : Optional[int] = True lowercase__ : List[str] = True return True lowercase__ : Tuple = (left_element + right_element) // 2 self.update(self.left(lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.update(self.right(lowercase_ ) , mid + 1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = max( self.segment_tree[self.left(lowercase_ )] , self.segment_tree[self.right(lowercase_ )] ) return True def __UpperCamelCase ( self : List[str] , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> int | float: if self.flag[idx] is True: lowercase__ : str = self.lazy[idx] lowercase__ : Any = False if left_element != right_element: lowercase__ : Dict = self.lazy[idx] lowercase__ : Optional[int] = self.lazy[idx] lowercase__ : Union[str, Any] = True lowercase__ : Optional[int] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowercase__ : Dict = (left_element + right_element) // 2 lowercase__ : List[str] = self.query(self.left(lowercase_ ) , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Dict = self.query(self.right(lowercase_ ) , mid + 1 , lowercase_ , lowercase_ , lowercase_ ) return max(lowercase_ , lowercase_ ) def __str__( self : List[Any] ) -> str: return str([self.query(1 , 1 , self.size , lowercase_ , lowercase_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": UpperCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] UpperCamelCase = 15 UpperCamelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
353
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class snake_case_ ( __A ): __A : int = "token-classification" def __init__( self : Tuple , lowercase_ : Dict ) -> List[str]: if type(lowercase_ ) == dict: lowercase__ : Dict = Namespace(**lowercase_ ) lowercase__ : str = import_module("tasks" ) try: lowercase__ : Tuple = getattr(lowercase_ , hparams.task_type ) lowercase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase__ : Optional[Any] = self.token_classification_task.get_labels(hparams.labels ) lowercase__ : int = CrossEntropyLoss().ignore_index super().__init__(lowercase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Union[str, Any] , **lowercase_ : List[str] ) -> Any: return self.model(**lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[int] ) -> Tuple: lowercase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : Tuple = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : Optional[int] = self(**lowercase_ ) lowercase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: lowercase__ : Tuple = self.hparams for mode in ["train", "dev", "test"]: lowercase__ : Any = self._feature_file(lowercase_ ) if os.path.exists(lowercase_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) lowercase__ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase_ ) lowercase__ : Dict = self.token_classification_task.convert_examples_to_features( lowercase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase_ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowercase_ ) torch.save(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : bool = False ) -> DataLoader: lowercase__ : str = self._feature_file(lowercase_ ) logger.info("Loading features from cached file %s" , lowercase_ ) lowercase__ : str = torch.load(lowercase_ ) lowercase__ : List[str] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ : Dict = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) , batch_size=lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : Dict , lowercase_ : Tuple ) -> str: """Compute validation""" "" lowercase__ : Union[str, Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": lowercase__ : int = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ : List[Any] = self(**lowercase_ ) lowercase__ , lowercase__ : Any = outputs[:2] lowercase__ : Optional[Any] = logits.detach().cpu().numpy() lowercase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Optional[int] , lowercase_ : Any ) -> List[Any]: lowercase__ : int = torch.stack([x["val_loss"] for x in outputs] ).mean() lowercase__ : Any = np.concatenate([x["pred"] for x in outputs] , axis=0 ) lowercase__ : Dict = np.argmax(lowercase_ , axis=2 ) lowercase__ : int = np.concatenate([x["target"] for x in outputs] , axis=0 ) lowercase__ : Any = dict(enumerate(self.labels ) ) lowercase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ : Dict = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ : Any = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowercase_ , lowercase_ ), "precision": precision_score(lowercase_ , lowercase_ ), "recall": recall_score(lowercase_ , lowercase_ ), "f1": fa_score(lowercase_ , lowercase_ ), } lowercase__ : List[Any] = dict(results.items() ) lowercase__ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Any , lowercase_ : Dict ) -> Dict: # when stable lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) lowercase__ : Any = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , lowercase_ : Tuple ) -> int: # updating to test_epoch_end instead of deprecated test_end lowercase__ , lowercase__ , lowercase__ : Dict = self._eval_end(lowercase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ : Optional[int] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( lowercase_ : int , lowercase_ : Union[str, Any] ) -> Tuple: # Add NER specific options BaseTransformer.add_model_specific_args(lowercase_ , lowercase_ ) parser.add_argument( "--task_type" , default="NER" , type=lowercase_ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=lowercase_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowercase_ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowercase_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase = parser.parse_args() UpperCamelCase = NERTransformer(args) UpperCamelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCamelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
333
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCamelCase = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 128, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class snake_case_ ( unittest.TestCase ): @classmethod def __UpperCamelCase ( cls : Any ) -> Dict: lowercase__ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def __UpperCamelCase ( cls : Optional[Any] ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def __UpperCamelCase ( self : Union[str, Any] ) -> str: lowercase__ : str = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) lowercase__ : str = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , repo_id="test-config" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase__ : Dict = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def __UpperCamelCase ( self : Tuple ) -> str: lowercase__ : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) lowercase__ : Optional[Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="valid_org/test-config-org" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase__ : int = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def __UpperCamelCase ( self : Any ) -> str: CustomConfig.register_for_auto_class() lowercase__ : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) lowercase__ : List[Any] = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Any: lowercase__ : int = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : Dict = c.n_embd + 1 # int lowercase__ : List[Any] = c.resid_pdrop + 1.0 # float lowercase__ : Tuple = not c.scale_attn_weights # bool lowercase__ : Optional[Any] = c.summary_type + "foo" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowercase_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(lowercase_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(lowercase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(lowercase_ , c.summary_type , "mismatch for key: summary_type" ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[str] = PretrainedConfig() lowercase__ : Tuple = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowercase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) lowercase__ : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowercase_ , lowercase_ )] if len(lowercase_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" F''' {", ".join(lowercase_ )}.''' ) def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: with self.assertRaises(lowercase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) lowercase__ : Dict = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(lowercase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down lowercase__ : int = mock.Mock() lowercase__ : Tuple = 5_00 lowercase__ : str = {} lowercase__ : Optional[int] = HTTPError lowercase__ : List[Any] = {} # Download this model to make sure it's in the cache. lowercase__ : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=lowercase_ ) as mock_head: lowercase__ : int = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Optional[int] ) -> Any: # This test is for deprecated behavior and can be removed in v5 lowercase__ : Optional[Any] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def __UpperCamelCase ( self : int ) -> List[str]: lowercase__ : Tuple = AutoConfig.from_pretrained("bert-base-cased" ) lowercase__ : str = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowercase_ ) lowercase__ : str = 2 json.dump(configuration.to_dict() , open(os.path.join(lowercase_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Dict = ["config.42.0.0.json"] lowercase__ : Union[str, Any] = 7_68 configuration.save_pretrained(lowercase_ ) shutil.move(os.path.join(lowercase_ , "config.4.0.0.json" ) , os.path.join(lowercase_ , "config.42.0.0.json" ) ) lowercase__ : Optional[int] = AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(new_configuration.hidden_size , 7_68 ) def __UpperCamelCase ( self : Any ) -> Tuple: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__ : Any = "hf-internal-testing/test-two-configs" import transformers as new_transformers lowercase__ : List[Any] = "v4.0.0" lowercase__ : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowercase_ , return_unused_kwargs=lowercase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowercase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : List[Any] = "v3.0.0" lowercase__ : Union[str, Any] = old_transformers.models.auto.AutoConfig.from_pretrained(lowercase_ ) self.assertEqual(old_configuration.hidden_size , 7_68 )
354
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
333
0
import functools from typing import Any def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : list[str]): # Validation if not isinstance(_lowerCamelCase , _lowerCamelCase) or len(_lowerCamelCase) == 0: raise ValueError("the string should be not empty string") if not isinstance(_lowerCamelCase , _lowerCamelCase) or not all( isinstance(_lowerCamelCase , _lowerCamelCase) and len(_lowerCamelCase) > 0 for item in words): raise ValueError("the words should be a list of non-empty strings") # Build trie lowercase__ : dict[str, Any] = {} lowercase__ : Any = "WORD_KEEPER" for word in words: lowercase__ : int = trie for c in word: if c not in trie_node: lowercase__ : Optional[int] = {} lowercase__ : Any = trie_node[c] lowercase__ : Union[str, Any] = True lowercase__ : int = len(_lowerCamelCase) # Dynamic programming method @functools.cache def is_breakable(_lowerCamelCase : int) -> bool: if index == len_string: return True lowercase__ : Any = trie for i in range(_lowerCamelCase , _lowerCamelCase): lowercase__ : Any = trie_node.get(string[i] , _lowerCamelCase) if trie_node is None: return False if trie_node.get(_lowerCamelCase , _lowerCamelCase) and is_breakable(i + 1): return True return False return is_breakable(0) if __name__ == "__main__": import doctest doctest.testmod()
355
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase_ ( _lowerCamelCase : List[str]): return 1 / (1 + np.exp(-z)) def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple): return (-y * np.log(_lowerCamelCase) - (1 - y) * np.log(1 - h)).mean() def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) return np.sum(y * scores - np.log(1 + np.exp(_lowerCamelCase))) def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=7_0000): lowercase__ : Optional[int] = np.zeros(x.shape[1]) for iterations in range(_lowerCamelCase): lowercase__ : Union[str, Any] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Tuple = sigmoid_function(_lowerCamelCase) lowercase__ : Dict = np.dot(x.T , h - y) / y.size lowercase__ : int = theta - alpha * gradient # updating the weights lowercase__ : List[str] = np.dot(_lowerCamelCase , _lowerCamelCase) lowercase__ : Union[str, Any] = sigmoid_function(_lowerCamelCase) lowercase__ : Optional[Any] = cost_function(_lowerCamelCase , _lowerCamelCase) if iterations % 100 == 0: print(f'''loss: {j} \t''') # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase = datasets.load_iris() UpperCamelCase = iris.data[:, :2] UpperCamelCase = (iris.target != 0) * 1 UpperCamelCase = 0.1 UpperCamelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase_ ( _lowerCamelCase : List[Any]): return sigmoid_function( np.dot(_lowerCamelCase , _lowerCamelCase)) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
333
0
import os def lowercase_ ( _lowerCamelCase : str = "input.txt"): with open(os.path.join(os.path.dirname(_lowerCamelCase) , _lowerCamelCase)) as input_file: lowercase__ : Tuple = [ [int(_lowerCamelCase) for element in line.split(",")] for line in input_file.readlines() ] lowercase__ : Optional[Any] = len(_lowerCamelCase) lowercase__ : int = len(matrix[0]) lowercase__ : Dict = [[-1 for _ in range(_lowerCamelCase)] for _ in range(_lowerCamelCase)] for i in range(_lowerCamelCase): lowercase__ : int = matrix[i][0] for j in range(1 , _lowerCamelCase): for i in range(_lowerCamelCase): lowercase__ : Optional[int] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _lowerCamelCase): lowercase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j]) for i in range(rows - 2 , -1 , -1): lowercase__ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j]) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums) if __name__ == "__main__": print(f"{solution() = }")
356
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__A ) class snake_case_ ( __A ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __A : str = field(default="text-classification" ,metadata={"include_in_asdict_even_if_is_default": True} ) __A : ClassVar[Features] = Features({"text": Value("string" )} ) __A : ClassVar[Features] = Features({"labels": ClassLabel} ) __A : str = "text" __A : str = "labels" def __UpperCamelCase ( self : Dict , lowercase_ : Optional[Any] ) -> int: if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) lowercase__ : Optional[int] = copy.deepcopy(self ) lowercase__ : Tuple = self.label_schema.copy() lowercase__ : Union[str, Any] = features[self.label_column] lowercase__ : int = label_schema return task_template @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict[str, str]: return { self.text_column: "text", self.label_column: "labels", }
333
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int=False): try: lowercase__ : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowercase__ : Union[str, Any] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowerCamelCase : int): return unittest.skip("Test was skipped")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): return unittest.skipUnless(_run_slow_tests , "test is slow")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict): return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_xpu_available() , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(is_tpu_available() , "test requires TPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Union[str, Any]): return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_safetensors_available() , "test requires safetensors")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str): return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless(is_torch_version(">=" , "1.12.0") , "test requires torch version >= 1.12.0")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]=None , _lowerCamelCase : Dict=None): if test_case is None: return partial(_lowerCamelCase , version=_lowerCamelCase) return unittest.skipUnless(is_torch_version(">=" , _lowerCamelCase) , f'''test requires torch version >= {version}''')(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any]): return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int): return unittest.skipUnless(is_wandb_available() , "test requires wandb")(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[str]): return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml")(_lowerCamelCase) UpperCamelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowerCamelCase : Any): return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(_lowerCamelCase) class snake_case_ ( unittest.TestCase ): __A : int = True @classmethod def __UpperCamelCase ( cls : str ) -> str: lowercase__ : str = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : List[str] ) -> Optional[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __UpperCamelCase ( self : str ) -> Optional[int]: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] , lowercase_ : Union[mock.Mock, List[mock.Mock]] ) -> str: lowercase__ : Tuple = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowerCamelCase : int): lowercase__ : Tuple = AcceleratorState() lowercase__ : Optional[int] = tensor[None].clone().to(state.device) lowercase__ : Optional[int] = gather(_lowerCamelCase).cpu() lowercase__ : Optional[Any] = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , _lowerCamelCase): return False return True class snake_case_ : def __init__( self : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int ) -> Union[str, Any]: lowercase__ : int = returncode lowercase__ : Dict = stdout lowercase__ : List[Any] = stderr async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str): while True: lowercase__ : int = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Tuple=False , _lowerCamelCase : str=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : Tuple = [] lowercase__ : List[Any] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:"))), asyncio.create_task(_read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:"))), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Tuple=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[str]=180 , _lowerCamelCase : Dict=False , _lowerCamelCase : Dict=True): lowercase__ : Optional[Any] = asyncio.get_event_loop() lowercase__ : List[Any] = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : str = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Dict = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') return result class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Any=False): try: lowercase__ : Optional[int] = subprocess.check_output(_lowerCamelCase , stderr=subprocess.STDOUT) if return_stdout: if hasattr(_lowerCamelCase , "decode"): lowercase__ : Optional[Any] = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{" ".join(_lowerCamelCase)}` failed with the following error:\n\n{e.output.decode()}''') from e
357
def lowercase_ ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 1000 , _lowerCamelCase : bool = True): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)") return min_val if option else max_val def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int): return int((number_a + number_a) / 2) def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int): assert ( isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) and isinstance(_lowerCamelCase , _lowerCamelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)") if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value") def answer(_lowerCamelCase : int) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started...") lowercase__ : Optional[int] = lower lowercase__ : List[Any] = higher lowercase__ : Dict = [] while True: lowercase__ : Any = get_avg(_lowerCamelCase , _lowerCamelCase) last_numbers.append(_lowerCamelCase) if answer(_lowerCamelCase) == "low": lowercase__ : List[str] = number elif answer(_lowerCamelCase) == "high": lowercase__ : Optional[int] = number else: break print(f'''guess the number : {last_numbers[-1]}''') print(f'''details : {last_numbers!s}''') def lowercase_ ( ): lowercase__ : Tuple = int(input("Enter lower value : ").strip()) lowercase__ : Optional[int] = int(input("Enter high value : ").strip()) lowercase__ : Optional[Any] = int(input("Enter value to guess : ").strip()) guess_the_number(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if __name__ == "__main__": main()
333
0
UpperCamelCase : int = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} UpperCamelCase : Union[str, Any] = ['''a''', '''b''', '''c''', '''d''', '''e'''] def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple): lowercase__ : Any = start # add current to visited visited.append(_lowerCamelCase) lowercase__ : List[Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowercase__ : Optional[Any] = topological_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # if all neighbors visited add current to sort sort.append(_lowerCamelCase) # if all vertices haven't been visited select a new one to visit if len(_lowerCamelCase) != len(_lowerCamelCase): for vertice in vertices: if vertice not in visited: lowercase__ : Optional[Any] = topological_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # return sort return sort if __name__ == "__main__": UpperCamelCase : Union[str, Any] = topological_sort('''a''', [], []) print(sort)
358
import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCamelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : str ) -> List[str]: lowercase__ : str = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowercase__ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowercase_ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: lowercase__ : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple=None ) -> Tuple: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: lowercase__ : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result lowercase__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) lowercase__ : List[str] = black.format_str(lowercase_ , mode=lowercase_ ) lowercase__ : Optional[int] = os.path.join(self.diffusers_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Optional[Any] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : int ) -> str: # Base copy consistency self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , lowercase_ ) , ) # Copy consistency with a really long name lowercase__ : Optional[int] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , lowercase_ , overwrite_result=re.sub("DDPM" , "Test" , lowercase_ ) , )
333
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” UpperCamelCase = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCamelCase = 0 UpperCamelCase = 0xe_0_0_0 UpperCamelCase = 0xe_0_0_1 UpperCamelCase = 0xe_0_0_2 UpperCamelCase = 0xe_0_0_3 UpperCamelCase = 0xe_0_0_4 # Maps special codepoints to human-readable names. UpperCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: '''[CLS]''', SEP: '''[SEP]''', BOS: '''[BOS]''', MASK: '''[MASK]''', PAD: '''[PAD]''', RESERVED: '''[RESERVED]''', } # Maps special codepoint human-readable names to their codepoint values. UpperCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class snake_case_ ( __A ): __A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , lowercase_ : Union[str, Any]=chr(lowercase_ ) , lowercase_ : Tuple=chr(lowercase_ ) , lowercase_ : str=chr(lowercase_ ) , lowercase_ : Optional[int]=chr(lowercase_ ) , lowercase_ : List[Any]=chr(lowercase_ ) , lowercase_ : int=chr(lowercase_ ) , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=20_48 , **lowercase_ : Dict , ) -> List[str]: lowercase__ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token lowercase__ : str = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token lowercase__ : Any = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token lowercase__ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token lowercase__ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : Optional[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , model_max_length=lowercase_ , **lowercase_ , ) # Creates a mapping for looking up the IDs of special symbols. lowercase__ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowercase__ : Any = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowercase__ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowercase__ : Dict = UNICODE_VOCAB_SIZE lowercase__ : Optional[Any] = len(self._special_codepoints ) @property def __UpperCamelCase ( self : Tuple ) -> int: return self._unicode_vocab_size def __UpperCamelCase ( self : str , lowercase_ : str ) -> List[str]: return list(lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : str ) -> int: try: return ord(lowercase_ ) except TypeError: raise ValueError(F'''invalid token: \'{token}\'''' ) def __UpperCamelCase ( self : int , lowercase_ : int ) -> str: try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowercase_ ) except TypeError: raise ValueError(F'''invalid id: {index}''' ) def __UpperCamelCase ( self : Any , lowercase_ : List[str] ) -> List[str]: return "".join(lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : Dict = [self.cls_token_id] lowercase__ : str = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __UpperCamelCase ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) lowercase__ : Tuple = [1] + ([0] * len(lowercase_ )) + [1] if token_ids_a is not None: result += ([0] * len(lowercase_ )) + [1] return result def __UpperCamelCase ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : Any = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] lowercase__ : Any = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __UpperCamelCase ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None ) -> List[str]: return ()
359
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Tuple): for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]=True): model.train() lowercase__ : Tuple = model(_lowerCamelCase) lowercase__ : Union[str, Any] = F.mse_loss(_lowerCamelCase , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str=False): set_seed(42) lowercase__ : Dict = RegressionModel() lowercase__ : int = deepcopy(_lowerCamelCase) lowercase__ : str = RegressionDataset(length=80) lowercase__ : List[Any] = DataLoader(_lowerCamelCase , batch_size=16) model.to(accelerator.device) if sched: lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=1E-3) lowercase__ : Union[str, Any] = AdamW(params=ddp_model.parameters() , lr=1E-3) lowercase__ : Optional[int] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) lowercase__ : Union[str, Any] = LambdaLR(_lowerCamelCase , lr_lambda=lambda _lowerCamelCase: epoch**0.65) # Make a copy of `model` if sched: lowercase__ , lowercase__ , lowercase__ , lowercase__ : Tuple = accelerator.prepare(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: lowercase__ , lowercase__ : int = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase_ ( _lowerCamelCase : Tuple): # Test when on a single CPU or GPU that the context manager does nothing lowercase__ , lowercase__ , lowercase__ : List[Any] = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : int = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[int] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : int = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Any): # Test on distributed setup that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase) # Use a single batch lowercase__ , lowercase__ : Dict = next(iter(_lowerCamelCase)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: # Sync grads step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Tuple = ddp_input[torch.randperm(len(_lowerCamelCase))] def lowercase_ ( _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Union[str, Any]=False): lowercase__ : int = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ : Optional[int] = get_training_setup(_lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : str = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : Union[str, Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Do "gradient accumulation" (noop) with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_lowerCamelCase) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) lowercase__ : Dict = ddp_input[torch.randperm(len(_lowerCamelCase))] GradientState._reset_state() def lowercase_ ( _lowerCamelCase : List[str]=False , _lowerCamelCase : int=False): lowercase__ : Dict = Accelerator( split_batches=_lowerCamelCase , dispatch_batches=_lowerCamelCase , gradient_accumulation_steps=2) # Test that context manager behaves properly lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = get_training_setup(_lowerCamelCase , _lowerCamelCase) for iteration, batch in enumerate(_lowerCamelCase): lowercase__ , lowercase__ : Any = batch.values() # Gather the distributed inputs and targs for the base model lowercase__ , lowercase__ : Tuple = accelerator.gather((ddp_input, ddp_target)) lowercase__ , lowercase__ : List[str] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_lowerCamelCase)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_lowerCamelCase): step_model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' lowercase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_lowerCamelCase)) if accelerator.num_processes > 1: check_model_parameters(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration) GradientState._reset_state() def lowercase_ ( ): lowercase__ : List[str] = Accelerator() lowercase__ : List[Any] = RegressionDataset(length=80) lowercase__ : Tuple = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ : int = RegressionDataset(length=96) lowercase__ : List[str] = DataLoader(_lowerCamelCase , batch_size=16) lowercase__ , lowercase__ : Dict = accelerator.prepare(_lowerCamelCase , _lowerCamelCase) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if iteration < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_lowerCamelCase): assert id(accelerator.gradient_state.active_dataloader) == id(_lowerCamelCase) if batch_num < len(_lowerCamelCase) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase_ ( ): lowercase__ : str = Accelerator() lowercase__ : Dict = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**") test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**") test_noop_sync(_lowerCamelCase) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**") test_distributed_sync(_lowerCamelCase) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_lowerCamelCase , _lowerCamelCase) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0") or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Any): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
333
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): __A : Dict = "facebook/bart-large-mnli" __A : Any = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __A : Tuple = "text_classifier" __A : int = AutoTokenizer __A : List[Any] = AutoModelForSequenceClassification __A : List[str] = ["text", ["text"]] __A : int = ["text"] def __UpperCamelCase ( self : Dict ) -> Any: super().setup() lowercase__ : Any = self.model.config lowercase__ : Tuple = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): lowercase__ : Any = int(lowercase_ ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ) -> Dict: lowercase__ : Any = labels return self.pre_processor( [text] * len(lowercase_ ) , [F'''This example is {label}''' for label in labels] , return_tensors="pt" , padding="max_length" , ) def __UpperCamelCase ( self : int , lowercase_ : str ) -> Optional[int]: lowercase__ : Dict = outputs.logits lowercase__ : str = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
360
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase) lowercase__ : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase) lowercase__ : List[str] = checkpoints.load_tax_checkpoint(_lowerCamelCase) lowercase__ : Dict = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase__ : Any = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase__ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global].") # Encoder for layer_index in range(config.num_layers): lowercase__ : str = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase__ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase__ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : int = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : int = flax_model.params["encoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : Any = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[str] = tax_attention_value lowercase__ : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Any = tax_global_layer_norm if split_mlp_wi: lowercase__ : Tuple = tax_mlp_wi_a lowercase__ : str = tax_mlp_wi_a else: lowercase__ : List[Any] = tax_mlp_wi lowercase__ : str = tax_mlp_wo lowercase__ : int = tax_mlp_layer_norm lowercase__ : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowercase__ : Dict = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : Optional[int] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase__ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_encoder_global_rel_embedding # Assigning lowercase__ : Optional[int] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase__ : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): lowercase__ : Dict = f'''layers_{str(_lowerCamelCase)}''' # Self-Attention lowercase__ : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase__ : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase__ : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase__ : int = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase__ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase__ : Union[str, Any] = tax_enc_dec_attention_module["out"]["kernel"] lowercase__ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase__ : Tuple = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase__ : Dict = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase__ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase__ : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase__ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase__ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase__ : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase__ : Optional[Any] = flax_model.params["decoder"]["block"][str(_lowerCamelCase)]["layer"] lowercase__ : Any = tax_attention_key lowercase__ : List[Any] = tax_attention_out lowercase__ : Any = tax_attention_query lowercase__ : List[Any] = tax_attention_value lowercase__ : List[str] = tax_pre_attention_layer_norm lowercase__ : List[Any] = tax_enc_dec_attention_key lowercase__ : Optional[Any] = tax_enc_dec_attention_out lowercase__ : str = tax_enc_dec_attention_query lowercase__ : Union[str, Any] = tax_enc_dec_attention_value lowercase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase__ : List[str] = tax_mlp_wi_a lowercase__ : List[Any] = tax_mlp_wi_a else: lowercase__ : Tuple = tax_mlp_wi lowercase__ : Any = tax_mlp_wo lowercase__ : Tuple = txa_mlp_layer_norm lowercase__ : int = flax_model_decoder_layer_block # Decoder Normalization lowercase__ : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase__ : List[Any] = txa_decoder_norm # Only for layer 0: lowercase__ : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase__ : str = tax_decoder_rel_embedding # Token Embeddings lowercase__ : Optional[Any] = tax_model["target"]["token_embedder"]["embedding"] lowercase__ : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase__ : Optional[int] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase) print("T5X Model was sucessfully converted!") if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
333
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } UpperCamelCase = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase_ ( ): lowercase__ : int = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) lowercase__ : str = bs[:] lowercase__ : List[str] = 0 for b in range(2**8): if b not in bs: bs.append(_lowerCamelCase) cs.append(2**8 + n) n += 1 lowercase__ : int = [chr(_lowerCamelCase) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase)) def lowercase_ ( _lowerCamelCase : Dict): lowercase__ : Optional[Any] = set() lowercase__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowercase__ : Tuple = char return pairs class snake_case_ ( __A ): __A : int = VOCAB_FILES_NAMES __A : int = PRETRAINED_VOCAB_FILES_MAP __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : int = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : int="replace" , lowercase_ : Optional[int]="<s>" , lowercase_ : Optional[Any]="</s>" , lowercase_ : int="</s>" , lowercase_ : str="<s>" , lowercase_ : int="<unk>" , lowercase_ : int="<pad>" , lowercase_ : Union[str, Any]="<mask>" , lowercase_ : List[str]=False , **lowercase_ : List[str] , ) -> int: lowercase__ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else bos_token lowercase__ : Tuple = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else eos_token lowercase__ : int = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else sep_token lowercase__ : List[Any] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else cls_token lowercase__ : Dict = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else unk_token lowercase__ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase__ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) with open(lowercase_ , encoding="utf-8" ) as vocab_handle: lowercase__ : List[str] = json.load(lowercase_ ) lowercase__ : Optional[int] = {v: k for k, v in self.encoder.items()} lowercase__ : Optional[int] = errors # how to handle errors in decoding lowercase__ : str = bytes_to_unicode() lowercase__ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowercase_ , encoding="utf-8" ) as merges_handle: lowercase__ : Any = merges_handle.read().split("\n" )[1:-1] lowercase__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowercase__ : List[str] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase__ : int = {} lowercase__ : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase__ : Tuple = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Dict ) -> Optional[int]: return len(self.encoder ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : Dict , lowercase_ : Dict ) -> List[str]: if token in self.cache: return self.cache[token] lowercase__ : Union[str, Any] = tuple(lowercase_ ) lowercase__ : List[Any] = get_pairs(lowercase_ ) if not pairs: return token while True: lowercase__ : Any = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ : Union[str, Any] = bigram lowercase__ : Optional[Any] = [] lowercase__ : str = 0 while i < len(lowercase_ ): try: lowercase__ : str = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : Any = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : List[Any] = tuple(lowercase_ ) lowercase__ : str = new_word if len(lowercase_ ) == 1: break else: lowercase__ : int = get_pairs(lowercase_ ) lowercase__ : List[str] = " ".join(lowercase_ ) lowercase__ : Tuple = word return word def __UpperCamelCase ( self : str , lowercase_ : Optional[int] ) -> List[Any]: lowercase__ : Optional[Any] = [] for token in re.findall(self.pat , lowercase_ ): lowercase__ : Optional[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase_ ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[Any] ) -> Optional[int]: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Dict , lowercase_ : List[str] ) -> Union[str, Any]: return self.decoder.get(lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: lowercase__ : Dict = "".join(lowercase_ ) lowercase__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowercase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + "\n" ) lowercase__ : Optional[Any] = 0 with open(lowercase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) lowercase__ : str = token_index writer.write(" ".join(lowercase_ ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def __UpperCamelCase ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> List[int]: lowercase__ : List[Any] = [self.sep_token_id] lowercase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : List[Any] , lowercase_ : Tuple , lowercase_ : str=False , **lowercase_ : Union[str, Any] ) -> Union[str, Any]: lowercase__ : Optional[int] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowercase_ ) > 0 and not text[0].isspace()): lowercase__ : Optional[Any] = " " + text return (text, kwargs) def __UpperCamelCase ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ) -> str: return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : List[str] , lowercase_ : "Conversation" ) -> List[int]: lowercase__ : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(lowercase_ ) lowercase__ : Optional[Any] = " ".join(lowercase_ ) lowercase__ : int = self.encode(lowercase_ ) if len(lowercase_ ) > self.model_max_length: lowercase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( __A ): __A : Optional[int] = "rwkv" __A : List[str] = {"max_position_embeddings": "context_length"} def __init__( self : Dict , lowercase_ : List[Any]=5_02_77 , lowercase_ : Union[str, Any]=10_24 , lowercase_ : Any=40_96 , lowercase_ : int=32 , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Any=1E-5 , lowercase_ : Optional[Any]=0 , lowercase_ : Any=0 , lowercase_ : List[str]=6 , lowercase_ : List[Any]=False , lowercase_ : int=True , **lowercase_ : List[str] , ) -> int: lowercase__ : List[str] = vocab_size lowercase__ : str = context_length lowercase__ : List[Any] = hidden_size lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase__ : str = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase__ : List[Any] = layer_norm_epsilon lowercase__ : str = rescale_every lowercase__ : Optional[int] = use_cache lowercase__ : int = bos_token_id lowercase__ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
333
0
from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=__A ): __A : Any = ["transformers", "torch", "note_seq"] def __init__( self : List[str] , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ) -> str: requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def __UpperCamelCase ( cls : Dict , *lowercase_ : str , **lowercase_ : int ) -> Tuple: requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def __UpperCamelCase ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : List[str] ) -> Optional[Any]: requires_backends(cls , ["transformers", "torch", "note_seq"] )
362
class snake_case_ : def __init__( self : int ) -> Optional[int]: lowercase__ : Optional[int] = 0 lowercase__ : List[str] = 0 lowercase__ : Any = {} def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Union[str, Any]: if vertex not in self.adjacency: lowercase__ : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : str ) -> Optional[Any]: self.add_vertex(lowercase_ ) self.add_vertex(lowercase_ ) if head == tail: return lowercase__ : int = weight lowercase__ : Any = weight def __UpperCamelCase ( self : Dict ) -> Optional[int]: lowercase__ : List[Any] = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : int = edge edges.remove((tail, head, weight) ) for i in range(len(lowercase_ ) ): lowercase__ : Tuple = list(edges[i] ) edges.sort(key=lambda lowercase_ : e[2] ) for i in range(len(lowercase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowercase__ : int = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__ : Optional[int] = edge lowercase__ : Union[str, Any] = weight lowercase__ : Dict = weight def __str__( self : str ) -> Any: lowercase__ : str = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__ : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: lowercase__ : Any = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : List[str] ) -> Dict: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowercase_ : Dict=None , lowercase_ : Any=None ) -> Optional[int]: lowercase__ : Any = Graph() if vertices is None: lowercase__ : str = [] if edges is None: lowercase__ : List[Any] = [] for vertex in vertices: g.add_vertex(lowercase_ ) for edge in edges: g.add_edge(*lowercase_ ) return g class snake_case_ : def __init__( self : int ) -> List[str]: lowercase__ : Dict = {} lowercase__ : Tuple = {} def __len__( self : Union[str, Any] ) -> Union[str, Any]: return len(self.parent ) def __UpperCamelCase ( self : Tuple , lowercase_ : List[str] ) -> Tuple: if item in self.parent: return self.find(lowercase_ ) lowercase__ : Union[str, Any] = item lowercase__ : int = 0 return item def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : List[str] ) -> Any: if item not in self.parent: return self.make_set(lowercase_ ) if item != self.parent[item]: lowercase__ : Union[str, Any] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , lowercase_ : Dict , lowercase_ : str ) -> Optional[Any]: lowercase__ : Dict = self.find(lowercase_ ) lowercase__ : Optional[int] = self.find(lowercase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__ : Dict = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__ : int = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__ : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowercase_ : Dict ) -> Optional[Any]: lowercase__ : List[Any] = graph.num_vertices lowercase__ : Optional[Any] = Graph.UnionFind() lowercase__ : int = [] while num_components > 1: lowercase__ : List[Any] = {} for vertex in graph.get_vertices(): lowercase__ : Any = -1 lowercase__ : List[str] = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__ : str = edge edges.remove((tail, head, weight) ) for edge in edges: lowercase__ , lowercase__ , lowercase__ : List[str] = edge lowercase__ : List[str] = union_find.find(lowercase_ ) lowercase__ : Union[str, Any] = union_find.find(lowercase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__ : Dict = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__ : List[Any] = cheap_edge[vertex] if union_find.find(lowercase_ ) != union_find.find(lowercase_ ): union_find.union(lowercase_ , lowercase_ ) mst_edges.append(cheap_edge[vertex] ) lowercase__ : Optional[Any] = num_components - 1 lowercase__ : List[Any] = Graph.build(edges=lowercase_ ) return mst
333
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=False): lowercase__ : int = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''')) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ]) # if just the base model, we should remove "deit" from all keys that start with "deit" lowercase__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("deit") else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ]) return rename_keys def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]=False): for i in range(config.num_hidden_layers): if base_model: lowercase__ : Optional[int] = "" else: lowercase__ : Union[str, Any] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Dict = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''') lowercase__ : str = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : List[str] = in_proj_weight[ : config.hidden_size, : ] lowercase__ : Any = in_proj_bias[: config.hidden_size] lowercase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : Dict = in_proj_bias[-config.hidden_size :] def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any]): lowercase__ : Any = dct.pop(_lowerCamelCase) lowercase__ : List[Any] = val def lowercase_ ( ): lowercase__ : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : List[Any] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple): lowercase__ : Optional[Any] = DeiTConfig() # all deit models have fine-tuned heads lowercase__ : List[str] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowercase__ : Optional[int] = 1000 lowercase__ : Dict = "huggingface/label-files" lowercase__ : Dict = "imagenet-1k-id2label.json" lowercase__ : Any = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset") , "r")) lowercase__ : List[Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : List[str] = idalabel lowercase__ : Any = {v: k for k, v in idalabel.items()} lowercase__ : List[str] = int(deit_name[-6:-4]) lowercase__ : Dict = int(deit_name[-3:]) # size of the architecture if deit_name[9:].startswith("tiny"): lowercase__ : Union[str, Any] = 192 lowercase__ : Dict = 768 lowercase__ : Any = 12 lowercase__ : List[str] = 3 elif deit_name[9:].startswith("small"): lowercase__ : Tuple = 384 lowercase__ : List[Any] = 1536 lowercase__ : List[Any] = 12 lowercase__ : str = 6 if deit_name[9:].startswith("base"): pass elif deit_name[4:].startswith("large"): lowercase__ : Tuple = 1024 lowercase__ : str = 4096 lowercase__ : List[Any] = 24 lowercase__ : Optional[Any] = 16 # load original model from timm lowercase__ : Any = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ : Optional[int] = timm_model.state_dict() lowercase__ : List[str] = create_rename_keys(_lowerCamelCase , _lowerCamelCase) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Union[str, Any] = DeiTForImageClassificationWithTeacher(_lowerCamelCase).eval() model.load_state_dict(_lowerCamelCase) # Check outputs on an image, prepared by DeiTImageProcessor lowercase__ : str = int( (256 / 224) * config.image_size) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowercase__ : Union[str, Any] = DeiTImageProcessor(size=_lowerCamelCase , crop_size=config.image_size) lowercase__ : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="pt") lowercase__ : Optional[Any] = encoding["pixel_values"] lowercase__ : int = model(_lowerCamelCase) lowercase__ : List[str] = timm_model(_lowerCamelCase) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
363
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class snake_case_ ( __A ): def __get__( self : int , lowercase_ : Optional[Any] , lowercase_ : List[Any]=None ) -> Optional[Any]: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) lowercase__ : Any = "__cached_" + self.fget.__name__ lowercase__ : Optional[int] = getattr(lowercase_ , lowercase_ , lowercase_ ) if cached is None: lowercase__ : Optional[Any] = self.fget(lowercase_ ) setattr(lowercase_ , lowercase_ , lowercase_ ) return cached def lowercase_ ( _lowerCamelCase : Union[str, Any]) -> Dict: lowercase__ : str = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'''invalid truth value {val!r}''') def lowercase_ ( _lowerCamelCase : Optional[int]) -> List[str]: if is_torch_fx_proxy(_lowerCamelCase): return True if is_torch_available(): import torch if isinstance(_lowerCamelCase , torch.Tensor): return True if is_tf_available(): import tensorflow as tf if isinstance(_lowerCamelCase , tf.Tensor): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_lowerCamelCase , (jnp.ndarray, Tracer)): return True return isinstance(_lowerCamelCase , np.ndarray) def lowercase_ ( _lowerCamelCase : Optional[Any]) -> List[Any]: return isinstance(_lowerCamelCase , np.ndarray) def lowercase_ ( _lowerCamelCase : Any) -> int: return _is_numpy(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int]) -> List[Any]: import torch return isinstance(_lowerCamelCase , torch.Tensor) def lowercase_ ( _lowerCamelCase : Union[str, Any]) -> List[Any]: return False if not is_torch_available() else _is_torch(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int]) -> Any: import torch return isinstance(_lowerCamelCase , torch.device) def lowercase_ ( _lowerCamelCase : List[Any]) -> Tuple: return False if not is_torch_available() else _is_torch_device(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[Any]) -> Optional[Any]: import torch if isinstance(_lowerCamelCase , _lowerCamelCase): if hasattr(_lowerCamelCase , _lowerCamelCase): lowercase__ : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase) else: return False return isinstance(_lowerCamelCase , torch.dtype) def lowercase_ ( _lowerCamelCase : int) -> Union[str, Any]: return False if not is_torch_available() else _is_torch_dtype(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : str) -> str: import tensorflow as tf return isinstance(_lowerCamelCase , tf.Tensor) def lowercase_ ( _lowerCamelCase : List[Any]) -> Tuple: return False if not is_tf_available() else _is_tensorflow(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : int) -> List[Any]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_lowerCamelCase , "is_symbolic_tensor"): return tf.is_symbolic_tensor(_lowerCamelCase) return type(_lowerCamelCase) == tf.Tensor def lowercase_ ( _lowerCamelCase : str) -> Dict: return False if not is_tf_available() else _is_tf_symbolic_tensor(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict) -> str: import jax.numpy as jnp # noqa: F811 return isinstance(_lowerCamelCase , jnp.ndarray) def lowercase_ ( _lowerCamelCase : Any) -> List[Any]: return False if not is_flax_available() else _is_jax(_lowerCamelCase) def lowercase_ ( _lowerCamelCase : Dict) -> Tuple: if isinstance(_lowerCamelCase , (dict, UserDict)): return {k: to_py_obj(_lowerCamelCase) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple)): return [to_py_obj(_lowerCamelCase) for o in obj] elif is_tf_tensor(_lowerCamelCase): return obj.numpy().tolist() elif is_torch_tensor(_lowerCamelCase): return obj.detach().cpu().tolist() elif is_jax_tensor(_lowerCamelCase): return np.asarray(_lowerCamelCase).tolist() elif isinstance(_lowerCamelCase , (np.ndarray, np.number)): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowercase_ ( _lowerCamelCase : Optional[int]) -> Optional[int]: if isinstance(_lowerCamelCase , (dict, UserDict)): return {k: to_numpy(_lowerCamelCase) for k, v in obj.items()} elif isinstance(_lowerCamelCase , (list, tuple)): return np.array(_lowerCamelCase) elif is_tf_tensor(_lowerCamelCase): return obj.numpy() elif is_torch_tensor(_lowerCamelCase): return obj.detach().cpu().numpy() elif is_jax_tensor(_lowerCamelCase): return np.asarray(_lowerCamelCase) else: return obj class snake_case_ ( __A ): def __UpperCamelCase ( self : Optional[Any] ) -> Dict: lowercase__ : Union[str, Any] = fields(self ) # Safety and consistency checks if not len(lowercase_ ): raise ValueError(F'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'''{self.__class__.__name__} should not have more than one required field.''' ) lowercase__ : List[Any] = getattr(self , class_fields[0].name ) lowercase__ : int = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(lowercase_ ): if isinstance(lowercase_ , lowercase_ ): lowercase__ : Optional[int] = first_field.items() lowercase__ : Optional[Any] = True else: try: lowercase__ : str = iter(lowercase_ ) lowercase__ : Any = True except TypeError: lowercase__ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(lowercase_ ): if ( not isinstance(lowercase_ , (list, tuple) ) or not len(lowercase_ ) == 2 or not isinstance(element[0] , lowercase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowercase__ : str = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowercase__ : Tuple = element[1] elif first_field is not None: lowercase__ : Optional[Any] = first_field else: for field in class_fields: lowercase__ : List[Any] = getattr(self , field.name ) if v is not None: lowercase__ : List[str] = v def __delitem__( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Dict ) -> Optional[int]: raise Exception(F'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def __UpperCamelCase ( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : Union[str, Any] ) -> Tuple: raise Exception(F'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def __UpperCamelCase ( self : Union[str, Any] , *lowercase_ : Tuple , **lowercase_ : List[Any] ) -> Optional[int]: raise Exception(F'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def __UpperCamelCase ( self : List[str] , *lowercase_ : str , **lowercase_ : Dict ) -> str: raise Exception(F'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self : List[Any] , lowercase_ : List[str] ) -> Union[str, Any]: if isinstance(lowercase_ , lowercase_ ): lowercase__ : List[str] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ) -> List[Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(lowercase_ , lowercase_ ) super().__setattr__(lowercase_ , lowercase_ ) def __setitem__( self : Union[str, Any] , lowercase_ : int , lowercase_ : str ) -> int: # Will raise a KeyException if needed super().__setitem__(lowercase_ , lowercase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : str ) -> Tuple[Any]: return tuple(self[k] for k in self.keys() ) class snake_case_ ( __A ,__A ): @classmethod def __UpperCamelCase ( cls : int , lowercase_ : Dict ) -> Optional[Any]: raise ValueError( F'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class snake_case_ ( __A ): __A : str = "longest" __A : Any = "max_length" __A : List[Any] = "do_not_pad" class snake_case_ ( __A ): __A : Dict = "pt" __A : str = "tf" __A : Optional[int] = "np" __A : List[Any] = "jax" class snake_case_ : def __init__( self : Dict , lowercase_ : List[ContextManager] ) -> Optional[Any]: lowercase__ : str = context_managers lowercase__ : List[Any] = ExitStack() def __enter__( self : Dict ) -> List[Any]: for context_manager in self.context_managers: self.stack.enter_context(lowercase_ ) def __exit__( self : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : Optional[int] ) -> Optional[Any]: self.stack.__exit__(*lowercase_ , **lowercase_ ) def lowercase_ ( _lowerCamelCase : Any) -> int: lowercase__ : Optional[Any] = infer_framework(_lowerCamelCase) if framework == "tf": lowercase__ : List[str] = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": lowercase__ : List[str] = inspect.signature(model_class.forward) # PyTorch models else: lowercase__ : List[Any] = inspect.signature(model_class.__call__) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowercase_ ( _lowerCamelCase : Tuple) -> List[str]: lowercase__ : Union[str, Any] = model_class.__name__ lowercase__ : Union[str, Any] = infer_framework(_lowerCamelCase) if framework == "tf": lowercase__ : Union[str, Any] = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": lowercase__ : Optional[int] = inspect.signature(model_class.forward) # PyTorch models else: lowercase__ : List[str] = inspect.signature(model_class.__call__) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowercase_ ( _lowerCamelCase : MutableMapping , _lowerCamelCase : str = "" , _lowerCamelCase : str = ".") -> List[Any]: def _flatten_dict(_lowerCamelCase : Tuple , _lowerCamelCase : Any="" , _lowerCamelCase : int="."): for k, v in d.items(): lowercase__ : Optional[Any] = str(_lowerCamelCase) + delimiter + str(_lowerCamelCase) if parent_key else k if v and isinstance(_lowerCamelCase , _lowerCamelCase): yield from flatten_dict(_lowerCamelCase , _lowerCamelCase , delimiter=_lowerCamelCase).items() else: yield key, v return dict(_flatten_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase)) @contextmanager def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : bool = False) -> List[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[Any]=None) -> Optional[int]: if is_numpy_array(_lowerCamelCase): return np.transpose(_lowerCamelCase , axes=_lowerCamelCase) elif is_torch_tensor(_lowerCamelCase): return array.T if axes is None else array.permute(*_lowerCamelCase) elif is_tf_tensor(_lowerCamelCase): import tensorflow as tf return tf.transpose(_lowerCamelCase , perm=_lowerCamelCase) elif is_jax_tensor(_lowerCamelCase): return jnp.transpose(_lowerCamelCase , axes=_lowerCamelCase) else: raise ValueError(f'''Type not supported for transpose: {type(_lowerCamelCase)}.''') def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple) -> Any: if is_numpy_array(_lowerCamelCase): return np.reshape(_lowerCamelCase , _lowerCamelCase) elif is_torch_tensor(_lowerCamelCase): return array.reshape(*_lowerCamelCase) elif is_tf_tensor(_lowerCamelCase): import tensorflow as tf return tf.reshape(_lowerCamelCase , _lowerCamelCase) elif is_jax_tensor(_lowerCamelCase): return jnp.reshape(_lowerCamelCase , _lowerCamelCase) else: raise ValueError(f'''Type not supported for reshape: {type(_lowerCamelCase)}.''') def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=None) -> Tuple: if is_numpy_array(_lowerCamelCase): return np.squeeze(_lowerCamelCase , axis=_lowerCamelCase) elif is_torch_tensor(_lowerCamelCase): return array.squeeze() if axis is None else array.squeeze(dim=_lowerCamelCase) elif is_tf_tensor(_lowerCamelCase): import tensorflow as tf return tf.squeeze(_lowerCamelCase , axis=_lowerCamelCase) elif is_jax_tensor(_lowerCamelCase): return jnp.squeeze(_lowerCamelCase , axis=_lowerCamelCase) else: raise ValueError(f'''Type not supported for squeeze: {type(_lowerCamelCase)}.''') def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any]) -> Optional[int]: if is_numpy_array(_lowerCamelCase): return np.expand_dims(_lowerCamelCase , _lowerCamelCase) elif is_torch_tensor(_lowerCamelCase): return array.unsqueeze(dim=_lowerCamelCase) elif is_tf_tensor(_lowerCamelCase): import tensorflow as tf return tf.expand_dims(_lowerCamelCase , axis=_lowerCamelCase) elif is_jax_tensor(_lowerCamelCase): return jnp.expand_dims(_lowerCamelCase , axis=_lowerCamelCase) else: raise ValueError(f'''Type not supported for expand_dims: {type(_lowerCamelCase)}.''') def lowercase_ ( _lowerCamelCase : int) -> str: if is_numpy_array(_lowerCamelCase): return np.size(_lowerCamelCase) elif is_torch_tensor(_lowerCamelCase): return array.numel() elif is_tf_tensor(_lowerCamelCase): import tensorflow as tf return tf.size(_lowerCamelCase) elif is_jax_tensor(_lowerCamelCase): return array.size else: raise ValueError(f'''Type not supported for expand_dims: {type(_lowerCamelCase)}.''') def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : int) -> Union[str, Any]: for key, value in auto_map.items(): if isinstance(_lowerCamelCase , (tuple, list)): lowercase__ : Optional[Any] = [f'''{repo_id}--{v}''' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowercase__ : Any = f'''{repo_id}--{value}''' return auto_map def lowercase_ ( _lowerCamelCase : Union[str, Any]) -> Union[str, Any]: for base_class in inspect.getmro(_lowerCamelCase): lowercase__ : List[str] = base_class.__module__ lowercase__ : Any = base_class.__name__ if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch") or name == "PreTrainedModel": return "pt" elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'''Could not infer framework from class {model_class}.''')
364
def lowercase_ ( _lowerCamelCase : int = 1 , _lowerCamelCase : int = 1000): lowercase__ : Union[str, Any] = 1 lowercase__ : int = 0 for divide_by_number in range(_lowerCamelCase , digit + 1): lowercase__ : list[int] = [] lowercase__ : Dict = numerator for _ in range(1 , digit + 1): if now_divide in has_been_divided: if longest_list_length < len(_lowerCamelCase): lowercase__ : Union[str, Any] = len(_lowerCamelCase) lowercase__ : Optional[int] = divide_by_number else: has_been_divided.append(_lowerCamelCase) lowercase__ : Optional[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
333
0